
The Visual Computer
https://doi.org/10.1007/s00371-022-02522-1

ORIG INAL ART ICLE

CERVI: collaborative editing of raster and vector images

Ulrike Bath1 · Sumit Shekhar1 · Julian Egbert1 · Julian Schmidt1 · Amir Semmo2 · Jürgen Döllner1 ·
Matthias Trapp1

Accepted: 17 April 2022
© The Author(s) 2022

Abstract
Various web-based image-editing tools and web-based collaborative tools exist in isolation. Research focusing to bridge the
gap between these two domains is sparse.We respond to the above and develop prototype groupware for real-time collaborative
editing of raster and vector images in a web browser. To better understand the requirements, we conduct a preliminary user
study and establish communication and synchronization as key elements. The existing groupware for text documents or
presentations handles the above through well-established techniques. However, those cannot be extended as it is for raster
or vector graphics manipulation. To this end, we develop a document model that is maintained by a server and is delivered
and synchronized to multiple clients. Our prototypical implementation is based on a scalable client–server architecture: using
WebGL for interactive browser-based rendering and WebSocket connections to maintain synchronization. We evaluate our
work qualitatively through a post-deployment user study for three different scenarios. For quantitative evaluation, we perform
a thorough performance measure on both client and server side, thereby identifying design recommendations for future
concurrent image-editing software(s).

Keywords Human-centered computing · Collaborative interaction · Image processing · Web-based interaction

1 Introduction

Collaboration between visual artists dates back to as early as
late sixteenth century (Fig. 1a). In olden times, this process
was completely manual where two or more artists special-
izing in different genres would physically meet to create a

B Sumit Shekhar
sumit.shekhar@hpi.uni-potsdam.de

Ulrike Bath
ulrike.bath@student.hpi.uni-potsdam.de

Julian Egbert
julian.egbert@student.hpi.uni-potsdam.de

Julian Schmidt
julian.schmidt@student.hpi.uni-potsdm.de

Amir Semmo
amir.semmo@digitalmasterpieces.com

Jürgen Döllner
jurgen.dollner@hpi.uni-potsdam.de

Matthias Trapp
matthias.trapp@hpi.uni-potsdam.de

1 Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany

2 Digital Masterpieces GmbH, Potsdam, Germany

shared painting. In the modern era, the above practice con-
tinued resulting in various masterpieces [15]. However, its
adaptation in the digital domain is progressing only slowly
(Fig. 1b). Even though there exist collaborative applica-
tionsmimicking a sharedwhiteboard—allowing for doodling
and/or simple manipulations of a shared image. A system
for real-time collaborative editing of raster or vector images
at different levels of functionality or control—similar to
common image editing desktop applications (e.g., Adobe
PhotoshoporGIMP)—does not exist to the best of our knowl-
edge [13].

This work focuses on the concept and implementation of
a web-based real-time collaborative editing application for
raster and vector images. It supports a range of image manip-
ulations that enables multiple users to collaboratively edit
both image representations interactively. The intuitive user
interface (UI) aids in mitigating the risk of access conflict as
participants modify the same data. The application provides
a responsive graphical user interface (GUI) that facilitates
access using mobile devices, such as smart phones or tablets.

For it, we choose the following approach. Section 2 states
related requirements and challenges on graphics collabo-
rative editing and describes use-cases obtained by a user

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-022-02522-1&domain=pdf
http://orcid.org/0000-0002-5683-2290
https://orcid.org/0000-0002-1553-4940
https://orcid.org/0000-0003-3861-5759


U. Bath et al.

(a) Archduchess Isabella (b) Collaborative Collage

Fig. 1 a An example of collaboration between Jan Brueghel the Elder
and Peter Paul Rubens approx. 1616-17. b A collage created collab-
oratively using our web-based system. It comprises the blending of
multiple raster and vector layers, vector strokes, and image processing
operations (e.g., cartoon effect in the background)

study regarding the current state of real-time collaborative
image editing and associated tasks. Section 3 reviews and
analyzes related work and existing tools on collaborative
editing of graphics. Section 4 describes a system overview
of our implementation based on server and client function-
ality. Section 5 evaluates the implementation through a
post-deployment user study and performance analysis. We
summarize our findings and potentials for future work and
research in Sect. 6.

2 Problem statement

This section reviews major requirements for a collaborative
system (Sect. 2.1), identifies fundamental challenges for col-
laborative image editing (sect. 2.2) and reports on a preceding
user study (Sect. 2.3), conducted to analyze potential con-
flicts that needs to be addressed (sect. 2.4).

2.1 Basic system requirements

Multi-user systems where the actions of one user must
quickly be propagated to the other collaborator are referred
to as real-time groupware [7]. During recent years, various
instances of such systems emerged into today’s distributed,
collaborative working environments. For example, systems
such as Google Workspace or Microsoft Office 365 Online
edition, various massively multiplayer online games, or
NVIDIA’sOmniverse platform for 3D contents. All such sys-
tems have in common that (1) a document instance or a shared
context is hosted by a server(s), is (2) synchronized using a
service, and (3) can be manipulated by multiple participants.
Themost relevant characterizing aspects of a real-timegroup-
ware system, according to Ellis and Gibs [8], are as follows:

Interactive and real-time (Aspect-1): i.e., response times
must be short and notification times must be comparable
to response times.

Distributed (Aspect-2): i.e., in general, one cannot
assume that the participants are all connected to the same
machine or even to the same local area network.
Volatile and Ad-hoc (Aspect-3): i.e., participants are free
to come and go during a session and generally are not
following a pre-planned script. It is not possible to tell a
priori what information will be accessed.
Focused (Aspect-4): i.e., during a session there is high
degree of access conflict as participants work on/modify
the same data.

A popular application that fulfills all of the above criteria
is Google Docs [10]. The cloud-based service provided by
Google has revolutionized the way people edit documents
collaboratively. However, when editing text, most standard
algorithms do not consider the complete structure of the doc-
ument and make use of per-line diffing and merging.

2.2 Fundamental challenges

The above approach for documents cannot be extended for
images in a straightforward manner: while Aspect-1 and
Aspect-2 largely pose specific technical challenges (e.g.,
undo/redo functionality and latencies), Aspect-3 andAspect-
4 reflect on the spatial, structural, and temporal features
of collaborative raster-image editing. Existing collabora-
tive whiteboard applications maintain their state by tracking
the brush strokes of individual clients [1,5]. They allow
users to doodle/sketch on top of the image but hardly pro-
vide any tools for image editing itself. On the other hand,
existing web-based image editing tools are not collabora-
tive [18,19]. A system that is quite close to what we aspire is
the Google Draw, a functionality provided as part of Google
Workspace [11]. Even though it allows users to collabora-
tively edit attributes of a shared image, the range of per-pixel
edits is limited.

We adopt a human-centered design process to identify the
challenges associated with a real-time collaborative image
editing system. To this end, we design and conduct a preced-
ing user study based on a questionnaire. The answers to the
above questionnaire identify key design principles.

2.3 Preceding user study

For better understanding of the design rationals for a real-
time collaborative image-editing application, we conducted
a preceding user study. Subsequently, we analyzed results
and major findings, identified main use cases, and created
GUI design sketches.
Participants and Study Design.We selected participants who
have experience in collaborative image editing with existing
technologies. They belong to a broad range of background
and have performed image editing: for casual creativity

123



CERVI: collaborative...

and/or as a professional activity. A total of 27 participants
answered the 17 questions. The questions broadly addressed
the following aspects: (i) How do you perform collaborative
image editing tasks? and (i i) What are the challenges asso-
ciated with it?. The challenges thus identified are used as the
basis for designing our system.

Summary on Challenges in Collaboration. The foundation
of any collaborative task is efficient communication, which
also reflects in our survey answers: “Communication is every-
thing, it is sometimes hard to get an artistic idea thru”.
“Communicating who edits what and how”. The lack of com-
munication is not only restricted to high-level requirements
and task sharing but also low-level details such as data/ed-
its synchronization: “Staying in sync, keeping a history of
changes, knowing what the partners already have done”.
“Handling data conflicts, know on which parts or region
my teammates are currently working on, handling differ-
ent versions...”. To mitigate the above problems, users make
use of existing communication channels. However, such an
approach seems to be quite inefficient in terms of both data
and time: “It takes a lot of time sending images back/forward
and see when progress is made”. “Sharing huge files of raw
pictures with the team and keeping them in sync”.

Design Inference. Concerning the above challenges, we pro-
vide an integratedmessaging functionality within our system
enabling efficient communication. Our WebGL-based ren-
dering framework allows for image edits that are visible in
real-time among the collaborators, further enabling low-level
communication. Our system supports a range of applica-
tion scenarios where collaborative image editing can be
used: “logo creation”, “poster designing”, “creative edit-
ing”, etc.. We support such varying application scenarios by
allowing editing of raster and vector graphics, mouse/touch-
based sketching interface, along with visual computing asset
(VCA)-based raster-image manipulation. The user edits are
maintained as part of session management providing a con-
sistent editing environment. Data conflicts are handled with
complementary update processes on server and client-side
(Sect. 4.1).

2.4 Potential conflicts in collaborative editing

There are several potential conflicts arising in real-time col-
laborative image editing systems, especially if these support
a variety of tools being applied to multiple layers. Specific to
our approach this concerns challenges arising from (i) lim-
ited attention-bandwidth and (i i) synchronous aswell as (i i i)
asynchronous editing conflicts. Considering users operating
in the same sessions, our system offers tools to approach the
above challenges.

LimitedAttention-bandwidth.While performing editing tasks,
such as painting or designing, a user focuses on the imme-
diate effect of the current tool. Thus, the user has a limited
attention-bandwidth and is usually not aware of the changes
performed by other users in the document. For example,
adding new layers impacts the layer order and often inter-
rupts the user’s workflow, and can quickly lead to confusion.
To counterbalance this, a document version history is offered
that enables users to comprehend the performed changes over
time.
Synchronous Editing Conflicts. There are various causes for
conflicts in synchronous data editing, e.g., users use the
same/different tool on a given layer or a layer is about to
be removed that is currently used by other users. Instead of
making tools modal, we choose to raise awareness by indi-
cating that another user is using the same tool or has selected
the same data using visual feedback. For this purpose, col-
ored hints (lines) visualize which user(s) currently select a
layer and tool, respectively (Sect. 4.3.3). Moreover, the cur-
sors of all users are depicted in the respective avatar color
(Sect. 4.1.2).
Asynchronous Editing Conflicts. These conflicts are often
caused if several users simultaneously edit the same layer
or due to interruptions of unfinished tasks, e.g., a user is
interrupted in its current workflow but wants to continue
his/her work later on. To resolve the above, we introduce
an exclusive-lock functionality for a layer, i.e., a user can
forbid editing of a layer for everyone except himself/her-
self (Sect. 4.3.4). To avoid deadlock scenarios, a layer can
be exclusive-unlocked by others users. In this case, the user
who initiates the exclusive-lock is notified accordingly.

3 Background & related work

The challenges associated with collaborative image editing
have two aspects: the conceptual, design, and implementa-
tion level, which nowadays demands web-based approaches
using services. The existing web-based applications mainly
address sketching and/or designing functionalities.

3.1 Collaborative graphics editing

An analysis with respect to the pertinent properties of a col-
laborative graphics editing system was first done by Sun
and Chen [23], where the authors present a formal blueprint
for versioning, consistency maintenance, and conflict reso-
lution. Heer and Agrawala [12] investigate visual analytic
tools and present approaches for increased user engagement
and better shared context and awareness. As a particular
example for such systems, Salvati et al. [22] and Calabrese
et al. [3] propose ideas regarding real-time collaborative
mesh manipulation via version history merging and robust

123



U. Bath et al.

sharing.Gao et al. [9] remodel the 2Dgraphical operations as
linear operations by mapping the two-dimensional drawing
area into a linear structure, for the purpose of collaborative
image manipulation. For preventing conflicts related to con-
sistency, Wu et al. [26] present a generic Common Graphics
Collaborative Editing (CGCE) algorithm. To showcase their
methods, both Gao et al. and Wu et al. choose current web-
based technologies, however, as a functionality they only
focus on sketching or primitive geometric shape editing. Zhai
et al. [27] construct an approach for collaborative image
modification on mobile phones using wireless communica-
tion. However, only straightforward granular operations—of
import, export, update, and commit—is dealt with their
method. An application meant explicitly for the purpose
of architectural communication via cooperative sketching is
developed by Novakova et al. [17]. In a recent work, Bath
et al. [2] present a system for collaborative editing of raster
images. In contrast to most of the above approaches, our sys-
temprovides a broad range of image edits, includes rendering
of both raster and vector layer(s), and also has provision for
coloring and/or sketching.

3.2 Image processing as a service

For implementing image processing techniques (e.g., fil-
tering or stylization) for web-based applications, one can
distinguish between client-side or server-side image process-
ing approaches [14]. Server-side implementation based on
microservices have the advantage of increased scalability,
easy deployment and maintainability as well as, the possibil-
ity to introduce various technologies into one system [24].
However, high update latencies limit their usage in real-
time applications [21,25]. Therefore, we favor the integration
of client-side processing for our approach by developing a
WebGL-based image processor. With respect to modeling
image processing techniques, Dürschmid et al. [6] present
an approach that supports collaborative design of stylization

Defini�on

Implementa�on Set

Implementa�on
(e.g. Vulkan)

Implementa�on
(e.g. OpenGL ES)

Common asset
(e.g. Textures)

Common asset
(e.g. Icons)

Implementa�on Set

Implementa�on
(e.g. WebGL)

Implementa�on
(e.g. OpenGL)

VCA 2VCA 1

Defini�on

Depends on

Asset

Presets UI Presets UI
Pipeline

Fig. 2 Structural overview of VCAs by example. VCA 1 is imple-
mented for the two platforms OpenGL ES and Vulkan. The specific
render pipelines are described in the respective effect implementation
files. Due to the asset separation, all implementations of VCA 1 and
VCA 2 can reference and reuse the same set of textures

techniques formobile devices.We adopt their concept of rep-
resenting and sharing image and video processing operations,
further denoted as VCAs for our prototype.

A VCA represents data and control logic of image pro-
cessing operations and provides an interface that abstracts
from specific implementations. This platform-independent
presentation facilitates the reuse of building blocks based on
document modularity. An structural overview of the respec-
tive concept, comprising two VCAs with shared resources,
is depicted in fig.2. It consist of the following document
types. The Definition represents an “interface” describing
the parameters (type, range, default values) of an image pro-
cessing operation. It references (1) multiple Preset files that
define grouped parameter values, (2) user interface definition
of resources for GUI purposes, and (3) an Implementation
Set, i.e., the definition of an VCA implementation mapping
to target-specific implementation. Further, aPipeline enables
the successive combination of multiple VCAs.

3.3 Web-based sketching and designing

Nowadays, visual ideation is made possible in a collabora-
tive setting via web-based shared whiteboards e.g., Aggie.io
or Draw.chat [1,5]. More recently, online design-tools also
allow for collaborative creation of designs e.g., Figma,
Canva, or AdobeXD. Nonetheless, both kinds of existing
web-based tools hardly provide any support for image pro-
cessing. Pixel-level global and local processing of images
is enabled by another set of online applications which are
not collaborative in nature e.g., Photopea, Pixlr, (Adobe-
)Photoshop Web [18,19]. Limited collaboration, in an asyn-
chronous manner, for raster and vector images is made
possible by recent tools fromAdobe Creative Cloud. In com-
parison, we aim to create a web-based system that provides
real-time synchronous collaboration. Table 1 compares exist-
ing web-based photo-editing and whiteboard applications
regarding the following aspects:

Layer (Yes/No): The application does support layering
of multiple images. This allows for an increased function
scope and assumes a complex data model.
DirectManipulation (Yes/No): The application does sup-
port direct manipulation of image contents, e.g., using
coloring or transform functionality.
Undo/Redo (Yes/No): The support of undo/redo func-
tionality facilitates error-tolerance while using direct
manipulation metaphors.
Image Filtering (None/Destructive/Non-destructive): An
application supports the usage of single or multiple
destructive/non-destructive image filtering operations.
Data Type (Raster/Vector/Both): The application can
handle raster, vector, or both types of input data.

123



CERVI: collaborative...

Table 1 Comparison of various web applications for image editing, with respect to different features

Application Layer Direct Manip. Undo/Redo Image Filtering Data Type Resp. GUI Collaboration

canvaspaint.org No Yes Yes None Raster Yes None

pixlr.com Yes Yes Yes Destructive Raster No None

photopea.com Yes Yes Yes Destructive Raster No None

draw.chat No Yes Yes None Vector No Synchronous

aggie.io Yes Yes Yes None Raster Yes Synchronous

Google Draw No No No Non-destructive Raster Yes Synchronous

Adobe Creative Suite Yes Yes Yes Destructive Both Yes Asynchronous

COLiER Yes Yes Yes Destructive Raster Yes Synchronous

Client Synchroniza�on 
Layer

Client Store

1 2
3

4 5

67
5

Server

Fig. 3 Sequence of client–server communication: (1) user modifies
project, (2) modified parameters are processed in client’s synchroniza-
tion layer, (3) a change request is sent to server, (4) server updates

document (5) if successful, updates are sent to all clients, (6) synchro-
nization layer updates the client store, (7) changes are applied

Responsiveness (Yes/No): The GUI of the application
support responsive layout of components, thus supports
desktop and mobile devices with varying screen sizes.
Collaboration (None/Synchronous/Asynchronous):Acol-
laborative application enables multiple clients to modify
image data simultaneously. This requires communication
between clients and modeling of messages reflecting the
editing process.

Our web-based collaborative system provides sketching
and designing functionality along with imagemanipulations.
Moreover, we enable synchronous collaboration among
users. It provides all features compared in Table 1while oper-
ating on layered raster or vector images.

4 The CERVI system

We developed our system as a single-page application (SPA)
that can be used on desktop systems and onmobile devices. It
enables sketching, image adjustments, and creation of image

*

Document Metadata1

1

*

ModulesVCA Pipeline Layer Properties11 *
*

Raster TextVector

Modules * 1

Comments

Colorpalette

Fig. 4 High-level structure of a session document comprising multiple
layers with multiple VCAs

collages among multiple clients in real time. An overview of
our system with a depiction of a client to server communica-
tion and vice versa is presented in Fig. 3.

To achieve this distributed structure of a real-time group-
ware system, we develop an extensible client–server archi-
tecture (Fig. 5). The server is mainly responsible for session
handling and synchronization, and maintaining communi-
cation among clients (Sect. 4.1). The client transmits and
consumes messages (Sect. 4.2), which represent editing
actions and perform client-side rendering (Sect. 4.3)

4.1 Server components and functionality

Themain task of the server component is to maintain the ses-
sion documents, manage and provision its state, and handle
the communication between the clients.

4.1.1 Session document

Thedocument structure (Fig. 4) is inspired by theOpenRaster
file format [20]. A document consists of metadata about
the project, e.g., creation date, version, resolution, etc.. All
images are organized as layers and stored as arrays. We cur-
rently support raster and vector graphics as layers. However,
our modular approach allows easy integration of additional
layer types e.g., a text layer. These layers comprise generic
information, such as geometric transformations, visibility,
etc., as well as layer specific details. Both on document and
layer level, the functionality can be extended through mod-
ules e.g., global color palette on document level and VCA
module on layer level. The VCA references and its parame-

123



U. Bath et al.

tneilC

Session Handler

Synchroniza�on Service

Document 
Instances

Document 

Muta�ons

Ge�er

revreS

Cl
ie

nt
 S

to
re

Client Service

User Interface Components

Toolbars Proper�esLayer …

Canvas Logic

Pointer
Tracking

RendererCanvas …

Document Controller

Synchroniza�on Service

Session

Fig. 5 Overview of the client–server architecture used for our system.
The server synchronizes and propagates project modifications among
clients through different session handlers. A user canmodify the project

through theGUI components and the content view. The cyclic update
process on the client-side prevents version conflicts

ters are stored on a per-layer basis and enables further editing
of raster images.

4.1.2 Session handling

At the initial state, each stored document is read into a session
and is assigned a unique identifier.All sessions are subscribed
to the socket service which handles the client communica-
tion.When a client connects to the server, the server responds
with a session overview. After registering for a session, the
user’s socket is subscribed to all events of the specific ses-
sion on the server-side. By registering to the server, the client
receives its unique server-socket Identifier (ID) that is stored
in the local storage of the browser. If the client disconnects,
it re-sends its assigned ID when reconnecting to the server
and thus is recognized again. Moreover, a unique color is
assigned to the client, which also serves as the default brush
color.

Since several users can work simultaneously in one ses-
sion, we have a high degree of access-conflict. The server
treats incoming changes as “first come, first serve” and,
hence, defines the order of updates which is then sent to all
subscribed clients. However, if several changes are requested
simultaneously the latest change is eventually displayed as it
would overwrite the earlier requests. The main logical con-
flicts are resolved at server-side, e.g., if a user deletes a given
layer while another user edits it, the latter change request is
dropped. Remaining access-conflicts, which are not mutu-
ally exclusive, are then handled at the client-side, i.e., the
last executed update will define the modified session state.
Thus, session-handling is important tomaintain synchroniza-
tion among clients, a key requirement (Sect. 2.3) for such a
system.

4.2 Protocol for client–server communication

For communication between the server and multiple clients,
we design a simple protocol that suffices the following
requirements: (i) it has a simple yet extensible message
structure to facilitate efficient development and easy inte-
gration of future features; (i i) it is suitable for fast message
(de)serialization to reduce the run-time overhead for clients
and server. The clients employ a WebSocket connection to
send events to the server, which are then broadcasted to the
remaining clients. Both client and server listen for events
and process the incoming data accordingly. The sent data
include information about the applied project changes as
well as other aspects such as timestamp and client ID which
allows for change-history maintenance. An exemplary mes-
sage structure (based on JavaScript Object Notation(JSON)
standard format) event, for a new drawn path which sends
a layer_specifics, is depicted in List. 1. The above
allows for efficient communication among clients, which is
a necessity (Sect. 2.3) for our system.

{"tool": "brush",
"action": {
"type": "new",
"path": {

"timeStamp": "1617804631471",
"clientId": "m82pY9bvAeIAAAH",
"color": "#795EB3",
"width": "10",
"path": [["M",446.99,38],

["Q",447,38,448,38],
["Q",449,38,449.5,38],
["Q",450,38,451,38.5],
["Q",452,39,452.5,39],
["L",453.01,39]]}}}

Listing 1 Exemplary message structure of a layer_specifics
action with the brush tool.

123



CERVI: collaborative...

Fig. 6 Our GUI provides a variety of editing tools and user specific visual feedback to visually communicate the tool and objects currently operated
by other users in order to mitigate the risk for potential editing conflicts

4.3 Client components and functionality

The rendering of the raster and vector images is performed
entirely on the client-side usingWebGL 2.0. The front-end is
developed using Vue, and the Vuex framework is employed
for global storage. To facilitate layer control for canvas ren-
dering, we make use of Fabric.js.

4.3.1 Update logic

Since all users can potentially work on the session docu-
ment simultaneously, resulting data-conflicts are required to
be handled properly. For it, we propose the communication
process among clients as depicted in Fig.3. After the user
changes a parameter, a change-request is sent to the server
over a synchronization service. The above service also lis-
tens to all change-events from the server. If the request is
accepted by the server, it will notify all clients. The service
then modifies the store, and the GUI is updated accordingly.
The user is not allowed to update the local store directly
to prevent version conflicts. A small update delay is barely
noticeable because of quick socket communication. In case
of a parameter-update conflict, when two users update the
same value simultaneously, the last request processed by the
server is considered the final version. However, only one user
at a time should be able to directly manipulate or transform a
layer. For it, during such operations, the layer will be implic-
itly locked with respect to its transformation properties.

4.3.2 GUI structure/schematics

We assume that the target audience is familiar with raster-
image editing software and therefore decide to re-use GUI
concepts from common image-editing applications. Thus,
tools such as brush and selection are located in a vertical
icon toolbar on the left with additional control parameters

on an upper horizontal bar (Fig. 6). The object property pan-
els (e.g., of layers or their properties) are both located on
the right side of the canvas. A user can directly interact with
the canvas by drawing on a layer or transforming it. Since
the image takes up most of the available space for direct
editing, the remaining GUI components are arranged com-
pactly with informative icons to ensure intuitive usability.
For smaller screen sizes, e.g., mobile or tablet, this is prob-
lematic becausemany operationsmust be clearly represented
with large buttons for easy access. Therefore, we hide certain
components using a responsive layout, which are displayed
if required (Fig. 7). Since the components themselves do
not differ between screen sizes, the user can easily switch
between desktop and mobile devices without adapting to a
new GUI. The generic project tool buttons for downloading
the final image or specific layers , sharing the project ,
or messaging other users , are placed on top of the editing
components.

4.3.3 User-specific visual feedback

For a coordinated workflow among the clients, the respective
selected layer, VCA and the tool of each user is high-
lighted (Fig. 7(b)). This allows a user to reproduce canvas
changes made by another user. Moreover, this potentially
avoids editing conflicts or parameter overwrites as the user
can see if someone else has selected the same layer or VCA.
Similar to other collaborative web-apps, an overview of cur-
rently active users is depicted in the upper right corner. On
hovering over the user’s icon, the respective username is dis-
played. We can also get an overview of the user’s working
area by clicking on the user icon. The cursor position on
the canvas is broadcasted to the remaining clients and is dis-
played with the client’s unique color identifier, assigned by
the server. The displayed cursor depends on the user-selected
tool and can be, among other things, a pointer (for selec-

123



U. Bath et al.

Fig. 7 The responsive GUI layout hides editing components if the screen size is too small. The functionality can be easily expanded by pressing
the respective button

tion tool) or a brush (for coloring tool). Additionally, if a
user selects or transforms a layer, it is highlighted with the
respective client’s color. This way, all participants obtain an
overview of currently active objects.

4.3.4 Basic editing features

Layer Functions. Within a project, layers can be added,
deleted, and reordered with simple button clicks in the layer
control panel. An icon regarding the respective layer type
(raster/vector) is shown next to each layer name for a bet-
ter overview. Moreover, if required we also allow a vector
layer to be rasterized. For each layer, visibility can be set
and the layer itself can be locked/unlocked . To further
enable collaboration we introduce an exclusive-lock button

. Analogous to the lock functionality, a user can disable a
layer via this button. However, the layer will be locked for
everyone except this user. Other users can see who exclu-
sively locked a layer and when. By unlocking this layer, the
original user gets a notification. This way, a user can per-
sonally lock a layer and signal that he/she does not want
interference fromother users. Depending onwhether the user
himself/herself exclusively locked the layer or not, this but-
ton is highlighted in a different color. Thus, the user also has
a visual overview of which layers he/she is currently working
on.

Furthermore, for each layer, additional information is dis-
played in the panel below. A user can switch between the
different control settings through tabs, e.g., the layer proper-
ties or VCA. The main layer properties, e.g., scale, rotation,
opacity, are located in the properties tab. Since different layer
types offer different functionality, the tab choices may differ
accordingly. For example, the VCA tab is an add-on only for
raster layers, thus, it is only displayed then. Moreover, this
panel can easily be extended with additional editing features
by adding new tabs.

Raster Image Functions.Raster image layers are provided by
adding source images or single colored layers, both of which
can be modified using the brush tool. Here, brush size and
color are adjustable using respective components in the hor-
izontal bar. Performed brush strokes can be undone/redone
per layer using the respective tool buttons. This logic works
for each client separately, e.g., an agent can undo or redo the
own strokes after a different agent drew as well. Since each
action has a timestamp, redone strokes will be applied on the
layer in the original order they were first drawn. Thus, each
client can undo his strokes indefinitely, the stroke with the
latest timestamp on the stack will be removed and cached on
a redo stack. The redo stack is cleared as soon as the client
starts drawing again.

As described previously, VCAs can be applied on raster
layers. In the VCA tab on the right side, the user can add,
delete, and reorder VCAs in the pipeline of the layer. Each
VCA is adjustable and can be enabled or disabled. All
changes are applied to the image in real time.
Vector Image Functions. Similar to scalable vector graphics
(SVG), a vector layer can contain different object types, e.g.,
paths or circles. All objects are accessible in a list in the
corresponding tab on the right panel. Upon object selection,
further properties such as fill or stroke colors can bemodified.
Vector objects can also be filled using direct manipulation on
the canvas by selecting the fill tool in the toolbar. In case the
user wants to change only the fill style of an object similar
to a coloring book application, the colorbook mode can be
enabled in the horizontal bar—preventing coloringof strokes.

4.3.5 Feature extensions

Since our application should serve different purposes, the
focus on necessary featuresmay shift. This iswhywe empha-
sized on modularity in the GUI and system architecture. Our
application can easily be extended on different levels: (1)

123



CERVI: collaborative...

new layer types, (2) layer plugins, and (3) document plugins.
As a new layer type, the approach for vector layers can also
be extended for XML3D elements. Additional raster image
editing features can be added in form of a new VCA. On
the document level, we showcase an efficient integration of
a color palette plugin which is shared and updated with all
clients.

5 Evaluation

We develop our collaborative framework in a two-step
process. Firstly, we create the necessary functionality for
sketching/coloring and editing of raster images, after which
we perform a usability study (sect. 5.1) to understand the
interesting elements of the system from a user’s perspective.
Secondly, based on the popularity of coloring and collage
creation tasks, we further extend the system to also allow
for editing of vector images (sect. 5.2). A thorough perfor-
mance analysis of our complete system (Sect. 5.3) identifies
challenges in terms of latency and further scalability.

5.1 Post-deployment user study

Additional requirements on functionality anduser experience
are often identified after a prototype is deployed and users
have had a chance to try the software and provide feedback.
This valuable feedback motivated us to extend our system
for vector images (sect. 5.2) and will potentially be useful
to improve the future iterations of our prototype. For the
post-deployment study, we focused on the following three
aspects: (i) do users understand the visualization metaphors
to avoid editing conflicts, (i i) do users understand the general
structure of the GUI, and (i i i) are users satisfied with the
prototype.

5.1.1 Participants & apparatus

We recruited 16 volunteers (8 male, 8 female) in 6 different
groups. The above participants use our system for the first
time and were not part of the preliminary user study to avoid
any inherent bias. Each group had a variable number of par-
ticipants between 23 and volunteers were aged between the
ages 21 and 34. While all of them had experience with com-
puters, 5 had no or only little experience with image editing
applications. All of them had normal or corrected-to-normal
vision and no known visual impairments. All the participants
(except for one, who used an iPad) accessed our SPA on a
desktop/laptop system with a single monitor using standard
web-browsers (Google Chrome: 7,Mozilla Firefox: 5, Apple
Safari: 2,Microsoft Edge: 2) and a computermouse (two par-
ticipants used trackpads).

We conducted a supervised/observed study in remote ses-
sions, each with a group of participants. We were connected
with them via an online Zoom meeting as they were guided
and monitored at the same time. Each session had a length
of approx. 60 min having the following structure. First, each
group received a brief introduction into the GUI covering
only editing tools as well as layer and VCA controls (5 min).
Following this, each group is asked to collaboratively solve
three tasks in sequence.

5.1.2 User tasks

The three tasks performedby each participant group cover the
full potential of our editing system. The tasks are ordered by
increasing difficulty and took 15min to 20min, respectively,
for completion. Figure 8 shows selected results obtained dur-
ing the study.
Coloring (Task-1). We provide a blank sketch as a back-
ground layer (Fig. 8a) and the participants are asked to color
the sketch using the brush tool on the empty top layer (e.g.,
Fig. 8d). The users are encouraged to use multiple brush
colors and also create their own doodle using an additional
layer. The task objective is to test if users are able to work
with layers, use the brush tool effectively, and detect poten-
tial synchronous conflicts. We stopped this exercise once the
users were familiar with the brush tool and working with
layers; this task took (10min to 15min).
Puzzle (Task-2). We provide the users with a set of dis-
arranged pieces of a test image (Fig. 8b). Each piece is
represented in the form of a single layer. The task is to rear-
range these layers using rotation and translation in order to
solve the puzzle (Fig. 8e). The task objective is to test if users
are able to use layer transformation tools effectively. We also
provide the puzzling image as a guide. On an average, it took
between (15min and 20min) to complete.
Collage Creation (Task-3). Given a set of images, i.e., one
background image and various foreground imageswith alpha

(a) Task-1 Input (b) Task-2 Input (c) Task-3 Input

(d) Task-1 Output (e) Task-2 Output (f) Task-3 Output

Fig. 8 Exemplary results obtained with our system during sessions of
the post-deployment user study

123



U. Bath et al.

matte (Fig. 8c), the users should create and layout respec-
tive layers—comprising as many foreground images as they
like—in order to create a collage collaboratively. In addi-
tion thereto, they are encouraged to apply different image
effects (using VCAs such as contrast enhancement, pixela-
tion, chroma-zoom, or chromatic aberration) to each layer.
The task objective is to test if users are able to reuse their
learning from the previous tasks and also test familiarity with
blending and layer modification via VCAs. The time for this
task was limited to 15min.

5.1.3 Data collection and analysis

The online session of the above tasks is followed by a sub-
jective interview (of approx. 15min) with questions focusing
on performance, collaboration, and potential applications. In
addition thereto, the entire online session was video recorded
to analyze groups’ collaborative practices and also to record
their feedback. After the interview, each participant is asked
to file a post-study questionnaire based on QUIS [4] and
CSUQ [16] without any time constraints.

All the participants were able to perform Task-1 quite
easily and were satisfied with the system performance. It
indicates that even in the current state our system can be
used for a collaborative coloring-book application.The above
was a prime motivation to extend our system for the edit-
ing of vector images as well. For Task-2, the major difficulty
was maintaining the control of a particular layer. Participants
reported that the user-specific visual feedback regarding layer
selection was too subtle. Thus, it happened that two par-
ticipants were trying to move the same layer and faced
unexpected results.However, in the subjective interview, they
confirmed that such editing conflicts could have been avoided
with the layer locking functionality. For Task-3, the major
challenge was in terms of adding effects to layers, most of
the users were not able to figure out this functionality on their
own. Overall the user feedback can be summarized into the
following two categories.
Collaboration. As expected, the novel collaborative aspect
of our system was appreciated by most of our partici-
pants (Fig. 9a). They showed a great interest in having

(a) Overall Satisfaction (b) Functional Satisfaction

Fig. 9 TheA overall and b functional satisfaction of the participants
during the post-deployment user study on a Likert scale of 1 to 5, with
5 being the best

this collaborative functionality integrated into the image
editing tool of their choice. Our participants from differ-
ent background suggested a broader utility of our system
in domains of engineering, architecture, teaching, entertain-
ment, academia, etc., thus indicating a wide user base. How-
ever, further improvements for collaboration was suggested
mainly in terms of (i) an integrated voice communication
channel, (i i) hiding layers created by other team members,
and (i i i) functionality known from collaborative document
editing, e.g., tagging and commenting.
Editing. Our prototype does not offer all the editing func-
tionality generally available in a common image-editing
application. Most of the participants who are familiar with
such tools noticed the lack of such functionalities (Fig. 9b),
e.g., an eraser tool, a flood fill tool, or selective layer manipu-
lation (applying VCAs only on a selected region of a layer).
However, the integration of collaborative versions of these
tools is supported by our architecture.

To answer the initial questions as part of the post-
deployment user study: (i) the visualization metaphors, to
avoid editing conflicts, were not intuitive in the beginning
but were easy to use after guidance, (i i) the users understood
the general structure of the GUI, and (i i i) users were quite
satisfied with our prototype, especially with respect to its
collaborative nature. Due to popularity of Task-1 and Task-3
among participants, we extended our system to support edit-
ing of vector images.

5.2 Editing of vector images

An SVG image with simple geometric objects generally has
a smaller file size compared to a raster image and is eas-
ily editable. However, with growing geometric complexity,
there is a significant increase in required memory leading to
noticeable decline in performance. For multi-layer collages
of raster and vector graphics, the above becomes an impor-
tant factor that needs to be considered. In the following, we
evaluate our system with respect to the trade-off between
vector image size and corresponding performance.

As an example image, we used a Mandala SVG of mod-
erate geometric complexity comprising 122 path-objects and
a total size of 330 kB(Fig. 10a). To monitor system perfor-
mance with increase in memory footprint, we create multiple
instances of the above andmeasure corresponding render and
update time. Figure 11a shows that with an increasing num-
ber of path-objects (and thereby size), the initial rendering
time increases linearly. Following this, the delay between the
application of the fill tool and the displayed visual feedback
increases similarly (Fig. 11b). Thus, the performance of our
system degrades linearly with the increase in memory size.
As a standalone large file, we also tested editing of Fig. 10b
(number of objects: 47000, size: 23 MB). The initial render-
ing requires 7s, and the direct manipulation has a delay of

123



CERVI: collaborative...

(a) Mandala (b) Artistic SVG

Fig. 10 Vector images used for performance evaluation

size in mb

tim
e 

in
 s

0

2

4

6

8

10

20 40 60 80

(a) Initial render time
size in mb

tim
e 

in
 s

0.0

0.3

0.5

0.8

1.0

20 40 60 80

(b) Update time

Fig. 11 Performance evaluation in regards of their size in MByte and
time in second

0.8s. We observed similar rendering time and delay in other
web-based vector graphics editing applications for such a
large file size.

5.3 Performance evaluation

For a quantitative evaluation of our prototypical implemen-
tation, we track performance indicators for data throughput
andupdate latencyduring the post-deployment study. In addi-
tion thereto, we measure rendering performance for projects
of different complexity.

5.3.1 Data throughput & update latency

Data Throughput. Since rendering is client-based, and mes-
sages are sent using a WebSocket connection, only a small
amount of data needs to be exchanged between the server and
clients. Table 2 shows an overview of the exchanged data
during the respective user-study tasks by the example of a sin-
gle client. In general, the data throughput varies depending
on the type of use, e.g., doodling or image manipulation. It
can be observed that the most significant data and the major-
ity of the overall data are the continuously exchange of the
pointer positions. Exchanging the position with additional
information, i.e., click events, supports further interaction
between users and thus contributes to the real-time collabo-
ration aspect. Despite this and regardless of the type of use,
the general data throughput was overall small. This demon-

strates that the chosen architecture avoid problems arising
from excessive data transmission.
Update Latency. In general, the update latency depends
on the number of simultaneously active users. Due to the
WebSocket connection between the server and clients, the
exchanged messages during a session are rather small.
Assuming a stable connection, messages can therefore be
exchanged quickly and update latency is barely noticeable.

5.3.2 Rendering performance

The rendering performance of our client application depends
on various factors, mostly image resolution, client hardware,
and browser type. For the conducted performance tests, we
use an image resolution of 1920×1080 pixels and the appli-
cation is shown full-screen. We choose Google Chrome to
document the performance tests, since it was the most used
browser in the user-study. For testing, an average computer
setup was used (i7-4790K, 16GB Random Access Mem-
ory (RAM), GeForce GTX 960 2GB Video Random Access
Memory (VRAM), Windows 10). We prepared projects of
different complexity, i.e., number of layers, VCA type, and
amount of strokes on each layer.

Table 3 shows the averaged results of 20 consecutive ren-
dering passes. The initial loading time of a session increases
with the amount of layers and the complexity of the VCAs
used. This behavior is similar to updating VCA parameter
values. However, such state changes are only submitted after
a user presses an “apply” button; thus, rendering a VCA does
not occur that often. Also, the number of simultaneously
applied VCAs is usually low.

Further, strokes drawn on the canvas do not noticeably
affect the initial loading time of the canvas. Nonetheless, the
performance decreases as the number of strokes increases.
Since strokes are represented as individual objects rendered
subsequently, this significantly impacts the rendering perfor-
mance, especially if many users are drawing simultaneously.
Thus, the update delays are most noticeable on mobile
devices. Currently, this constitutes a bottleneck that can be
approached by optimization techniques such as batching. By
maintaining a state management, undo-&-redo actions for
strokes can still be implemented with a batched version. Dur-
ing a session, the canvas only updates areas that are affected
by an update and which are visible in the viewport. Hence,
the resulting update time is relative to the layer and screen
resolution as well.

6 Conclusions

In this work, we designed and evaluated a web-based sys-
tem for real-time collaborative editing of raster and vector
images. To the best of our knowledge, ours is the first sys-

123



U. Bath et al.

Table 2 Comparison of client-side data throughput (in KByte) with respect to the event size, the count of events, and user tasks. Numbers represent
the average amount of data transferred (received and sent) in 5 minutes

Event Size Task-1 Task-2 Task-3

Count Total Count Total Count Total

Receive 3874.9 3699.6 4847.0

Pointer Position 0.22 15255 3293.00 17414 3271.00 12168 2410.00

Focus Update 0.09 15 1.45 196 18.50 36 3.40

New Stroke 2.58 277 579.00 – – 105 235.50

Update Layer 0.11 5 0.50 312 37.90 73 10.40

Upload Image 323.00 – – – – 6 1918.00

Update VCA 0.12 – – – – 21 2.50

Send 2535.86 2139.43 3383.26

Pointer Position 0.18 12961 2359.00 12454 2118.00 11208 1969.00

Focus Update 0.05 5 0.27 167 8.57 41 2.00

New Stroke 2.58 94 176.00 – – 37 77.80

Update Layer 0.11 1 0.09 111 12.40 27 3.48

Upload Image 323.00 – – – – 2 1329.00

Update VCA 0.12 – – – – 7 0.9

Table 3 Rendering time (in milliseconds) of projects with different complexity (i.e., number of layers, number of strokes in each layer, and VCAs)
for estimation of run-time behavior

Number of Strokes VCA

None 5 30 Contrast Enhancement Chromatic Aberration

Single Layer

Initial Display 30 40 60 570 1100

VCA Update – – – 400 850

Multiple Layers (5)

Initial Display 55 85 130 2100 4900

VCA Update – – – 1100 2800

tem that provides such a wide variety of image-edits in a
collaborative fashion. In order to better understand the needs
for such a system, we conducted a preliminary user study.
Our prototype leverages the power of WebGL for interactive
browser-based rendering, while synchronization is main-
tained viaWebSocket connections. Our interface re-uses and
extends GUI concepts from common image-editing applica-
tions. The post-deployment user study indicates a substantial
demand for such a system.

As part of future work, we would like to address the
existing limitations in terms of synchronization and access
conflicts. To achieve the above, we aim to develop pixel-level
tagging and commenting functionality in formof speech bub-
bles. Further, an efficient version-history maintenance for
document updates using a real-time database would be an
interesting idea in this regard. Additionally, we plan to enable
optimistic updates, which makes changes locally for a client
and in case of no successful response from server roll backs

the changes, thereby preventing potential delays for users
with poor internet connection.

Acknowledgements We thank the anonymous reviewers for their
valuable feedback. We thank Fabien Charlé for supporting the imple-
mentation and Daniel Limberger for his constructive feedback. We
also thank all participants of our user study. This work was partially
funded by the German Federal Ministry of Education and Research
(BMBF) (through grants 01IS18092-“mdViPro” and 01IS19006-“KI-
LAB-ITSE”) and the Research School on “Service-Oriented Systems
Engineering” of the Hasso Plattner Institute. Open-access funding
enabled and organized by Projekt DEAL.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

123



CERVI: collaborative...

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aggie io. https://aggie.io/. Accessed: 2020-10-21
2. Bath, U., Shekhar, S., Döllner, J., Trapp, M.: Colier: Collaborative

editing of raster images. International Conference on Cyberworlds
(CW) , 33–40 (2021). https://doi.org/10.1109/CW52790.2021.
00013

3. Calabrese, C., Salvati, G., Tarini, M., Pellacini, F.: Csculpt: a sys-
tem for collaborative sculpting. ACMTrans. Graph. (2016). https://
doi.org/10.1145/2897824.2925956

4. Chin, J.P., Diehl, V.A., Norman, K.L.: Development of an instru-
ment measuring user satisfaction of the human-computer interface.
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’88, p. 213-218. Association for Com-
puting Machinery, New York, NY, USA (1988). https://doi.org/10.
1145/57167.57203

5. Draw chat. https://draw.chat/. Accessed: 2020-10-21
6. Dürschmid, T., Söchting, M., Semmo, A., Trapp, M., Döllner, J.:

Prosumerfx: Mobile design of image stylization components. In:
SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applica-
tions, SA ’17. Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3132787.3139208

7. Edwards,W.K.: Flexible conflict detection andmanagement in col-
laborative applications. In: Proceedings of the 10th Annual ACM
Symposium onUser Interface Software and Technology, UIST ’97,
p. 139-148. Association for ComputingMachinery, NewYork, NY,
USA (1997)

8. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware sys-
tems. In: Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’89, p. 399-407.
Association for Computing Machinery, New York, NY, USA
(1989)

9. Gao, L., Gao, D., Xiong, N., Lee, C.: Cowebdraw: a real-time col-
laborative graphical editing system supporting multi-clients based
on html5.Multimed. Tools Appl. 77(4), 5067–5082 (2018). https://
doi.org/10.1007/s11042-017-5242-4

10. Google: Google documents. https://docs.google.com (2014).
Accessed: 2020-10-21

11. Google draw. https://docs.google.com/drawings. Accessed: 2020-
10-21

12. Heer, J., Agrawala, M.: Design considerations for collaborative
visual analytics. Inform. Vis. 7(1), 49–62 (2008)

13. Isenberg, T.: Interactive npar: What type of tools should we cre-
ate? In: Proceedings of the Joint Symposium on Computational
Aesthetics and Sketch Based Interfaces and Modeling and Non-
Photorealistic Animation and Rendering, Expressive ’16, p. 89-96.
Eurographics Association, Goslar, DEU (2016)

14. Juranek, L., Stastny, J., Skorpil, V., Junek, L.: Acceleration of
server-side image processing by client-side pre-processing in web
application environment. In: 2019 42nd International Conference
on Telecommunications and Signal Processing (TSP), pp. 127–130
(2019). https://doi.org/10.1109/TSP.2019.8768889

15. Lee, B.R.: Analysis of digital art content created through collab-
oration. Arch. Des. Res. 30(4), 17–25 (2017). https://doi.org/10.
15187/adr.2017.11.30.4.17

16. Lewis, J.R.: Ibm computer usability satisfaction questionnaires:
Psychometric evaluation and instructions for use. International
Journal of Human-Computer Interaction pp. 57–78 (1995)

17. Nováková, K., Jakubal, V., Achten, H., Matejovska, D.: Collab
sketch: Case study on collaborative sketching. In: Fusion - Pro-
ceedings of the 31st eCAADe Conference, pp. 213–218 (2013)

18. Photopea. https://www.photopea.com/. Accessed: 2020-10-21
19. Pixlr. https://pixlr.com/. Accessed: 2020-10-21
20. Rempt, B., Berger, C.: Open raster specification. https://www.

openraster.org/. Accessed: 2020-10-21
21. Richter, M., Söchting, M., Semmo, A., Döllner, J., Trapp, M.:

Service-based Processing and Provisioning of Image-Abstraction
Techniques. In: Proceedings International Conference on Com-
puter Graphics, Visualization and Computer Vision (WSCG), pp.
97–106. Computer Science Research Notes (CSRN), Plzen, Czech
Republic (2018). https://doi.org/10.24132/CSRN.2018.2802.13.
http://wscg.zcu.cz/WSCG2018/Short/P97-full.PDF

22. Salvati, G., Santoni, C., Tibaldo, V., Pellacini, F.: Meshhisto:
collaborative modeling by sharing and retargeting editing histo-
ries. ACMTrans. Graph. (2015). https://doi.org/10.1145/2816795.
2818110

23. Sun, C., Chen, D.: Consistencymaintenance in real-time collabora-
tive graphics editing systems. ACMTrans. Comput.-Hum. Interact
9(1), 1–41 (2002)

24. Viggiato, M., Terra, R., Rocha, H., Valente, M.T., Figueiredo,
E.: Microservices in practice: a survey study. CoRR (2018).
arXiv:1808.04836

25. Wegen, O., Trapp, M., Döllner, J., Pasewaldt, S.: Performance
Evaluation and Comparison of Service-based Image Process-
ing based on Software Rendering. In: Proceedings International
Conference on Computer Graphics, Visualization and Computer
Vision (WSCG), pp. 127–136. Computer Science Research Notes
(CSRN), Plzen, Czech Republic (2019). https://doi.org/10.24132/
csrn.2019.2901.1.15

26. Wu, C., Li, L., Peng, C., Wu, Y., Xiong, N., Lee, C.: Design
and analysis of an effective graphics collaborative editing system.
EURASIP J. Image Video Process. 2019(1), 50 (2019). https://doi.
org/10.1186/s13640-019-0427-6

27. Zhai, J., Li, Q., Li, X., Wenyin, L.: A cooperative image editing
tool over mobile phones. In: Proceedings of the 11th International
Multimedia Modelling Conference, MMM ’05, p. 264-270. IEEE
Computer Society, USA (2005)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Ulrike Bath studied B.Sc. math-
ematics and computer science at
the Freie Universität Berlin (2014–
2019) and is currently studying
M.Sc. IT-Systems Engineering
(ITSE) at Hasso Plattner Institute,
University of Potsdam.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://aggie.io/
https://doi.org/10.1109/CW52790.2021.00013
https://doi.org/10.1109/CW52790.2021.00013
https://doi.org/10.1145/2897824.2925956
https://doi.org/10.1145/2897824.2925956
https://doi.org/10.1145/57167.57203
https://doi.org/10.1145/57167.57203
https://draw.chat/
https://doi.org/10.1145/3132787.3139208
https://doi.org/10.1007/s11042-017-5242-4
https://doi.org/10.1007/s11042-017-5242-4
https://docs.google.com
https://docs.google.com/drawings
https://doi.org/10.1109/TSP.2019.8768889
https://doi.org/10.15187/adr.2017.11.30.4.17
https://doi.org/10.15187/adr.2017.11.30.4.17
https://www.photopea.com/
https://pixlr.com/
https://www.openraster.org/
https://www.openraster.org/
https://doi.org/10.24132/CSRN.2018.2802.13
http://wscg.zcu.cz/WSCG2018/Short/P97-full.PDF
https://doi.org/10.1145/2816795.2818110
https://doi.org/10.1145/2816795.2818110
http://arxiv.org/abs/1808.04836
https://doi.org/10.24132/csrn.2019.2901.1.15
https://doi.org/10.24132/csrn.2019.2901.1.15
https://doi.org/10.1186/s13640-019-0427-6
https://doi.org/10.1186/s13640-019-0427-6


U. Bath et al.

Sumit Shekhar studied M.Sc.
visual computing at Saarland Uni-
versity (2015–2017). Since 2018,
he is pursuing his Ph.D. at Hasso
Plattner Institute, University of
Potsdam, under the supervision
of Prof. Dr. Jürgen Döllner. His
research focuses on creating effi-
cient image and video processing
algorithms based on their intrinsic
attributes.

Julian Egbert is studying B.Sc.
IT-Systems Engineering at Hasso
Plattner Institute, University of
Potsdam.

Julian Schmidt is studying B.Sc.
IT-Systems Engineering at Hasso
Plattner Institute, University of
Potsdam.

Amir Semmo is the head of
Research and Development at Dig-
ital Masterpieces GmbH and a
post-doctoral researcher with the
Computer Graphics Systems group
of the Hasso Plattner Institute at
the University of Potsdam, Ger-
many. There he received his doc-
toral degree in 2016 on the topic
of non-photorealistic rendering for
3D geospatial data. His princi-
ple research topics include non-
photorealistic rendering, image and
video abstraction, computational
aesthetics and GPU computing.

He is particularly interested in expressive rendering on mobile devices
under the umbrella of interactive casual creativity and processing of
multi-dimensional image data.

Jürgen Döllner obtained his doc-
torate in computer science at the
University of Münster (1996) on
modeling and rendering in com-
puter graphics and habilitated after
stays abroad. Since 2001, he is
professor for analysis, planning
and construction of complex sys-
tems at the Hasso Plattner Insti-
tute of the University of Pots-
dam. His work focuses on visual
computing, especially in the areas
of geospatial analytics, software
analytics and video analytics. His
visual analytics group has so far

given rise to a number of software technology start-ups.

Matthias Trapp studied com-
puter science at the University of
Potsdam and the Hasso Plattner
Institute, Germany (2000–2007),
where he received his Ph.D. in
computer science (2013). During
his post-doctoral studies, he was
heading the junior research group
on “4D-nD Geovisualization”
(2012–2017). Since 2017, he is
a senior researcher at the Hasso
Plattner Institute. His major
research areas are computer graph-
ics, image and video processing,
geovisualization, software visual-

ization and information visualization with a focus on GPU-based tech-
niques.

123


	CERVI: collaborative editing of raster and vector images
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Basic system requirements
	2.2 Fundamental challenges
	2.3 Preceding user study
	2.4 Potential conflicts in collaborative editing

	3 Background & related work
	3.1 Collaborative graphics editing
	3.2 Image processing as a service
	3.3 Web-based sketching and designing

	4 The CERVI system
	4.1 Server components and functionality
	4.1.1 Session document
	4.1.2 Session handling

	4.2 Protocol for client–server communication
	4.3 Client components and functionality
	4.3.1 Update logic
	4.3.2 GUI structure/schematics
	4.3.3 User-specific visual feedback
	4.3.4 Basic editing features
	4.3.5 Feature extensions


	5 Evaluation
	5.1 Post-deployment user study
	5.1.1 Participants & apparatus
	5.1.2 User tasks
	5.1.3 Data collection and analysis

	5.2 Editing of vector images
	5.3 Performance evaluation
	5.3.1 Data throughput & update latency
	5.3.2 Rendering performance


	6 Conclusions
	Acknowledgements
	References




