To appear in the ACM SIGGRAPH conference proceedings

Relief Clipping Planes for Real-Time Rendering

Matthias Trapp and Jiirgen Dollner*
Hasso-Plattner-Institute, University of Potsdam, Germany

\

&) re
L/ 4

‘?#":"~?’6‘ ’:
b R N\
Ty R

A8 7 \\\\
l‘fl"

s

' \ A \

Offset Maps

Figure 1: Results of our rendering technique: A: A clipped and capped Roman column. The close-up shows the non-regularity and shading of
the cut-surface to create the impression of a solid column. B: Application of relief clipping planes to a non-convex mesh. The crank is rendered
using edge enhancement and a hatched texture is applied to the cap. C: shows a clipped, capped, and solid textured convex object.

Introduction

The concept of clipping planes is well known in computer graphics
and can be used to create cut-away views. But clipping against just
analytical defined planes is not always suitable for communicating
every aspect of such a visualization. For example, in hand-drawn
technical illustrations, artists tend to communicate the difference
between a cut and a model feature by using non-regular, sketchy cut
lines instead of straight ones.

To enable this functionality in computer graphics (Figure 1), we
present a technique for rendering relief clip planes (RCP) in real-
time. Therefore, we extend the clip plane equation with an additional
offset map (OM), which can be represented by a texture map that
contains height values. Clipping is then performed by varying the
clip plane equation with respect to such an offset map. Further, we
propose a capping technique that enables the rendering of caps onto
the clipped area to convey the impression of solid material. It avoids
a re-meshing of a solid polygonal mesh after clipping is performed.
Our approach is pixel precise, applicable in real-time, and takes fully
advantage of graphics accelerators.

Relief Clipping Planes

Briefly, a RCP = (N, P,OM, s) is defined by a normal vector
N = (A, B, C) and origin P, which are required to construct the re-
spective normal form, an offset map O M, and a height value scaling
factor s. Given an arbitrary shaped solid mesh and a RCP, clipping
is performed on fragment level as follows. For each fragment with
the clip space coordinate C' = (z, y, ) the function:

clip(RCP,C) = A +yB + 2C — f(C,P,OM) > 0

is evaluated using a fragment shader program. Therefore, f delivers
a scalar D € R by first generating texture coordinates into the
offset map, then samples O M, and finally scales the resulting height
sample by s. If the above equation is satisfied, the fragment program
discards the tested fragment. This step can be performed for a
number of clipping planes within a single rendering pass.

*{matthias.trapp, juergen.doellner } @hpi.uni-potsdam.de

Capping Solid Meshes

Due to the possibly non-regularity of the clip surface, capping tech-
niques based on stencil buffer capabilities [Blythe et al. 1999] cannot
be applied. Especially for non-convex shapes, the association of a
cap to a clipped area cannot be made definitely in image space using
stencil masks.

Our image-based approach works for every clipped arbitrary solid.
Therefore, a volumetric depth sprite [Trapp and Doellner 2008] of
the polygonal mesh is created in a preprocessing step. Following to
that, two steps are performed per frame: First, the solid mesh is ren-
dered into the frame buffer with applied relief clipping. Second, the
capping meshes is rendered using per-vertex displacement mapping.
In this step, a volumetric depth test is performed per fragment that
determines if it lies inside the volume and thus associated with a gap,
or if it located outside the volume and therefore is discarded. GPU
based-mesh refinement [Boubekeur and Schlick 2005] is applied
to fit the subdivision of the cap mesh to the resolution of the offset
map.

Conclusions & Future Work

We presented a new rendering technique for performing clipping and
capping of arbitrary solid meshes against relief clip planes in real-
time. For future work, we adapt this technique for apply capping
for clipping against volumes [Trapp and Doellner 2008]. Further,
we want to replace displacement mapping with parallax mapping to
increase performance.

References

BLYTHE, D., MCREYNOLD, T., B. GRANTHAM, B., KILGARD,
M., AND ScOTT, R. 1999. Programming with OpenGL: Ad-
vanced Rendering. In SIGGRAPH Course, New York: ACM,
A. Rockwood, Ed.

BOUBEKEUR, T., AND SCHLICK, C. 2005. Generic Mesh Refine-
ment On GPU. In Proceedings of ACM SIGGRAPH/Eurographics
Graphics Hardware.

TRAPP, M., AND DOELLNER, J. 2008. Real-Time Volumetric Tests
Using Layered Depth Images. In Eurographics, 49-52.



