Real-time Service-based Stream-processing of
High-resolution Videos

Florian T. Wagner
Hasso Plattner Institute,
Digital Engineering Faculty,
University of Potsdam, Germany
florian.wagner@student.hpi.de

Jurgen Déllner
Hasso Plattner Institute,
Digital Engineering Faculty,
University of Potsdam, Germany
juergen.doeliner@hpi.de

Matthias Trapp
Hasso Plattner Institute,
Digital Engineering Faculty,
University of Potsdam, Germany
matthias.trapp@hpi.de

ABSTRACT

This paper reports on an service-based approach to enable real-time stream-processing of high-resolution videos. It presents a
concept for integrating black-box image and video processing operations into a streaming framework. It further describes ap-
proaches to optimize data flow between the processing implementation and the framework to increase throughput and decrease
latency. This enables the composition of streaming services to allow scaling for further throughput increase. We demonstrate
the effectiveness of our approach by means of two real-time streaming-processing application examples.

Keywords:

1 INTRODUCTION
1.1 Motivation and Challenges

This work aims at executing fast video processing op-
erations, such as color enhancement or stylization, in a
service-based environment using streaming. Currently,
such operations are performed on the user’s own mo-
bile or fixed device using specialized software and hard-
ware, e.g., Graphics Processing Units (GPUs). How-
ever, the increasing complexity of such operations cou-
pled with the increase of spatial and temporal resolu-
tion of the input data requires more powerful hardware.
Additionally, more complex operations need to be op-
timized for each possible target device to achieve good
performance, requiring high investments in developer
time even after the initial development. As the user
expects low latency feedback of the chosen combina-
tion of video, operation, and parameters, extensive on-
line preprocessing approaches becomes unfeasible. The
preprocessing cannot be performed in an offline fash-
ion, as the video data may be read-only and transient,
e.g., in a live-streaming scenario. Therefore a suitable
approach has the following challenges/constraints:

Low Latency (C.1): In order for the user to effectively
choose an operation/parameter combination, the la-
tency to process videos should be in the sub-second
range.

High Throughput (C.2): An approach should be able
to process high-resolution videos with state-of-the-
art operations with at least the same frame rate as the
input video.

Hardware Independence (C.3): The user should be
able to use the approach on arbitrary devices. This
especially includes mobile devices such as smart
phones or tablets.

stream processing, high-resolution video, real-time

Low Integration Costs (C.4): The overhead to inte-
grate a given operation into the processing approach
should be low. This is necessary to provide the user
with new and updated operations in a short time
frame, e.g., to facilitate short time-to-market.

Challenges C.1 and C.2 represent the requirement for
an efficient end-to-end solution. This means that the
system is required not only to introduce a small perfor-
mance overhead, but also needs to improve the perfor-
mance of the offered video processing operations.

1.2 Optimization Approaches

There are multiple combinable approaches to improve
the performance of video processing operations. Each
of these approaches is based on a trade-off: some sac-
rifice quality, others development time. The major ap-
proaches and their trade-offs are as follows:

Preprocessing (A.1): This approach speeds up com-
putation by preprocessing input into a format that
is advantageous for further processing. This often
comprises an increase of data locality or indexing
operations. While preprocessing can deliver sig-
nificant improvements, it always introduces addi-
tional latency. On top of this there is a trade-off
between generality of the preprocessing and the ob-
tained speedup.

Manual Optimization (A.2): This approach increases
hardware utilization through operations and hard-
ware specific optimizations. The speedup gained is
proportional to the time invested and the skill of the
optimizing engineer. This approach can not improve
the performance of operations that are already suf-
ficiently optimized. Additionally, this approach re-
quires a thorough understanding of the implemen-
tation to be optimized and thus further introduces
development costs for new operations.

Approximate Computing (AC) (A.3): This approach
sacrifices some quality to speed up the computation.
It is often not possible to do this without making
modifications to the operation implementation, due
to the tight coupling between the implementations
and the underlying graphics libraries and hardware
drivers. This means that additional developer time
is required to either introduce approximations into
the operation implementation itself or bring it into a
form where it can be automatically approximated.

Domain-specific Language (DSL) (A.4): The above
optimizations can often be made in an automated
fashion, if the operation is described in a DSL.
These automated optimizations often outperform
manual optimizations both in achieved performance
as well as performance to development overhead
ratio. However, most implementations are not devel-
oped using these DSLs and translating/transpiling
them will still incur a per-operation overhead.

Task Parallelization (A.5): While data parallelism is
utilized in current video processing operations, their
scope is too limited to implement task parallelism.
Task parallelism can instead be added on a higher
systemic level to fully utilize all available hardware.
Because task parallelism is provided at a higher
level, it can be implemented only once and then
reused across multiple video processing operations
and hardware architectures. However, it still re-
quires the user to provide enough hardware to meet
their performance requirements.

Off-device Processing (A.6): By performing the
computation on a different device, the user is
freed from the cost of operations and ownership
of current processing hardware. Additionally they
can easily scale the hardware to their performance
requirements. This approach incurs additional
latency when transferring the initial video to the
computation device and the processed video to the
consumption device. However, if the initial video is
not already present on the consumption device, then
the latency for transferring the initial video might
even be lower with this operation, due to higher
bandwidth of the processing hardware.

As can be seen, none of these approaches alone is capa-
ble of solving all the challenges. Additionally, some ap-
proaches require access to the operation’s source code
to perform effectively, rendering them impossible in
scenarios where the implementations are provided by
a third party. Therefore, a combination of approaches
seems promising.

1.3 Approach and Contributions

Our approach combines parallelization (A.5) with off-
device processing (A.6) to alleviate the challenges as-

sociated with current video processing systems. Off-
device processing allows usage of high-powered pro-
cessing hardware without the need to actually own this
hardware. The added transmission latency is low and
reduces with fast connections, increasingly. Addition-
ally, processing latency is lowered due to more pow-
erful processing hardware, yielding a low total latency.
Further, parallelization is used to gain not just the bene-
fit of more powerful but also more plentiful processing
devices to be had with off-device processing. This fur-
ther improves throughput and potentially can also lower
the processing latency even further.

To summarize, this paper makes the following contri-
butions: (1) it presents a concept for integrating black-
box software components for image and video process-
ing operations into a streaming framework, (2) it de-
scribes approaches to optimize data flow between the
processing implementation and the framework to in-
crease throughput and decrease latency, (3) it enables
composition of streaming services to allow scaling for
further throughput increase.

The remainder of this paper is structured as follows.
Sec. 2 reviews related and previous work w.r.t. various
optimization approaches of image and video processing
operations and and service-based processing in general.
Sec. 3 introduces the concept for enabling real-time
service-based stream processing of high-resolution
videos. Sec. 4 briefly describes implementation aspects
of our proposed concept. Sec. 5 discusses the presented
approach and implementation by means of different
applications examples and a performance evaluation.
Finally, Sec. 6 concludes this paper and outlines future
research directions.

2 RELATED WORK

There is a vast body of related work w.r.t. video stream-
ing and processing. This section focus on optimization
approaches and specifics of service-based provisioning
for video transformation operations.

2.1 Domain-specific Languages

DSLs are very appealing as they allow division of op-
timizations from algorithm description. Additionally
they offer a degree of platform independence, as they
abstract away the hardware specifics without sacrific-
ing performance. One of the simplest optimizations is
improving the locality of data and the parallelism of
computation for a given operation [28]. Further domain
knowledge helps with optimizing for specific hardware
may be directly captured by the language [17]. Alterna-
tively it may be specified separately from the algorithm,
thus an optimization expert can quickly tune new oper-
ations for specific hardware. Some frameworks enable
optimization that operates over all operations, there-
fore using all available information about a given oper-
ation [21]. Additionally, the abstraction provided by a

DSL can enable higher developer productivity without
sacrificing performance [29]. In the same vein, DSLs
can enable optimizations that are outside the usual do-
main expertise of developers [20]. They can enable de-
velopers to automatically optimize for distributed sys-
tems [1]. On the other end of the scale, they can be used
to use more powerful but specialized hardware than is
usual for image and video processing operations, such
as ASICs and FPGAs [26].

2.2 Approximate Computing

A different approach is found in AC, which trades qual-
ity for performance. One major aspect of AC are the
singular operations that speed-up computation, such as
skipping samples in an image [15] or modifying a ker-
nel [16]. These have been accumulated into collec-
tions that can be automatically applied to existing ker-
nels and optimized in a subsequent tuning phase, ei-
ther by selecting between different kernels [31] or by
generating variations of the original kernel [30] based
on a quality target. Further approaches use alternative
representations of the input to efficiently sample the
approximation-parameter space [13]. This tuning has
been extended and refined for video processing [41].
All these operations have in common that they intru-
sively modify the algorithm and trade quality for perfor-
mance. In contrast thereto, our approach does not rely
on preprocessing of algorithms and avoids quality con-
trol directed by the user. However, the above operations
can be used in combination with our approach.

2.3 Visual Media Processing Services

Several software architectural patterns are feasible for
implementing service-based image-processing [5, 22].
However, one prominent style of building a web-based
processing system for any data is the service-oriented
architecture [35]. It enables server developers to set
up various processing endpoints, each providing a spe-
cific functionality and covering a different use case.
These endpoints are accessible as a single entity to the
client, i.e., the implementation is hidden for the request-
ing clients, but can be implemented through an arbi-
trary number of self-contained services. Since web ser-
vices are usually designed to maximize their reusabil-
ity, their functionality should be simple and atomic.
Therefore, the composition of services [9] is critical
for fulfilling more complex use cases [14]. The two
most prominent patterns for implementing such com-
position are choreography and orchestration [23]. The
choreography pattern describes decentralized collabo-
ration directly between modules without a central com-
ponent. The orchestration pattern describes collabora-
tion through a central module, which requests the dif-
ferent web services and passes the intermediate results
between them [27].

In the field of image analysis, Wursch et al. [39, 40]
present a web-based tool that enables users to perform
various image analysis methods, such as text-line ex-
traction, binarization, and layout analysis. It is im-
plemented using a number of Representational State
Transfer (REST) web services and application exam-
ples include multiple web-based applications for dif-
ferent use cases. Further, the viability of implement-
ing image-processing web services using REST has
been demonstrated by Winkler ef al. [37], including
the ease of combination of endpoints. Another ex-
ample for service-based image-processing is Leadtools
(https://www.leadtools.com), which provides a fixed set
of approx. 200 image-processing functions with a fixed
configuration set via a web Application Programming
Interface (API). In this work, however, a similar ap-
proach using REST is chosen, although with a different
focus in terms of granularity of services.

Applications with respect to medical image process-
ing are presented by Yuan et al. [43] as well as Moulick
and Gosh [18]. Both propose a web-based platform to
present and process medical images by using server-
side computing for a series of image processing al-
gorithms. Further, in the field of geodata, the Open
Geospatial Consortium (OGC) set standards for a com-
plete server-client ecosystem. As part of this spec-
ification, different web services for geodata are in-
troduced [19]. Each web service is defined through
specific input and output data and the ability to self-
describe its functionality[42]. In contrast, in the domain
of general image-processing there is no such standard-
ization yet. However, it is possible to transfer concepts
from the OGC standard, such as unified data models.
These data models are implemented using a platform-
independent operation format [4]. In the future, it is
possible to transfer even more concepts set by the OGC
to the general image-processing domain, such as the
standardized self-description of services.

2.4 Distributed Processing Approaches

Over the last decade, a number of generalized ap-
proaches to distributed processing of streaming data
have been developed. The most important ones,
as identified by Karimov et al. [10] are Apache
Storm [34], Spark [44], and Flink [3]. While these
frameworks are developed for moving data between
processing nodes, they do not address processing of
image data on GPUs, which is required for high-
throughput video processing applications. With respect
to this, Scanner [25] is a system that is optimized for
these kinds of applications. However, it does require
preprocessing of the input data and does not work on a
stream-based abstraction.

Controlling Service /

Input) C\ | Stream- | Stream- ‘KC) Output
Stream 2 Loader Processor Writer N Stream
Processing Service /
Stream- N 5| Stream- Stream- NG Stream-
Writer Qf— Loader | 7| Processor 1 “\yrier >O Loader

Figure 1: Conceptual overview comprising the components as well as data and control flow of the processing

pipeline.

2.5 Visual Media Processing Operations

In this work, we focus on edge-aware and content-
preserving image-processing as a fundamental tool in
computational photography and non-photorealistic ren-
dering for abstraction and artistic stylization for appli-
cation and testing purposes. Typical approaches that
operate in the spatial domain for abstraction use a kind
of anisotropic diffusion [24, 36] and are designed for
parallel execution, such as approximated by the bilat-
eral filter [33] and guided filter [8].

A plenitude of stylization operations exist using these
filters as building blocks to simulate traditional paint-
ing media and effects [12], such as cartoon [38] and
oil paint [32]. However, these may become computa-
tionally expensive when applied in an iterative multi-
stage process. This particularly applies to operations
using global optimizations to separate detail from base
information, e.g., based on weighted least squares [6]
or locally weighted histograms [11], and recent op-
erations that separate style from content using neural
networks [7]. Because of their global optimization
scheme, they are typically not suited for real-time ap-
plication, in particular not on mobile devices. To this
end, we implemented a variety of these operations using
the proposed image-processing service including styl-
ization, High Dynamic Range (HDR) tone mapping and
compression, JPEG artifact removal and colorization,
to demonstrate its versatile application. We used a rep-
resentative subset of these operations for performance
evaluation.

3 CONCEPTUAL OVERVIEW

This section describes our approach to real-time
service-based stream processing of high-resolution
videos. Based on preliminaries and assumptions, a
conceptual overview of our system is given (Sec. 3.1),
and components are described (Secs. 3.2 to 3.4).

3.1 Preliminaries & Assumptions

We base our work on software previously developed.
For the handling of video data we use a framework de-
signed to load videos and process them frame by frame,
based on a pipeline concept. For the processing of the
video frames, we use a software component compris-
ing state-of-the art image abstraction operations that is
called using a library interface.

Additionally, we make assumptions about the pro-
cessing hardware and operation implementations used
by our approach. We do not assume that the video is on
the local host or has even been fully recorded when pro-
cessing starts, as is the case in live-streaming contexts.
Offline processing is therefore not possible. Addition-
ally we assume that all operations work on a locality
of the time and space domains. We also assume that
the operation is being callable through a library inter-
face and therefore resides in the same process space as
our video processing pipeline. This means that mem-
ory and other resources (such as GPU handles) can be
easily shared between the operation processor and the
video pipeline, if the processor exposes appropriate in-
terfaces. Finally, we assume the software component to
be a black-box implementation, i.e., we cannot change
or rely on the implementation details of the operation
apart from the assumptions made above.

Fig. 1 shows a conceptual overview comprising the
components as well as data and control flow of the
processing pipeline of the proposed approach. It ba-
sically comprises the following components, which are
described in greater detail in the remainder of this sec-
tion; components (1) for receiving and sending video
streams, (2) for tiling video in the spatial or temporal
domain, and (3) that wrap the video processing opera-
tion.

3.2 Stream Separation (De-Muxing)

There are two domains, in which we can separate the
data into tiles for parallel processing: spatial and tem-
poral. If the applied processing for a target sample con-

siders source samples at multiple points in a domain,
then an additional border around the original tile is pro-
vided by the split. This prevents quality degradation
due to missing source samples. The size of this bor-
der depends on the range of source samples in the given
domain and is therefore dependent on the operation and
its parameters. Because the software component is a
black box, is is not possible to exempt the border from
processing. Computational overhead is therefore intro-
duced by each sample in the border. Because of this,
the relative size of the border compared to the content
should be minimized to minimize overhead.

Spatial Stream Separation. Spatial Separation splits
the video in the spatial domain. Each spatially split
frame produces exactly one frame-tile for each paral-
lel strand of execution. If a border is required, it is
added to the frame-tile dimensions. As an optimization
the separation can be performed in only one dimension
of the spatial domain. This eliminates borders in the
other dimensions and is especially effective for large
frame-tiles and operations that necessitate large bor-
ders. Spatial separation also facilitates computing oper-
ations using limited resources; While computation time
is potentially unbounded, Video Random Access Mem-
ory (VRAM) and other hardware resources are limited.
The usage of these resources is often coupled to the size
of the input and output images. Spatial separation en-
ables the processing of complex and resource intensive
operations on hardware, which is otherwise not capable
of handling these on the requested input complexity.
Temporal Stream Separation. Temporal separation
is of advantage whenever the operation is time-local.
In this case, no border frames need to be created and
therefore the amount of data that is transferred between
the distributed stages is minimized. Additionally, this
method is the only possible method when the technique
is global in the spatial domain. If the technique is also
non-local in the time domain, border frames need to be
introduced. To ensure a good ratio of content vs. bor-
der, multiple consecutive frames should be sent to each
node for processing. Depending on the throughput of
the nodes, this will introduce a significant increase in
latency, as the border frames need to be processed be-
fore the content frames.

3.3 Per-Frame Video Processing

The actual video processing module is accessed via an
API. This necessitates wrapping the module within a
stage to embed it in our pipeline. The wrapper requires
a way to pass data into and out of this processing mod-
ule. To this end, we implement two approaches to pass
data between the wrapper and the processing module,
both exhibiting different computational overhead and
flexibility. The first approach passed data via shared
memory. If the processing is performed on the GPU, the
overhead might significantly deteriorate the throughput.

Additionally, it can not be guaranteed that the mod-
ule does not first copy the data for processing, leading
to potentially more overhead. The second approach is
passing the data as a texture in a shared GPU context.
To enable this, a GPU context can be obtained from the
module. This context is then used to allocate the re-
spective data memory in VRAM. The handles to this
memory are then passed into the module for process-
ing. Even if the data is copied, the asynchronous and
parallel nature of GPU processing allows progress to
be made on other work items while the data is copied.

3.4 Stream Compositing (Muxing)

Stream muxing combines the previously separated data
into a final composition result. It receives the data,
which is not defined as border values and stitches them
to create the final video stream. Therefore, it is re-
quired to work in the same domain as the separation
operation. If the separation is performed in the spa-
tial domain, then the frame tiles are copied into a final
frame representation. If the separation is performed in
the temporal domain, then sufficient frames need to be
buffered to unblock the processing nodes. These frames
are then aligned into the same order as their originat-
ing frames, discarding border frames if they exist. This
stage also maintains the synchronization with the input
audio stream.

4 IMPLEMENTATION ASPECTS

This section describes implementation specifics for our
approach. Based on the concept, the implementations
of the codec handling (Sec. 4.1), separation and re-
combination (Sec. 4.2), as well as the service-based
specifics (Sec. 4.3) are covered.

4.1 GPU-based En-/Decoding

Modern GPUs often have dedicated units for de- and
encoding of videos in commonly occurring formats.
Especially the encoders offer a significantly higher
performance than the software implementations run
on Central Processing Unit (CPU). Because of this
our framework allows to utilize GPU de- and encoders
where supported by the hardware. If the processing
of the frames is also implemented on the GPU then
an additional advantage may be gained by forgoing
the uploading and downloading of data to and from
the GPU. However, the interface of the GPU coding
units might not always be exposed in the same GPU
abstraction as the processing is required.

To bridge this gap, we support translation of the
data between different GPU abstractions. This happens
transparently to the processing module. Due to driver
limitations, registering a resource from one GPU ab-
straction in another might introduce an additional al-
location of memory. This might lead to performance

degradation or even memory shortage if performed ev-
ery frame. To this end we implement the adapter as
a texture that is registered once at the initialization of
the pipeline and then copied to and from. While this
introduces additional data copies on the GPU, it does
not degrade performance and allows processing of large
data even on drivers where registering resources allo-
cates memory.

4.2 Tiling Implementation

We use different implementations for the tiling and
compositing stages of the pipeline, depending on the
domain of the division and the location of the data. If
data separation is performed on the spatial domain, it
is implemented using a copy operation, depending on
the location where the data resides. Data residing on
the GPU is separated using texture copies, while data
residing on the CPU is separated using memcpy. This
means, that at least twice the memory footprint of a sin-
gle frame is consumed during spatial separation - more
if a border is present (e.g., required for neighborhood
filtering). In effect, this overhead is often negligible
since it only occurs during the separation itself, i.e.,
only one frame at a time consumes twice the amount
of memory. Such additional use of resources is signifi-
cantly smaller than the use of resources required to have
multiple frames in flight.

If the separation should be performed in the tem-
poral domain, it can be implemented by routing in-
dividual or chunks of frames to different processing
stages. If a temporal border is required, all frames
that are within a border need to be routed to multi-
ple processing stages. Because the processing stages
do not consume the memory of the frames, no copies
need to be made during this routing. Copies are of-
ten made during transmission to different nodes, such
that memory overhead might occur in this case as well.
In a worst case scenario, each frame consumes (1 +
numberOfinstances) - memoryOfSingleFrame memory
at any point in time. Similar to spatial separation, this
only occurs for at most one frame at a time, thus the
total memory needed is bounded and near constant in a
high-throughput pipeline.

4.3 Provisioning and Streaming

Service Provisioning. In order to rapidly deploy the
service to new hosts, it is bundled as a Docker im-
age [2]. This allows instancing up the respective image
on different hosts without rebuilding the complete sys-
tem. However, due to the required tight coupling to the
GPU, all required processing libraries and APIs (such
as Open Graphics Library (OpenGL) or CUDA) need
to be present and supported on the host. This is a limi-
tation of Docker with respect to GPUs. Additionally, as
GPUs are often limited regarding the number of physi-

cal en/decoding units, using more than one instance per
graphics card can lead to a degradation of performance.
Application of Streaming Protocols. There are three
ways in which data may be streamed by the system: (1)
ingesting streams from outside the system, (2) stream-
ing between system instances, and streaming outside
the system to consumers. All three cases raise differ-
ent requirements on the streaming protocols used: For
ingestion, common existing streaming protocols should
be supported to enable easy interaction with existing
stream sources, such as YouTube or similar. For stream-
ing inside the system, low latency and high throughput
is desired, so as to not degrade performance when scal-
ing over smaller nodes. For streaming to the consumer,
the protocol should be supported by web-browsers for
easy consumption. For consumption, it is further de-
sired to allow for some degree of asynchronicity, as the
user might drop-out of the session and return to it at a
later point in time.

Because of these differing requirements, we choose
to support different protocols as follows. For stream
ingestion and streaming inside the system, Real-Time
Messaging Protocol (RTMP) was chosen. This pro-
tocol allows for low overhead, low latency streaming
and is used by popular stream ingestion APIs such as
Twitch. For streaming to the consumer we use Hyper-
text Transfer Protocol (HTTP) Live Streaming (HLS).
This protocol allows to use readily available technolo-
gies on both ends of the connection. The server can be
a HTTP driven and does not require prior knowledge
about the nature of the video. On the client side the
stream can be consumed using a standard video player
in the web browser. Additionally, this allows for asyn-
chronicity as the processed stream can be stored for as
long as desired.

5 RESULTS & DISCUSSION

This section demonstrates our approach by means of
different application examples (Sec. 5.1) and discusses
its runtime performance as well as technical and con-
ceptual limitations (Sec. 5.2).

5.1 Application Examples

We tested our approach and its service-based integra-
tions by means of different applications in the domain
of web-based video processing as follows (please refer
also to the accompanying video).
Interactive Web-based Video Editing. This appli-
cation example demonstrate how the streaming can be
used to provide visual feedback of chosen operations
and parameters.The user first selects a video, specific
processing operations parameters and triggers process-
ing. Subsequently, a preview of the video with the op-
erations applied is presented to the user.

The user can easily chain multiple operations without
an impact on the responsiveness of the application. This

100
m effect
€ B invert
C
a 80 mmm toon
o B watercolor
[}
v 60
o
>
£
o 404
€
©
&«
o 204
o
(%]
€

720p 1080p

1440p 4k
resolution

(a) NVIDIA GTX 1050.

1004
m effect
€ B invert
C
a 80 B toon
a B watercolor
(]
v 60
[
>
£
o 404
IS
@©
&=
o 20-
o
%]
€

0_
720p 1080p 1440p 4k
resolution
(b) NVIDIA GTX1080.

Figure 2: Throughput measurements in seconds using a consumer desktop (a) and a dedicated server (b).

700+
effect
. 600- W invert
g mm toon
>.500-{ mmm watercolor

100

720p 1080p

1440p 4k
resolution

(a) Latencies for different operations.

700
effect
invert
toon
watercolor

— 600
n

mean frame latency [
= N w B w
o o o o o
o o o o o
1 1 1 1 1

o
I

720p 1080p

1440p 4k
resolution

(b) Latencies for different spatial resolutions.

Figure 3: End to end frame latencies on a consumer desktop (a) and a dedicated server (b)..

is possible even if the underlying processing framework
does not support chaining per se. Once the user has
decided on a set of operations and parameters, they can
download the result.

Real-time Stream-processing of Videos. This appli-
cation example demonstrates how a consumer can take
existing videos hosted online and process them using
our system. The user provides the link to a video hosted
on a video streaming platform, chooses an operation
to apply to this video, and starts the pipeline to con-
sume the processed video. As the video is processed
in a streaming fashion, the user can start watching the
video before it is fully processed.

5.2 Performance Evaluation

With respect to the application examples, a perfor-
mance evaluation using different test data sets and op-
erations are performed.

Test Data and Operations. Different image resolu-
tions were tested with different image-processing tech-

niques to estimate the run-time performance regarding
the spatial resolution of a video as well as the complex-
ity of processing techniques. The following common
spatial resolutions (in pixels) were chosen: 1280 x 720
(HD), 1920 x 1080 (FHD), 2560 x 1440 (QHD), and
3840 x 2160 (4K). The source videos had a frame rate
of 24 Frames-per-Second (FPS) and a total duration of
150 s each.

In addition to various spatial resolutions, different
image processing techniques were tested in order to
cover a broad spectrum and obtain variant performance
estimates and behavior with respect to different types of
processing tasks. These operations range in complexity
from simple point based operations (invert) to complex
stylization operations (watercolor).

Test Hardware and Setup. To cover a common hard-
ware spectrum, the performance test are conducted on
two different test hosts: (1) a desktop PC with com-
modity hardware with an Intel i5-4690 CPU (4 cores) at
3.5 GHz, 16 GB Random Access Memory (RAM), and

GeForce GTX 1050 Ti GPU 4 GB VRAM as well as a
(2) dedicated GPU server with an Intel i7-7700 CPU (4
cores) at 3.6 GHz, 64 GB RAM, and a GTX 1080 GPU
24 GB VRAM.

The videos were streamed in and out of the processor
by separate processes running on the same host. All
configurations are run 20 times to eliminate external
factors from the measurements.

Performance Results and Discussion. As depicted
in Fig. 2, the system is capable of processing the given
effects in real-time on the consumer device. For high-
resolution videos processed with compute-intensive ef-
fects, more powerful hardware is required.

As depicted in Fig. 3, the presented approach
achieves sub-second latencies for the processing of all
given effects. Most of this latency is incurred by the
batching of frames on the codec, as is evidenced by the
comparatively similar latency over the different effects
per resolution. Only the watercolor effect introduces
significant latency.

Inspection of the running process shows that we
achieve close to 100% GPU-utilization using our
system. This means that our system is capable of
fully utilizing the GPU with processing the operations.
Whether this utilization represents a relatively high or
low throughput depends (1) on the input data, (2) the
chosen operations and parameters, and (3) the imple-
mentation of the operations in the given processing
system. However, the presented approach can not
overcome bandwidth limitations inside or between
processing nodes, since frames are not preprocessed.
This means that the connection to the video source
must be sufficiently fast to deliver the video data in
real-time. With respect to processing hardware, we
assume that each node has the capabilities to process
two encoded streams of the desired tile resolution. This
includes the encoder and decoder on this node being
capable of processing the stream at a frame rate that is
greater or equal to the frame rate of the input video.

6 CONCLUSIONS

This paper presents a concept and prototypical im-
plementation to integrate 3"-party image and video
processing software components into services cable
of real-time streaming. The system achieves this
without the modification or optimization of the specific
processing algorithm’s implementations. It supports
scaling-up and scaling-out to cover different input and
processing complexities. This paper further presents
use cases in which such an approach is required to
facilitate new applications or features for users.

For future work, this system could be improved to
be more adaptive to the kind of workload that is im-
posed. This includes automated provisioning of new
nodes to scale-out as well as easy re-use of provisioned

nodes to handle multiple tasks without incurring start-
up and tear-down costs. In addition thereto, the sys-
tem’s behavior can be runtime-adaptive, thus the appro-
priate scale can be computed automatically — even for
unknown operations or input data complexities. To sup-
port this, research with respect to tuning the paralleliza-
tion process to balance the overhead associated with
tiling and the gain in performance must be conducted.
To lower latencies in complex processing pipelines, a
transitioning from traditional video streaming protocols
to new data exchange protocols such as a messaging
queue, can be considered.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable feedback. This work was funded by the
Federal Ministry of Education and Research (BMBF),
Germany, for the "mdViPro" project (01IS15041).

REFERENCES

[1] Riyadh Baghdadi, Jessica Ray, Malek Ben Romd-
hane, Emanuele Del Sozzo, Abdurrahman Akkas,
Yunming Zhang, Patricia Suriana, Shoaib Kamil,
and Saman Amarasinghe. Tiramisu: A Polyhedral
Compiler for Expressing Fast and Portable Code.
arXiv:1804.10694 [cs], 2018.

[2] Carl Boettiger. An Introduction to Docker for Re-
producible Research. SIGOPS Oper. Syst. Rev.,
49(1):71-79, January 2015.

[3] Paris Carbone, Asterios Katsifodimos, Stephan
Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache flink™: Stream and batch pro-
cessing in a single engine. IEEE Data Eng. Bull.,
38(4):28-38, 2015.

[4] Tobias Diirschmid, Maximilian Sochting, Amir
Semmo, Matthias Trapp, and Jiirgen Dollner. Pro-
sumerFX: Mobile Design of Image Stylization
Components. In SIGGRAPH Asia 2017 Mo-
bile Graphics & Interactive Applications, SA 17,
pages 1:1-1:8, New York, NY, USA, 2017. ACM.

[5] Thomas Erl. Service-Oriented Architecture: Con-
cepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[6] Zeev Farbman, Raanan Fattal, Dani Lischinski,
and Richard Szeliski. Edge-preserving Decompo-
sitions for Multi-scale Tone and Detail Manipula-
tion. ACM Transactions on Graphics, 27(3):67:1—
67:10, 2008.

[7] Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge. Image Style Transfer Using Convo-
lutional Neural Networks. In Proc. Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 2414-2423, Los Alamitos, 2016.
IEEE Computer Society.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Kaiming He, Jian Sun, and Xiaoou Tang. Guided
Image Filtering. In Proc. European Conference on
Computer Vision (ECCV), pages 1-14. Springer,
2010.

Alexander Jungmann and Bernd Kleinjohann.
Automatic Composition of Service-based Image
Processing Applications. In Proc. IEEE Interna-
tional Conference on Services Computing (SCC),
pages 106—113. IEEE Computer Society, 2016.

Jeyhun Karimov, Tilmann Rabl, Asterios Katsi-
fodimos, Roman Samarev, Henri Heiskanen, and
Volker Markl. Benchmarking distributed stream
data processing systems. In 2018 IEEE 34th
International Conference on Data Engineering
(ICDE), pages 1507-1518. IEEE.

Michael Kass and Justin Solomon. Smoothed
Local Histogram Filters. ACM Transactions on
Graphics, 29(4):100:1-100:10, 2010.

Jan Eric Kyprianidis, John Collomosse, Tinghuai
Wang, and Tobias Isenberg. State of the *Art’: A
Taxonomy of Artistic Stylization Techniques for
Images and Video. IEEE Transactions on Visual-
ization and Computer Graphics, 19(5):866—885,
2013.

Michael A. Laurenzano, Parker Hill, Mehrzad
Samadi, Scott Mahlke, Jason Mars, and Lingjia
Tang. Input Responsiveness: Using Canary Inputs
to Dynamically Steer Approximation. In Proceed-
ings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion, PLDI ’ 16, pages 161-176. ACM, 2016.

Angel Lagares Lemos, Florian Daniel, and
Boualem Benatallah. Web Service Composition:
A Survey of Techniques and Tools. ACM Com-
puting Surveys, 48(3):33:1-33:41, 2015.

Liming Lou, Paul Nguyen, Jason Lawrence, and
Connelly Barnes. Image Perforation: Automat-
ically Accelerating Image Pipelines by Intelli-
gently Skipping Samples. ACM Trans. Graph.,
35(5):153:1-153:14, 2016.

Daniel Maier, Biagio Cosenza, and Ben Juurlink.
Local Memory-aware Kernel Perforation. In Pro-
ceedings of the 2018 International Symposium on
Code Generation and Optimization, CGO 2018,
pages 278-287. ACM, 2018.

Richard Membarth, Oliver Reiche, Frank Hannig,
Jurgen Teich, Mario Korner, and Wieland Eckert.
HIPA®: A domain-specific language and com-
piler for image processing. IEEE Transactions on
Parallel and Distributed Systems, 27(1):210-224,
2016.

Himadri Nath Moulick and Moumita Ghosh.
Medical image processing using a service oriented
Architecture and Distributed Environment. Amer-

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

ican Journal of Engineering Research (AJER),
2(10):52-62, 2013.

Matthias Mueller and Benjamin Pross.
oGC WPS 202 Interface Standard.
Open Geospatial Consortium, 2015.

http://docs.opengeospatial.org/is/14-065/14-
065.html.

Ravi Teja Mullapudi, Andrew Adams, Dillon
Sharlet, Jonathan Ragan-Kelley, and Kayvon Fa-
tahalian. Automatically Scheduling Halide Im-
age Processing Pipelines. ACM Transactions on
Graphics, 35(4):83:1-83:11, July 2016.

Ravi Teja Mullapudi, Vinay Vasista, and Uday
Bondhugula. PolyMage: Automatic Optimization
for Image Processing Pipelines. In Proceedings of
the Twentieth International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, ASPLOS 15, pages 429-443.
ACM, 2015. event-place: Istanbul, Turkey.

Mike P. Papazoglou and Willem-Jan Heuvel. Ser-
vice Oriented Architectures: Approaches, Tech-
nologies and Research Issues. The VLDB Journal,
16(3):389-415, 2007.

Chris Peltz. Web Services Orchestration and
Choreography. Computer, 36(10):46-52, October
2003.

Pietro Perona and Jitendra Malik. Scale-space
and Edge Detection using Anisotropic Diffusion.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 12(7):629—-639, 1990.

Alex Poms, Will Crichton, Pat Hanrahan, and
Kayvon Fatahalian. Scanner: Efficient video anal-
ysis at scale. ACM Trans. Graph., 37(4), July
2018.

Jing Pu, Steven Bell, Xuan Yang, Jeff Setter,
Stephen Richardson, Jonathan Ragan-Kelley, and
Mark Horowitz. Programming Heterogeneous
Systems from an Image Processing DSL. ACM
Trans. Archit. Code Optim., 14(3):26:1-26:25,
2017.

Ricardo Queirés and Alberto Simdes. SOS -
Simple Orchestration of Services. In Ricardo
Queirés, Mario Pinto, Alberto Simdes, José Paulo
Leal, and Maria Jodo Varanda, editors, 6th Sympo-
sium on Languages, Applications and Technolo-
gies (SLATE 2017), volume 56 of OpenAccess
Series in Informatics (OASIcs), pages 13:1-13:8,
Dagstuhl, Germany, 2017. Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik.

Jonathan Ragan-Kelley, Connelly Barnes, An-
drew Adams, Sylvain Paris, FrA©do Durand,
and Saman Amarasinghe. Halide: A Language
and Compiler for Optimizing Parallelism, Lo-
cality, and Recomputation in Image Processing

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

(38]

Pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 13, pages
519-530. ACM, 2013. event-place: Seattle,
Washington, USA.

Mahesh Ravishankar, Justin Holewinski, and
Vinod Grover. Forma: A DSL for Image Pro-
cessing Applications to Target GPUs and Multi-
core CPUs. In Proceedings of the 8th Workshop
on General Purpose Processing Using GPUs,
GPGPU-8, pages 109-120. ACM, 2015. event-
place: San Francisco, CA, USA.

Mehrzad Samadi, Davoud Anoushe Jamshidi,
Janghaeng Lee, and Scott Mahlke. Paraprox:
Pattern-based Approximation for Data Parallel
Applications. In Proceedings of the 19th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS 14, pages 35-50. ACM, 2014.

Mehrzad Samadi, Janghaeng Lee, D. Anoushe
Jamshidi, Amir Hormati, and Scott Mahlke.
SAGE: Self-tuning Approximation for Graphics
Engines. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microar-
chitecture, pages 13-24. ACM, 2013.

Amir Semmo, Daniel Limberger, Jan Eric Kypri-
anidis, and Jiirgen Dollner. Image Stylization
by Interactive Oil Paint Filtering. Computers &
Graphics, 55:157-171, 2016.

Carlo Tomasi and Roberto Manduchi. Bilat-
eral Filtering for Gray and Color Images. In

Proc. International Conference on Computer Vi-
sion (ICCV), pages 839-846. IEEE, 1998.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla,
Karthik Ramasamy, Jignesh M. Patel, Sanjeev
Kulkarni, Jason Jackson, Krishna Gade, Maosong
Fu, Jake Donham, Nikunj Bhagat, Sailesh Mit-
tal, and Dmitriy Ryaboy. Storm@twitter. In Pro-
ceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD
’14, pages 147-156. ACM. event-place: Snow-
bird, Utah, USA.

Mircea-Florin Vaida, Valeriu Todica, and Mar-
cel Cremene. Service oriented Architecture for
Medical Image Processing. International Jour-
nal of Computer Assisted Radiology and Surgery,
3(3):363-369, 2008.

Joachim Weickert. Anisotropic Diffusion in Image
Processing, volume 1. Teubner Stuttgart, 1998.

Robert P. Winkler and Chris Schlesiger. Image
Processing REST Web Services. Technical Report
ARL-TR-6393, Army Research Laboraty, Adel-
phi, MD 20783-119, 2013.

Holger Winnemoller, Sven C. Olsen, and Bruce

(39]

[40]

[41]

[42]

[43]

[44]

Gooch. Real-Time Video Abstraction. ACM
Transactions on Graphics, 25(3):1221-1226,
2006.

M. Wiirsch, R. Ingold, and M. Liwicki. SDK

Reinvented: Document Image Analysis Methods
as RESTful Web Services. In 2016 12th IAPR
Workshop on Document Analysis Systems (DAS),
pages 90-95, 2016.

Marcel Wiirsch, Rolf Ingold, and Marcus Liwicki.
DivaServices - A RESTful web service for Docu-
ment Image Analysis methods. Digital Scholar-
ship in the Humanities, 32(1):1150-i156, 2017.
Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai,
Subrata Mitra, Sasa Misailovic, and Saurabh
Bagchi. VideoChef: Efficient Approximation
for Streaming Video Processing Pipelines. In
2018 {USENIX} Annual Technical Conference
({USENIX} {ATC} 18), pages 43-56, 2018.

Xiaoxia Yang. Remotely Sensed Image Process-
ing Service Automatic Composition. State Key
Laboratory of Information Engineering in Survey-
ing, Mapping and Remote Sensing, Wuhan Uni-
versity, 2009.

Rong Yuan, Ming Luo, Zhi Sun, Shuyue Shi, Peng
Xiao, and Qingguo Xie. Rayplus: a web-based
platform for medical image processing. J. Digital
Imaging, 30(2):197-203, 2017.

Matei Zaharia, Tathagata Das, Haoyuan Li, Scott
Shenker, and Ion Stoica. Discretized streams:
An efficient and fault-tolerant model for stream
processing on large clusters. In Proceedings
of the 4th USENIX Conference on Hot Topics
in Cloud Ccomputing, HotCloud 2012, page 10,
USA, 2012. USENIX Association.

