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ABSTRACT
This paper presents a GPU-based approach to color quantization by mapping of arbitrary color palettes to input
images using Look-Up Tables (LUTs). For it, different types of LUTs, their GPU-based generation, representation,
and respective mapping implementations are described and their run-time performance is evaluated and compared.
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1 INTRODUCTION
1.1 Motivation and Applications
In computer graphics, a color palette P denotes a finite
list of colors P=C0, . . . ,Cn, each associated with a color
space Ci ∈ XYZ ⊂ R3, with n being the total number of
colors within a palette. In hardware or software palettes,
n is limited by color bit-depth or number of simultane-
ously available total colors.

There are multiple applications for a fast color palette
mapping approach supported by a Graphics Processing
Unit (GPU)-based implementation. Besides enabling
non-uniform color reduction, it can be used in stylized
rendering or image and video "retro" abstraction opera-
tions that mimicking old devices, such as consoles.

1.2 Problem Statement
Given an indexed image I[0,w]× [0,h]→ i = 0, . . . ,n
and a color palette P, a respective color mapping of an
output raster image G[0,w]× [0,h] can be formulated as
follows:

G[x,y] = ρ(I[x,y],P) ρ(i,P) =Ci (1)

where the color mapping function ρ selects the ith color
based on the color index i from the palette and assigns it
to the output pixel located at [x,y]. Such LUT mapping
is compact and can be resolved in constant time O(1).
However, this approach cannot be used for an image or
video frame that is represented by a number of colors
such that I[0,w]× [0,h]→ C ∈ XYZ. For these types
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of high-color or true-color images, the color mapping
process can be formulated as follows:

G[x,y] = τ(I[x,y],P) = argmin
0≤i≤n

(δ (I[x,y],Ci)) (2)

where a distance function δ : Ci×C j 7→ R+ computes a
distance value between two colors. Thus, the mapping
process requires the computation of the minimum color
distance for a given color C and all available palette
colors in P. Therefore, the overall run-time complexity
grows linear with the number n of total palette colors.

With respect to implementing such a non-uniform color
quantization for interactive rendering purposes, an ap-
proach should adhere to the following requirements:

Real-time Performance (R1): To support color palette
mappings for interactive image and video applica-
tions, the process should be real-time capable.

Fast Palette Interchange (R2): For flexibility in appli-
cation, different color palettes should interchange-
able easily and fast by requiring only minimal state
changes during rendering [1].

Support True-Color Images (R3): The mapping ap-
proach should not rely on an indexed color image
representation and should support images compris-
ing 8 bit precision or more per color channel.

1.3 Approach and Contributions
To approach the requirements above, we evaluate tech-
niques for mapping an arbitrary input color Cin to an
output color Cout ∈ P on a per-pixel basis by computing
a minimum color distance in CIELAB (Lab) color space.
By completely preprocessing the minimum color dis-
tance search into color LUTs, the mapping process can
then be performed in constant time [5] for the sake of
increased memory consumptions. Therefore, this paper
makes the following contributions:
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Figure 1: Overview of processing stages and data components as well as control (red) and data flow (green) of the
presented real-time palette mapping approach by the example of color reduction using an Atari 800 color palette
with 122 colors.

1. It presents approaches to fast color mapping of given
color palettes to true-color input images in real-time
using GPUs.

2. It provides respective implementation details based
on Open Graphics Library (OpenGL) and evaluates
the run-time performance.

The remainder of this paper is structured as follows.
Section 2 describes the fundamental concept of our ap-
proach. Section 3 presents details of GPU-based im-
plementations. Section 4 evaluates and discusses the
run-time performance. Section 5 concludes this paper.

2 PALETTE MAPPING CONCEPT
Figure 1 shows an overview of the processing stages,
components, and data structures of the GPU-based
palette mapping approach. It basically comprises the
following steps, covered in the remainder of this section
in greater detail:

Color Palette Extraction: As a first (optional) step, a
color palette P is extracted from a given input refer-
ence image R (Section 2.1).

Color Palette Encoding: To enable GPU-based pro-
cessing of the subsequent steps, the extracted color
palette P is encoded into a color palette texture.

Look-Up Table Generation: To enable an efficient
shader-based color mapping implementation, the
color palette texture is transformed into a Look-Up
Table (LUT) (Section 2.3) based on a minimum color
distance search (Section 2.2).

Color Palette Mapping: While the previous steps are
only required to be performed once per color palette,
the color palette mapping use the LUT to implement
a point-based operation to map all pixel of multiple
input images or video frames I to its respective output
representations O using fragment or compute shader
programs (Section 3.2).

2.1 Color Palette Extraction

There are basically two approaches for creating a color
palette: (1) a user explicitly chooses a number of col-
ors or (2) the color palette is extracted from a given
reference image R.

To support the latter, a tool is created that extracts the
color palette from a given image, which is required to
be stored without lossy compression, in a preprocessing
step. For it, the color of each pixel is added to a set of
palette colors resulting in an unordered list of unique
colors, which can be stored as image file. This process
can be automated and batched for a number of input
images. For our purposes, we obtain existing reference
images from the Wikipedia encyclopedia (Table 1).

Table 1: Exemplary color palettes comprising different
amounts of colors used in this paper.

Palette Name |P| Palette Texture

Teletext / BBC Micro 8
Apple II 15
CGA 16
Commodore 64 16
Tandy 62
Atari 800 122

2.2 Minimum Color Distance Search

For matching two colors Ci and C j, a distance func-
tion d = δ (Ci,C j) is computed. We use the Euclidean
distance in Lab color space [2] for the color distance
computations.

Given an extracted color palette P, the mapping is ba-
sically a point-based image processing operation per-
forming a linear minimum color distance search over all
its entries for each pixel in the input image (R3, Equa-
tion (2), Algorithm 1).
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Figure 2: Color quantization using Indexed LUT (ILUT) using a BBC Micro 3 bit palette with 8 colors.

Algorithm 1 Minimum Color Distance Search

Require: P =C0, . . . ,Cn n > 0 {Palette in Lab space}
for x = 0 to w do

for y = 0 to h do
dmin← ∞+ {Initialize}
Cout← [0,0,0] {Initialize output color}
Cin← I[x,y] {Fetch color value}
CLab

in ← rgb2lab(Cin) {to CIELAB space}
for i = 0 to n do

d = δ (CLab
in ,Ci) {Compute color distance}

if d < dmin then
dmin = d {Update min. difference}
Cout←Ci {Update output color}

end if
if d = 0 then

break{Early-out of search loop}
end if

end for
G[x,y]←Cout {Set closest palette color}

end for
end for

2.3 Color Look-Up Table Generation
One observation of the minimum color distance search
concerns its runtime complexity of O(whn) for an input
image of width w, height h, and a color palette size of n.
Considering the high spatial image resolutions of today’s
cameras, the algorithm’s run-time performance easily
exceeds the requirement of real-time performance (R1).
Thus, the required number of searches is reduced to con-
stant time by using LUTs covering the complete color
domain. Similar to the approach described by Selan, a
3D color LUT can be computed in a pre-processing step
on a per-palette level [5].

However, in contrast to this approach, we cannot take
advantage of using bi-linear texture filtering to reduce
the spatial resolution of the LUT. This would potentially
introduce colors not represented by the initial palette and
yield an imprecise mapping if using nearest-neighbor
interpolation. One can distinguish between two LUT
variants:

Color LUT (CLUT): This LUT type encodes the
mapped palette color for each input color in
Red-Green-Blue (RGB) color space (Figure 4(b)
and Figure 5(a)). The consumed memory for this
representation is 2563 ·3 ·BC with BC the number of
bytes required to represent a color channel. For the
palettes used in our applications it is sufficient to use
8 bit channel precision resulting in a Video Random
Access Memory (VRAM) footprint of 50 MB

Indexed LUT (ILUT): Instead of storing the mapped
color values directly (Equation (1)), the memory
footprint can be reduced by storing only the respec-
tive color indexes (Figure 5(b)). Thus, the space-
complexity reduces to 40962 ·BI + |P| · 3 ·BC, with
BI the number of bytes required per index. Usually, it
is sufficient to use an 8 bit index precision, resulting
in a VRAM memory footprint of 16 MB in addition
to the color palette. Figure 2 shows an overview of
the color mapping process using an ILUT.

3 GPU-BASED IMPLEMENTATION
The concept of the previous section is prototypical im-
plemented using OpenGL [4] and OpenGL Shading Lan-
guage (GLSL). However, these implementations can be
easily transferred to other graphics Application Program-
ming Interface (API) as well as Embedded System (ES)
variants.
The remainder of this section briefly describes how
palettes and different LUT types are represented on
GPUs, and how the particular color mapping processes
are implemented by the example of using OpenGL frag-
ment shader programs. Such implementations are re-
quired because rendering using paletted textures are not
supported by OpenGL and respective legacy formats are
declared deprecated since OpenGL 3.0. Further, the sup-
port for the GL_EXT_paletted_texture extension has been
dropped by the major hardware vendors.

3.1 GPU-based Palette Representation
Before describing the different palette mapping imple-
mentation, this section briefly present the palette and
LUT representations suitable for GPU-based rendering.



Figure 3: Close-up of an exemplary 2D TA that stores
multiple color palettes row-wise.

3.1.1 Texture-based Palette Representation
In general, each palette is represented using a single
2D texture. During runtime, a palette is converted into
Lab color space [2] and uploaded to a palette texture
within VRAM. The straightforward approach to stan-
dard palette representation for GPUs is using a three
channel 1D texture, i.e., a 2D texture with fixed height
of 1 pixel. Table 1 shows some texture examples. This
approach provides optimal texture utilization.
However, the total amount of palette colors is limited to
the maximum texture size. In rare cases that this size
is exceeded, the palette is wrapped and indexing is per-
formed by modulo operation. To minimize state changes
during rendering, which can be introduced when switch-
ing palette textures, and to facilitate fast palette inter-
changes, such texture representation can be combined
with texture batching [6]. This enables the storage of
multiple palettes using a 2D Texture Atlas (TA) (Fig-
ure 3).

3.1.2 Look-up Table Representations
There are basically two texture-based representations
of CLUTs and ILUTs for GPU-based implementation
that take advantages of build-in texturing functionality
of shading languages:

3D Textures: An effective way to represent a LUT is
using a 3D texture of size 2563 texels for precise
mapping of low precision color representations (Fig-
ure 4). 3D textures are also supported for mobile de-
vices since OpenGL ES 3.0 and thus are commonly
available.

(a) Identity Palette. (b) Quantized Palette.

Figure 4: 3D texture LUTs.

(a) CLUT TA. (b) ILUT TA.

Figure 5: Comparison of 2D texture atlas LUT represen-
tations; each of 40962 pixels spatial resolution.

2D Texture-Atlases: Figure 5 shows a comparison be-
tween a TA containing all 256 layer of a CLUT (Fig-
ure 5(a)) and ILUT (Figure 5(b)). Such an atlas can
be used in combination with 2D texture arrays to
support fast interchanges of palettes (R2).

The texture format used for CLUTs is GL_RGB with an in-
ternal GL_UNSIGNED_BYTE representation is sufficient. For
ILUT, GL_LUMINANCE using GL_FLOAT internal format at a
minimum of 16 bit precision to represent the range of
possible palette indexes for n > 256.

3.2 Shader-based Color Quantization
The shader-based color quantization can be performed
within a single rendering pass. Therefor, a Screen-
aligned Quad (SAQ) that is textured with the input im-
age covering the complete viewport is rasterized with
an activated fragment shader program and bound tex-
ture resources. The remainder of this section shows
the particular fragment shaders for performing the color
mapping operations for the respective texture represen-
tations described previously.

3.2.1 Minimum Color Distance Search

For texture-based palette representations, Listing 1
shows a GLSL implementation for the minimum color
distance search (Section 2.1). Performed run-time
tests comparing this implementation with variants that
support early-out of the for loop (Algorithm 1) that,
however, yield inferior performance presumably due to
coherency issues [3].

3.2.2 Sampling Look-Up Tables

For sampling LUT textures, the input color values
C = (r,g,b) = (s, t,r) = I[x,y] ∈ [0,1]3 fetched at the re-
spective fragment coordinates (x,y) ∈ [0,0]× [w,h] are
used. While sampling 3D textures is natively supported
by GLSL language features, LUTs that are represented
by 2D TAs require additional instructions to resolve
the indirection. Listing 2 shows a GLSL function for
sampling LUTs represented as a 2D TA.
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Figure 6: Overview of indexed image computation and subsequent color quantization by the example of an Atari
800 color palette with 122 colors.

int closestColorIndex(
const in vec3 sampleLab, // Color in Lab
const in sampler2D P, // Palette TA in Lab
const in int index) // Palete to use

{
// Determine palette length for palette index
int pSize = texelFetch(P, ivec2(0, index), 0).x;
int colorIndex = 0;
float minimumDistance = FLT_MAX;
// Linear search in palette
for(int i = 1; i < pSize; i++) {
// Compute color distance
float d = distance(
texelFetch(P, ivec2(i, index), 0).rgb,

sampleLAB);
// Minimum distance compare
if(d < minimumDistance) {
minimumDistance = d;
colorIndex = i;

}
}
return colorIndex; // Index of closest color.

}

Listing 1: GLSL implementation of minimum color
distance search.

vec2 offset(const in float s, const in vec4 info){
return info.zw * vec2(mod(s, info.y),
floor(s * info.z));

}

vec4 sampleAs3DTexture(
const in sampler2D LUT,
const in vec3 texCoord,
const in vec4 info) {

float sliceZ = floor(texCoord.z * info.x);

vec2 slice0Offset = offset(sliceZ, info);
vec2 slicePixelSize = info.zw / info.x;
vec2 uv = slicePixelSize * 0.5 + texCoord.xy *

(info.zw - slicePixelSize);
return texture2D(tex, slice0Offset + uv);

}

Listing 2: GLSL implementation for sampling a 2D
texture atlas using given 3D texture coordinates.

3.2.3 Quantization by Color Look-Up Tables
Once, the CLUTs are generated, the actual quantization
can be efficiently performed by sampling these using
the RGB color values as texture coordinates similar to
the approach described by Selan [5]. Listing 3 shows a
GLSL function for color quantization using an CLUT
requiring a single texture look-up.

vec4 mapColorCLUT(
const in vec3 color, // color to map
const in sampler3D CLUT) // look-up table

{
return texelFetch(CLUT, ivec3(color), 0);

}

Listing 3: GLSL implementation of CLUT mapping.

3.2.4 Quantization by Indexed Look-Up Tables
Compared to the CLUT-based quantization, ILUT-
based quantization requires an additional sampling
operation to resolve the indirection between ILUT
and the color palette. Listing 4 shows a GLSL
implementation for this mapping operation.

vec4 mapColorILUT(
const in vec3 color, // Color to map
const in sampler2D palette, // Palette texture
const in sampler3D ILUT) // Indexed LUT

{
// Obtain index into color palette
int index = texelFetch(ILUT, ivec3(color), 0).r;
// Sampling color palette
return texelFetch(palette, ivec2(index, 0), 0);

}

Listing 4: GLSL implementation of ILUT mapping.

3.3 LUT and Indexed Image Generation
The task of LUT generation can be efficiently per-
formed on GPU, for both 3D texture and 2D TAs
using compute shader or off-screen rendering in
combination with Frame-Buffer Object (FBO) and
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Figure 7: Performance comparison of GPU-based LUT generation (indexing) and combined mapping (display)
in Frames-per-Second (FPS) (logarithmic scale) for color palettes of different complexity (8 to 122) and different
input image resolutions.

fragment shader support (can be optimized by
GL_EXT_shader_framebuffer_fetch). Both are based on
the minimum distance search implementation described
in Section 3.2.1. In general, these techniques can be
used to “bake” any kind of LUT. The overall goal is
avoid color space conversion at mapping time by using
RGB color space values only.

The 2D TAs processing approach can be used the gener-
ate an intermediate indexed image representation, that
can be used for rendering animated palettes for mim-
icking palette cycling. Therefore, the input image I is
transformed once to an indexed image G using the im-
plementation of Section 3.2.1. Palette animations can be
easily achieved algorithmically or represented using a
2D TA of palette texture key-frames (Figure 6).

4 PERFORMANCE EVALUATION
This section presents performance evaluations of all
three approaches described before. In addition thereto,
the run-time performance for color mapping and the
respective memory footprints of the particular data rep-
resentations are compared.

4.1 Datasets and Test Systems
Different image resolutions were tested to estimate the
run-time performance regarding the spatial resolution
of an image as well as different palette complexity (Ta-
ble 1). The following common resolutions were chosen:
1280×720 (HD), 1920×1080 (FHD), and 2560×1440
(QHD) pixels. We tested the rendering performance
of our preliminary implementation was conducted us-
ing a NVIDIA GeForce GTX 970 GPU with 4096 MB
VRAM on a Intel Xeon CPU with 2.8 GHz and 12 GB
RAM. Rendering was performed in windowed mode
with vertical synchronization turned off.

The measurements in FPS are obtained by averaging 500
consecutive frames. For all off-screen rendering passes,

fragment shader functionality using a textured SAQ with
a geometric complexity of four vertices and two triangle
primitives. For rasterization, back-face culling [1] is
enabled and depth test and writing to depth buffer are
disabled.

4.2 Performance Results
Figure 7 shows the performance evaluation for the
minimum color distance search implementation (Sec-
tion 3.2.1) for different color palette complexities (8 to
188 colors) by comparing the computation of an indexed
image representation G only (indexing) as well as in
combination with a subsequent display pass that applies
the mapping implementation of Section 3.3.

It can be observed, that run-time performance of index-
ing decreases linearly with increasing color palette com-
plexity, while the performance impact of color mapping
during display is neglectable. The overall performance
decrease with respect to increasing input image resolu-
tion indicates that the technique is fill-limited.

Figure 8 shows the results of the run-time performance
evaluation in FPS of the different GPU-based LUT rep-
resentations (CLUT and ILUT using 3D textures and
Texture Atlass (TAs)), algorithms (Section 3.2.3, and
Section 3.2.4) impacting the color mapping performance
compared to a pass-through display pass.

It can be observed that 3D texture representations for
CLUT and ILUT are superior over 2D TAs, especially
for high spatial input resolutions. This can be explained
by the additional instructions required to transform the
texture coordinates to sample 2D TAs and probable
texture-cache violations. Independent of their repre-
sentations are ILUTs inferior to CLUTs. This can be
explained by the additional texture sampling operation
required to resolve the palette indirection, which most
probably contributes to additional texture-cache viola-
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Figure 8: Performance of GPU-based LUT mapping performance in FPS for different LUT representations compared
to a pass-through display pass.

tions. These observations show all characteristics of the
traditional space-time/time-memory trade-off.

5 CONCLUSIONS
This paper presents and discusses an approach for fast
real-time color palette quantization for true-color input
images. The palette quantization is based on computing
minimal color difference using the Lab color space. It
is shown, that this mapping can be performed in real-
time and can be significantly optimized by using LUTs
computed in a pre-processing step on GPUs. Depend-
ing on the use-case, the described approaches allows
for trading run-time performance for VRAM memory
consumption.
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