
VideoMR: A Map and Reduce Framework
for Real-time Video Processing

Benjamin-Heinz Meier
Hasso-Plattner-Institute
University of Potsdam,

Germany
benjamin-heinz.meier

@student.hpi.de

Matthias Trapp
Hasso-Plattner-Institute
University of Potsdam,

Germany
matthias.trapp@hpi.de

Jürgen Döllner
Hasso-Plattner-Institute
University of Potsdam,

Germany
juergen.doellner@hpi.de

ABSTRACT
This paper presents VideoMR: a novel map and reduce framework for real-time video processing on graphic pro-
cessing units (GPUs). Using the advantages of implicit parallelism and bounded memory allocation, our approach
enables developers to focus on implementing video operations without taking care of GPU memory handling or
the details of code parallelization. Therefore, a new concept for map and reduce is introduced, redefining both
operations to fit to the specific requirements of video processing. A prototypic implementation using OpenGL
facilitates various operating platforms, including mobile development, and will be widely interoperable with other
state-of-the-art video processing frameworks.

Keywords
map and reduce, video processing, real-time, bounded memory

1 INTRODUCTION
Modern video processing has been shifted from post-
processing to real-time systems, applications, and tech-
niques. The reason for this development is the appli-
cation of graphic processing units (GPUs) for massive
data parallel tasks besides rendering. Video processing
in the context of this paper is defined as part of signal
processing, which applies filters and transformation on
video sequences and frames [15].

While current video processing frameworks offer
the opportunity to program own GPU-based plug-ins
for real-time video processing [12] or implement
own GPU-based frameworks [16], a developer still
has to deal with the constraints of the GPU memory
management and its limitations. Therefore, a devel-
oper is required to have a deep understanding of the
functionality of the GPU to program own real-time
filters. Still, for general GPU programming tasks there
are frameworks which have a much more suitable level
of abstraction, such as the map and reduce framework
MARS from He et al. [4]. But those focus on general
map and reduce tasks and not on video processing

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

itself. Thus, this paper introduces a redefinition of the
map and reduce concept, which is more suitable for
video processing using implicit GPU programming.
This facilitates GPU programming without a deep
technical understanding of the underlying hardware
with less lines of code. Our approach is a new inter-
pretation of the map and reduce implementation for
implicit parallelism on cluster based systems presented
by Dean and Ghemawat [3].

Moreover, to ensure efficient usage of memory, which
is bounded to certain device-specific limits, such as the
memory in embedded or mobile devices, this paper in-
troduces the concept of pre-allocated ringbuffers for the
video data handling. Avoiding dynamic reallocation of
memory and inspired by the disruptor implementation
in the LMAX Disruptor [13]. To summarize, this work
makes the following contributions:

1. it presents a concept for bounded and transparent
handling of GPU memory for video processing,

2. a novel concept of a map and reduce framework for
real-time video processing redefining both map and
reduce to be more suitable for video processing and
a bounded memory concept,

3. an interoperable implementation of the presented
concept based on OpenGL [10].

The remainder of this paper is structured as follows.
Section 2 discusses the fundamental ideas of the map
and reduce concept as well as implicit parallelism in



functional programming for data parallel tasks in video
processing. The idea of using a ringbuffer for bounded
memory allocation and the combination of both con-
cepts into an efficient framework for real-time video
processing called VideoMR is presented (Section 3).
Section 4 briefly describes a prototypical implementa-
tion based on OpenGL [10] which is widely used on
all platforms including mobile devices. Furthermore,
Section 5 demonstrates and explains the framework by
means of a move detection filter. Section 6 discusses
the performance, code reduction, and limitations of the
prototypical implementation (Section 6), followed by
the benefits of bounded memory allocation and implicit
parallelism for video processing tasks and a generaliza-
tion of the introduced concept for different types of data
streams (Section 7).

2 RELATED WORK
The idea of using map and reduce in functional pro-
gramming languages such as Haskell [5] is not new
and has been used in large-scale systems for almost a
decade. Loidl et al. [6] have shown that an implicit
parallelization of functional code in languages such as
Glasgow Parallel Haskell (GpH) [14], as extension of
Haskell98 [5], can be efficient while reducing program-
ming overhead for the parallelization task.

This concept was further developed by Dean and Ghe-
mawat [3], focusing on a definition of the map and
reduce principle known from the functional paradigm
for cluster systems, hiding the details of parallelization,
load balancing, and other tasks of cluster-based sys-
tems. The computation is therefore divided in a map
and reduce step, which have to be defined by the devel-
oper:

map(k1,v1)→ list(k2,v2)

reduce(k2, list(v2))→ list(v2)

The map function receives an input key/value
pair (k1,v1) and emits a list of intermediate key/value
pairs list(k2,v2). Those will be sorted into lists of
values related to a specific key (k2, list(v2)) and
passed on to a reduce function. According to the
key, the reduce function merges the list of values
list(v2) to a smaller list. The size of the output is
typically one or zero. Functions defined this way can
be automatically parallelized by the library. Compared
to explicit parallel computing models [7], the overhead
in programming time has been significantly reduced.

A GPU-based implementation is presented by
He et al. [4]. GPUs, originally developed for rendering
purposes only, are used since 2002 for general com-
puting tasks [9] as well. The idea behind this is that
GPUs perform very well on data parallel tasks, because

Figure 1: Overview of the work flow of VideoMR. As
long as frames can be loaded from a source stream they
are processed by the map and reduce operations, de-
fined by the corresponding program, and finally pushed
to an output stream.

they have been designed to render high amounts of
vertices in parallel. Therefore, they have multiple
computation units, which can perform the same task
on different data in parallel. Nevertheless, porting
map and reduce to a GPU can still be improved, by
taking into account that the dynamic memory model,
required for the intermediate key/value pairs, is not
preferable for GPUs. Furthermore, the specifics of
video processing can be used to define an own map and
reduce concept for real-time video processing using
the pixel coordinates of each frame as implicit key.

To support a static bounded memory concept, a data
structure that can handle massive data is preferred. An
efficient approach has been introduced by Thompson
et al. with a ringbuffer concept called disruptor as an
alternative for queues in the LMAX Disruptor frame-
work [13]. This framework addresses the problems oc-
curring in massive financial data exchange. Because
of the ringbuffer structure, memory has to be allocated
only once and is bounded by the total size of all ring-
buffers. Moreover, memory can be allocated in advance
and reused during processing.

3 CONCEPTUAL OVERVIEW
VideoMR combines the ringbuffer concept for bounded
memory allocation and a redefinition of the map and re-
duce paradigm, to fulfill both: the requirements of mod-
ern GPUs and the requirements of real-time video pro-
cessing. In contrast to existing map and reduce frame-
works for GPUs, VideoMR does not focus on trans-
ferring map and reduce implementation to the GPUs,
but instead on implementing a novel interpretation for
video processing.

With respect to both concepts, a VideoMR program can
be defined using a combination of ringbuffers denoted
as streams, connected through map and reduce opera-
tions. A specific source stream, e.g., a video loader or
generator, passes frames to the first map or reduce op-
eration as long as new frames are available. The cor-



Figure 2: This figure shows the implementation of
streams using a ringbuffer. Continuously, the ringbuffer
is filled with input video frames. The index indicates
the time steps that have passed with respect to the cur-
rent frame. One pointer is indexing the current frame.
Another indicates whether the ringbuffer is full and
therefore the next frame will overwrite the oldest one
in the stream.

responding operations are processed and executed un-
til new streams are connected. If a target stream, such
as a display or writer stream, is reached, the program
restarts for the next frame. This process is summarized
in Figure 1 (previous page).

Memory-bounded Streams

The basic data structure, implemented based on the dis-
ruptor concept [13], is the stream. A stream is a finite
sequence of frames. For efficient memory usage for
every stream a ring-buffer of k frames is allocated in
video memory. Further, a pointer to the current frame
is initialized and the counter for the number of frames
in the stream is set to zero. A stream, therefore, rep-
resents the current sub-sequence of frames of a video
(Figure 2). This temporal information of the streams
distinguish video processing from image processing.

Map and Reduce for Video Processing

Initialized streams instances can be connected by defin-
ing map or reduce operations (Figure 3) with an input
stream sin, and output stream sout , as well as a set of side
streams {s0,s1, . . . ,sn−1}. Both functions are defined in
the same way to be easily combinable:

map(sin[,s0,s1, . . . ,sn−1], func.map) → sout

reduce(sin[,s0,s1, . . . ,sn−1], func.red) → sout

The developer can now implement own map and re-
duce functions by passing definitions in a func.map
or func.red file, denoted as code snippet, to the op-
eration. Examples of such code snippets are shown in
Section 5.

By implementing these operations, a developer can
access the input stream sin and has to write the result to
the output stream sout. The side streams s0,s1, . . . ,sn−1
can be used to pass information from earlier process-
ing steps or other constant application data to the
specific operation. The concept of a key/value pair
of the original map and reduce concept is replaced
by the fundamental approach that a pixel position
itself serves directly as key for the respective pixel
value. Therefore, a key/value pair consists of the tuple
(position x,position y) as the key, and the emitted
value would represent the result of an operation on
those pixel in time. Still, this approach is not directly
comparable to the original idea, because the introduced
map and reduce concept is derived from the general
concept of map and reduce in functional programming
and therefore does not require any keys. However, the
general concept, which both approaches share, is that
the map function is applied several times to different
input data and the reduce function is aggregating those
data.

Map Operation Interface

For the map operation (Figure 3 and 5), a developer
has to define a function that is applied to every pixel
of a frame of the output stream sout. The frame is sub-
sequently pushed as first frame to sout. Every stream
can be accessed using a stream structure representing
meta data of the streams such as width, height, and size.
To retrieve the position of the pixel to process (serv-
ing as key in the operation), the developer has to call
vmr_getPosition().

The data at the respective position in the input stream
or a side stream can be accessed by the function
vmr_getStreamDataX(pos, time). Here, X represents a
placeholder for ’In’ for sin or the numberi of the side
stream (s0,s1, . . . ,si, . . . ,sn−1). The function parameter
pos defines the pixel position and time the temporal
difference between the frame and the current frame.

To write to an output position, the developer has to
call vmr_emitToStreamOut(pos, pixel) explicitly, or, to
write to a side stream: vmr_emitToStreamX(pos, pixel)
respectively.

Reduce Operation Interface

To implement a reduce operation (Figure 3 and 5),
the developer is required to define a function that
is called for an intermediate frame. This frame is



half the width and height of the preceding inter-
mediate frame. During processing, this function is
repeatedly called as long as the resulting frame is
larger than the least basic resolution of 1 × 1, or
vmr_emitToStreamOutAndBreak(pos,pixel) has been
called.

To retrieve the data from a preceding intermediate
frame, the developer calls the vmr_getOldData(pos)
function. To emit the resulting pixel information,
the function vmr_emitNewData(pos, pixel) has to
be called. For an efficient and bounded memory
allocation, two intermediate frames are allocated per
reduce operation in advanced and used alternated as
target or source – so called ping-pong processing.
Especially for the computation of image or video
metrics (e.g., the mean color of a frame), the reduce
function is repeated until a minimal frame size of 1×1
is reached. Nevertheless, to reduce the resolution of a
frame to a desired size (resolution), the developer can
call vmr_emitToStreamOutAndBreak(pos, pixel).

Figure 3: Illustration of the general concept of map and
reduce operations for video data. The top figure illus-
trate a map operation that executes its corresponding
function for every pixel of the output frame. The bot-
tom figure shows a reduce operation, where a neighbor-
hood of four pixels is merged until the loop is termi-
nated. Afterwards, the resulting frame is emitted to the
output stream.

4 IMPLEMENTATION
The presented concept is prototypical implemented us-
ing OpenGL [10]. This application programming inter-
face (API) is platform-independent, open source, and
supported on most mobile devices. Moreover, OpenGL
offers compute shader, a generalized interface to GPU
programming and is, therefore, the ideal choice for a
prototypical implementation.

The stream data structure is implemented using shader
storage buffer objects (SSBOs). These have two major
advantages: (1) they can be as large as the GPU mem-
ory and (2) they are writable at random access. For the
implementation of the map and reduce operations com-
pute shader are used. This is a shader type introduced to
implement general purpose GPU (GPGPU) operations.
We rely on, but are not limited to, the OpenGL Shading
Language (GLSL) for operation implementation.

The map and reduce operation are implemented using
wrapped compute shader. The discussed API functions
are automatically generated for every shader and the
streams are automatically passed by the program. The
SSBOs will be bound to the shader in the beginning of
the program run-time.

The basic data structures of VideoMR are implemented
using object-oriented design based on GLObjects [1],
an object-oriented wrapper for OpenGL. This reduces
the code size of the library and helps to extend the
framework later on by applying the concepts of the
object-orientated paradigm. The framework comprises
core and optional classes (Figure 4), because libraries
used for loading or displaying may not be supported or
required in every run-time environment. An overview
of the functions accessible in a map or reduce operation
is shown in Figure 5.

5 APPLICATION EXAMPLE
Discussing a simple move detection program will
facilitate an understanding of our implementation of
VideoMR and the usage of map and reduce operations
for video processing in general.

Assuming a constant camera position, movement in a
video can be detected by finding a peak in the first order
derivation of the video stream. Thus, a discrete approxi-
mation of the derivation is the difference of a pixel over
time. If this difference is larger than the mean color
of the current frame, movement can be assumed, oth-
erwise not. To reduce noise, this movement has to be
detected in at least two subsequent frames at the same
position.

Listing 1: Map and reduce main program.

// init program
auto prog = std::make_shared<vmr::GlfwProgram

>();



Figure 4: The overview shows the Unified Modeling Language (UML) class structure of the VideoMR framework.
Every abstract operation is defined on input, output, and side streams. The snippets contain the source code for a
particular operation. Therefore, a program contains multiple operations.

// init video loader stream
auto source = std::make_shared<vmr::

LibavLoader>("./example.mov");
// set the size of the stream to 3
source->init(3);

// mean
// init the result stream for the mean,
// without an explicit init call
// the size will be the size of the
// input stream of the operation
auto mean = std::make_shared<vmr::Stream>();
// init the mean reduce operation and
// add the source stream as input and
// the mean stream as output
auto meanRed = std::make_shared<vmr::Reduce>(

source,mean,"./mean.red");

// move detection
// init the result stream for the move
// detection, without an explicit init call
// the size will be the size of the
// input stream of the operation
auto move = std::make_shared<vmr::Display>();
// init the move map operation and add
// the source stream as input and the
// move stream as output
auto moveMap = std::make_shared<vmr::Map>(

source,move,"./move.map");
// add the mean as side stream

*moveMap<<mean;

// setup program and add the operations to it

*prog<< meanRed
<< moveMap;

// run program
prog->run();

The code shown in Listing 1 initializes the program.
Afterwards, a video loader is initialized and connected
with a reduce operation to compute the average color
of each frame. The output stream of this operation is,

together with the loader, connected to a map opera-
tion computing the actual movement detection, receiv-
ing the mean as side stream. The resulting stream is
displayed subsequently. Both operations, map and re-
duce, receive a file with the concrete implementation as
argument.

Listing 2: Exemplary implementation of a mean value
computation (mean.red)

// get position of current thread
ivec2 pos = vmr_getPosition()*2;

// get four pixel neighbourhood
vec3 c = vmr_getOldData(pos);
pos.x += 1;
c += vmr_getOldData(pos);
pos.y += 1;
c += vmr_getOldData(pos);
pos.x -= 1;
c += vmr_getOldData(pos);
c/=4;

// write result to current position
vmr_emitNewData(vmr_getPosition(), c);

The details of the reduce operation file is shown in List-
ing 2. In every reduce step, a four pixel neighborhood
is summarized and divided by four. This computes the
local average until only one pixel is left, which then
serves as the global mean. If the intermediate size
equals a frame resolution resolution of one, the result
is automatically pushed to the output stream.

Listing 3: move.map

// get position of current thread
ivec2 pos = vmr_getPosition();

// get data from last three frames
vec3 c;



Figure 5: Overview of map and reduce operations and their interfaces. The left figure illustrates how to program
an own map operation, access the input data, and emit to the output stream. The right figure explains the same
sequence for the reduce operation.

vec3 c1 = vmr_getStreamDataIn(pos, 0);
vec3 c2 = vmr_getStreamDataIn(pos, -1);
vec3 c3 = vmr_getStreamDataIn(pos, -2);

// compute difference
float diff1 = abs(c1.r-c2.r)+abs(c1.g-c2.g)+

abs(c1.b-c2.b);
float diff2 = abs(c2.r-c3.r)+abs(c2.g-c3.g)+

abs(c2.b-c3.b);

// get mean from side stream
ivec2 pos2 = ivec2 (0,0);
vec3 meanC = vmr_getStreamData0(pos2,0);
float aveMean=(meanC.r+meanC.g+meanC.b)/3;

// compare with mean
if (diff1>aveMean && diff2>aveMean){

c = vec3(255, 255, 255);
} else {

c = vec3(0, 0, 0);
}

// write result to current position
vmr_emitToStreamOut(pos,c);

The algorithm for the move detection used in the map
operation shown in Listing 3 is a special version of dif-
ferential images, described by Collins et al. [2]. First,
the pixel value of the current frame and the two preced-
ing frames are computed. Afterwards, the difference

between the first and the second frame as well as the
difference between the second and the third frame is
computed. If both differences are larger than the mean
color of the step before, the emitted pixel is set to white,
otherwise to black. The basic idea is, that noise in two
different frames is visible in two different positions and
therefore filtered using this computation.
The result of this operation for a single frame of a video
of an animated fractal set is shown in Figure 6. While
the right side of the figure shows the frame source, the
left part shows the movement-detection filter applied.
Both, the moving borders and also the details of the fast
changing inner structure of the fractal can be detected.

6 RESULTS AND DISCUSSION
The prototypical implementation of VideoMR and the
example shown in Section 5 demonstrate that efficient
GPU programming is possible without explicitly taking
care of memory handling or parallelization using the
presented map and reduce concept.

Code Reduction
Furthermore, the code can be reduced in compar-
ison with a pure implementation using GLobjects



Figure 6: This frame shows on the right side an ani-
mated fractal set and on the left side the move detection
filter applied for that fractal.

and OpenGL. Referring to the movement detection
example in Section 5, the memory management and
program setup requires 392 lines of code, the reduce
operation 109, and map operation 70 (571 in total).
In this example, less than 50 lines are required using
VideoMR, a reduction by a factor of 10.

Performance Evaluation

The performance of the prototypical implementation
has been computed for four different resolutions: SD
(720×576), HD (1280×720), Full HD (1920×1080),
and 4K (3840×2160). Figure 7 shows the runtime per-
formance according to these resolutions for a map and
reduce program using a single source and target stream
with a single map operation, a single reduce operation,
as well as a complex example with two map and a single
reduce operation.

In video processing, real-time processing can be de-
fined by achieving more than 24 frames-per-second

Figure 7: Performance for different video resolutions in
milliseconds. Displayed are different resolutions, ap-
plied to a single map operation, a single reduce opera-
tion, and a complex example containing two map and a
single reduce operation.

(FPS). This is approximately the sampling rate of the
human eye, i.e., maximal 40 ms per frame. There-
fore, real-time processing can be achieved on a Quadro
K1000M GPU total (dedicated) video memory 2048
MB in the complex example running at 4K resolu-
tion (Figure 7). Still – if not required for displaying
the result – the OpenGL rendering context can slow the
processing down.

Memory Boundaries

To compute the GPU video-memory usage the follow-
ing equations can be used:

usage(Stream) = Stream.size ·Stream.width

·Stream.height ·3Byte

usage(Map) = (count(Streams) ·5+2) ·4Byte

usage(Reduce) = (count(Streams) ·5+4) ·4Byte

+Streamin.width ·Streamin.height

·3Byte ·2

Limitations and Improvements

However, some operations in video processing are not
parallelizable and therefore not programmable with
map and reduce. These classes of problems can be
approached within VideoMR by introducing a specific
implementation of an explicit operation that copies the
data transparently to the main memory and can then be
programmed with a serial approach.

Also the concept of frames as an array of red, green,
and blue values is a limitation for modern 2.5D
or 3D video data. Thus, in future work a general
concept of n-dimensional buffers instead of frames
will be used. Frames then can be handled defining a
frame[width][height] as a buffer[width][height][3]. This
makes it also possible to handle keyboard input or the
sound of a video and other data as streams.

Moreover, the current limitation to 8Bit values per
channel is not preferable for using other data than
images or videos. Thus, the extension with template
classes to decide which main data type to use should be
added in future work. Still OpenCL [11] and CUDA [8]
are rarely supported in embedded and mobile environ-
ments, but future implementation should also consider
using them, because they are not depending on a render
context that possibly impacts runtime performance,
which is, for read and write operations, not required.

While this paper shows the suitability for real-time
video processing, comparison with other map and re-
duce frameworks will be part of future research. The
reason for that is that current benchmarks for map and



reduce frameworks are not focusing on video process-
ing tasks and therefore a suitable one has to be devel-
oped before.

7 CONCLUSION
This paper presents a concept for transferring exist-
ing map and reduce processing metaphors to the do-
main of video processing using GPUs. It describes
a prototypical implementation based on OpenGL and
the OpenGL Shading Language. This proof-of-concept
demonstrates the efficiency of map and reduce for mod-
ern real-time video processing applications. Implemen-
tations can be performed using less lines of code with
transparent memory handling. Furthermore, the disrup-
tor concept of ringbuffers offers the opportunity to im-
plement video processing on systems such as mobile
devices, where memory is a limited resource or the ac-
cess is restricted by the operating system itself.

To summarize, current video processing frameworks
such as Gstreamer [12] focus on transparently using
video filters and effects. This enables developers
to use existing filters, but gives less support for
programming own filters based on GPU program-
ming languages. In contrast, VideoMR focuses on a
programming paradigm based on redefined map and
reduce strategies, allowing to develop own filters for
GPUs that are fast to write using implicit parallelism
concepts designed for video processing. A lightweight
implementation with OpenGL [10] ensures the porta-
bility and interoperability with existing frameworks.
Moreover, the bounded memory handling fulfills the
requirements of mobile development with limited or
bounded memory resources.

8 REFERENCES
[1] GLObjects. https://github.com/

hpicgs/globjects. Accessed: 2015-02-04.
[2] Robert Collins, Alan Lipton, Takeo Kanade, Hi-

ronobu Fujiyoshi, David Duggins, Yanghai Tsin,
David Tolliver, Nobuyoshi Enomoto, and Osamu
Hasegawa. A system for video surveillance and
monitoring. Technical Report CMU-RI-TR-00-
12, Robotics Institute, Pittsburgh, PA, May 2000.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. In
Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation -
Volume 6, OSDI’04, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

[4] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K.
Govindaraju, and Tuyong Wang. Mars: A mapre-
duce framework on graphics processors. In Pro-
ceedings of the 17th International Conference

on Parallel Architectures and Compilation Tech-
niques, PACT ’08, pages 260–269, New York,
NY, USA, 2008. ACM.

[5] Simon P. Jones, John Hughes, and Lennart Au-
gustsson. Haskell 98: A Non-strict, Purely Func-
tional Language. 1999.

[6] H.-W. Loidl, F. Rubio, N. Scaife, K. Ham-
mond, S. Horiguchi, U. Klusik, R. Loogen, G. J.
Michaelson, R. Peña, S. Priebe, Á J. Rebón, and
P. W. Trinder. Comparing parallel functional lan-
guages: Programming and performance. Higher
Order Symbol. Comput., 16(3):203–251, Septem-
ber 2003.

[7] Kato Mivule, Benjamin Harvey, Crystal Cobb,
and Hoda El-Sayed. A review of cuda, mapre-
duce, and pthreads parallel computing models.
CoRR, abs/1410.4453, 2014.

[8] NVIDIA. NVIDIA CUDA Programming Guide.
NVIDIA, The address of the publisher, 2.3 edi-
tion, 2009.

[9] Matt Pharr. Part IV - General-Purpose Com-
putation on GPUs: A Primer. GPU Gems 2.
Addison-Wesley Publishing Company, 2005.

[10] M. Segal and K Akeley. The OpenGL Graphics
System: A Specification. Silicon Graphics Inc.,
4.4 edition, 2014.

[11] John E. Stone, David Gohara, and Guochun Shi.
Opencl: A parallel programming standard for het-
erogeneous computing systems. IEEE Des. Test,
12(3):66–73, May 2010.

[12] W. Taymans, Baker S., A. Wingo, S. Bultje, and
S. Kost. GStreamer Manual, 2014.

[13] M. Thompson, D. Farley, M. Barker, P. Gee, and
A. Stewart. DISRUPTOR: High performance al-
ternative to bounded queues for exchanging data
between concurrent threads. LMAX, 2011.

[14] Philip W. Trinder, Kevin Hammond, Hans-
Wolfgang Loidl, and Simon L. Peyton Jones.
Algorithm + Strategy = Parallelism. Journal of
Functional Programming, 8(1):23–60, January
1998.

[15] Yao Wang, Joern Ostermann, and Ya-Qin Zhang.
Video Processing and Communication. Prentice
Hall, 2002.

[16] Rubin Xu. A gpu-enabled real-time video pro-
cessing library, part ii, computer science tripos,
trinity college, 2010.

ACKNOWLEDGEMENTS
This work was funded by the German Federal Min-
istry of Education and Research (BMBF), as part of
the InnoProfile Transfer research group "4D-nD-Vis"
(www.4dndvis.de).


