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Abstract
Large virtual 3D scenes play a major role in growing number of
applications, systems, and technologies to effectively communicate
complex spatial information. Their web-based provision, in par-
ticular on mobile devices, represents a key challenge for system
and application development. In contrast to approaches based on
streaming 3D scene data to clients, our approach splits 3D render-
ing into two processes: A server process is responsible for real-
time rendering of virtual panoramas, represented by G-buffer cube
maps, for a requested camera setting. The client reconstruction pro-
cess uses these cube maps to reconstruct the 3D scene and allows
users to operate on and interact with that representation. The key
properties of this approach include that (a) the complexity of trans-
mitted data not depend on the 3D scene’s complexity; (b) 3D ren-
dering can take place within a controlled and a-priori known server
environment; (c) crucial 3D model data never leaves the server en-
vironment; and (d) the clients can flexibly extend the 3D cube map
viewer by adding both local 3D models and specialized 3D opera-
tions.
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1 Introduction
Large virtual 3D scenes are essential to systems, applications, and
technologies. In general, these models represent a complex arti-
fact or environment and allow users to visualize, explore, analyze,
edit, and manage its components, i.e., they serve as tools to effec-
tively communicate spatial information. With the rapidly growing
demand for web-based and mobile applications, it becomes crucial
for system and application developers to provide web-based, inter-
active access to large, virtual 3D scenes.
One fundamental challenge represents provision and delivery of 3D
contents across networks. 3D Models are constantly getting more
complex since they improve in terms of detail and realism. Al-
though acceleration and compression techniques can reduce the 3D
data volume, large-scale models are difficult to transfer and provide
instantaneously for mobile devices. Another fundamental challenge
is concerned with the complexity of 3D rendering algorithms. Even
if we assume that 3D graphics capabilities of mobile devices will
rapidly grow and, therefore, will be able to cope with complex 3D
rendering tasks, complex 3D graphics systems are difficult to adapt
to and deploy on mobile devices, are difficult to test and maintain,
and lead to high energy consumption during their operation [Huang
et al. 2009]. For that reason, we focus on a server-client communi-
cation that is independent from the 3D scene complexity and sup-
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Figure 1: Service-based rendering of a large 3D city model.

ports interactive and robust 3D visualization on the clients.
A straightforward technical approach consists of streaming 3D
scene data to clients that are responsible for managing and render-
ing the 3D scene data. The inherent limitations include that both
data transmission and rendering performance directly depend on
the 3D scene’s complexity and the 3D graphics capabilities of the
mobile device. Our approach uses a different strategy that relies
on server-based 3D scene rendering and client-based 3D scene re-
construction based on virtual panoramas, technically represented
by G-buffer cube maps (Fig. 2). This way, we can avoid streaming
3D scene data to clients and, therefore, decouple 3D scene com-
plexity from data transmission complexity. In addition, the server
can use advanced 3D rendering technology, while only moderate
3D graphics capabilities on the clients are required.
The server-based 3D rendering process is responsible for real-time
rendering of large 3D scenes, generating G-buffer cube maps for
a given camera setting; a G-buffer [Akenine-Möller et al. 2008]
stores, e.g., RGB, depth, normal, and object-id data (Fig. 3). The
G-buffer cube maps are streamed to the clients as texture data. The
clients ”reconstruct” the 3D scene based on image-based rendering
using these cube maps. The interactive viewer autonomously oper-
ates on a local cube map cache and, therefore, allows for a stable
and robust client-side user interaction.
The approach for server-based 3D rendering of large 3D scenes
is characterized as follows: (1) The complexity of G-buffer cube
maps, which are transmitted between server and client, is indepen-
dent from the 3D scene’s complexity. (2) 3D rendering takes place
within a controlled server environment. In particular, known and
tested 3D graphics hardware facilitates the implementation of ad-
vanced 3D rendering techniques (e.g., multi-pass rendering, shader

Figure 2: Distributed 3D rendering schema.



Figure 3: G-buffer cube map. Left: Schema showing three of six
cube map sides; right: four example G-buffers.

programming). (3) The service interface of the 3D Server is based
on the evolving Web View Service standard proposa [Hagedorn
2010] for 3D portrayal of the in the Open Geospatial Consortium
(OGC) in order to provide a reusable, interoperable 3D rendering
server. (4) Web-based, interactive usage is provided, while the orig-
inal 3D contents are kept protected: 3D scene data is used by the
server, but never leaves the server environment. (5) The clients can
render and integrate own, e.g., locally stored or streamed, 3D mod-
els as depth information is provided by the G-buffer cube map.

In a case study, we applied our prototypical implementation to
disseminate and interactively visualize large-scale virtual 3D city
models. We show the potentials of our approach by an iPhone/iPad
app that allows users to freely navigate through and interact with
these models.

2 Related Work

Many software architectures, systems, and frameworks for remote
3D visualization are based on streaming image and video contents,
e.g., streaming frame sequences based on MPEG [Lamberti and
Sanna 2007]; Paravati et al. [Paravati et al. ] introduce a scalable
architecture for the delivery of shared 3D visualizations to hetero-
geneous mobile and desktop devices based on sharing a common
view generated by a 3D rendering server. Our approach is based on
delivering virtual panoramas instead of frame sequences and takes
advantage of similar load balancing mechanisms. Another main
category of solutions is based on streaming 3D scene data (e.g., en-
coded by X3D, VRML) to clients that locally perform 3D rendering
(e.g., GoogleEarth, Bing Maps 3D). A hybrid variant introduced by
[Koller et al. 2004] uses a 3D client visualizing a low-resolution 3D
model version, which is refined by a high-resolution view generated
by the server; this way, the original 3D contents are kept protected.
In contrast, we focus on an explicit separation of 3D model data
(server) and derived image-based representations (client).

For large 3D scenes, a multitude of real-time rendering tech-
niques exist such as out-of-core rendering (OOC) [Gobbetti et al.
2008]. Complementary, image-based modeling and render-
ing (IBMR) [Shum et al. 2007] offers techniques for remote 3D
rendering of complex scenes, for instance, client-side warping of
color and depth images retrieved from a remote server [Chang and
Ger 2002]. For it, the depth mesh of a view is decomposed accord-
ing to its depth profile into a small set of textured polygons; the
2.5D representation is used by the 3D client and facilitating to ren-
der ”plausibly distorted views of the scene at high frame rates as
long as the viewing position does not change too much before the
next frame arrives from the server” [Li et al. 2011]. Our approach
builds upon IBMR techniques and extends these to cube maps.

3 Software Architecture
In the proposed software architecture (Fig. 4), we distinguish be-
tween the following processes: a) The server-side 3D rendering
generates G-buffer cube maps of 3D scenes for client requests and
handles the streaming of the results. b) The client-side 3D render-
ing process receives requested G-buffer cube maps, reconstructs the
3D scene based on the cube map information, and interactively vi-
sualizes the virtual panorama. The client can additionally provide
application-specific 3D functionality, using the cube map as base
scene.

3.1 3D Server

The 3D server, technically, performs three parallel processes that
communicate by shared data repositories. The 3D request process
manages requests for G-buffer cube maps sent by the clients. It can
sort these requests according to their priority, and dispatch these re-
quests to available 3D rendering processes that is responsible for
image synthesis and scene management. It accesses the 3D scene
database, constructs and optimizes the corresponding scene graph,
and implements the core 3D rendering algorithms. As intermedi-
ate output, this process generates G-buffer cube maps, stored as 2D
texture data. These outputs can be further processed by another
image-based rendering stage, for instance, to stylize or finish these
renderings. For the post-processing, a dedicated image processing
system can be used or it can form part of the core 3D rendering pro-
cess. One reason to separate core 3D rendering from cube map post-
processing is that this allows us to deploy the post-processing on a
different server, i.e., it improves the scalability of the architecture.
Finally, a post-processed cube map is stored in the cube map server
repository. As the final stage of request processing, the streaming
process is responsible for monitoring the cube map repository, i.e.,
compression and streaming of finalized cube maps.

3.2 3D Client

The 3D client application provides a graphical user interface and is
responsible for interactive display of and user interaction with the
reconstructed 3D scene, including the request management. There-
fore, G-buffer cube maps generated by the 3D Server are trans-
mitted to the client that manages these textures using a local cube
map cache. To render a reconstructed scene, the client builds a lo-
cal scene graph that primarily consists of cube map geometry and
textures. The client implementation can be based on, for example,
OpenGL ES or WebGL. Generally, this functionality can be imple-
mented by fundamental geometry and texturing operations as pro-
vided by OpenGL ES. In particular, no advanced shader capabilities

Figure 4: Architecture of the service-based 3D rendering system.



are needed.
The client application implements the management of 3D user in-
teraction. It takes care of multi-touch inputs that occur on top of the
graphics canvas. It interprets these events in terms of camera move-
ments, which are delegated to the reconstructed scene rendering
process. As part of this functionality, it is responsible for requesting
new cube maps if the camera settings significantly change. The ses-
sion management handles the connection between client and server.
According to the needs of a specific application scenario, this can
include individual profiles and settings on a per-user basis. The
graphical user interface for a client application is implemented as
a device and operation-system specific module, providing a native
user experience for the designed target platform (e.g., iPhone App,
Android App, or WebGL-based script).

4 G-Buffer Cube Maps

G-buffer cube maps are the core elements used to discretize com-
plex 3D scenes for streaming. They combine two separate concepts,
cube maps and G-buffers.
Cube mapping represents an efficient, real-time technique for envi-
ronment mapping [Akenine-Möller et al. 2008]. In a sense, a cube
map denotes a virtual cube-shaped panorama, taken around the
cube center. The cube map can be encoded by 2D textures of same
size and format, typically stored into an array texture. The gener-
ation process is accelerated by a number of extension in OpenGL
as array textures can be bound to render targets of framebuffer ob-
jects. A cube map can be generated in a single rendering pass, i.e.,
the scene is simultaneously rendered into the six different rendering
targets, provided that scene management, culling, and acceleration
techniques are adapted; otherwise six rendering passes are required.
The G-buffer represents a key concept and technique for real-time
enabled implementation of image-based rendering algorithms. Be-
side standard G-Buffer types such as color, depth, normal or stencil
buffers, we use G-Buffers to store other 3D scene related informa-
tion, such as world coordinates, surface parameterization, object
identifiers, or application-specific attributes (i.e., thematic data), on
a per-fragment basis — these values can be derived using adapted
shader programs during the rendering process. Further, a funda-
mental benefit of the G-buffer cube maps is that both the 3D server
(in the post-processing step) as well as the 3D client (as part of
its rendering process) can apply image-based rendering techniques,
such as object or silhouettes highlighting , deferred lighting, or non-
photorealistic rendering, to enhance depictions.
As the sides of a cube map encompass the whole scene for the given
view point, the G-buffer cube map represents a discretized, omni-
directional approximation of the 3D scene that can be efficiently
stored by fixed-size OpenGL array textures. The resolution and the
selection of G-buffer types depends on the client requirements; e.g.,
a minimal version requires RGB and depth layers. To support in-
teractive client-side 3D object selection, object-id and object-type
layers need to be included.
To reduce streaming bandwidth and volume, the array textures can
be compressed (e.g., JPEG). The optimal choice of a compression
technique also depends on the numeric type and precision require-
ments of a layer. For example, the object-id layer needs to be loss-
less compressed because value interpolation is not feasible.
As the 3D client needs to process the streamed data as textures,
texture compression formats offer the advantage that client-side in-
memory decompression is not required provided that server and
client agree on the available hardware support. Unfortunately, com-
pressed texture formats (e.g., ETC, S3TC) are currently not univer-
sally supported; recent advances in OpenGL and OpenGL ES sug-
gest to apply RGTC or BPTC variants as well as vendor-specific
formats (e.g., PVRTC on iPhone).

5 Server-Side 3D Rendering
The 3D server encapsulates the generation of G-buffer cube maps.
A cube map request, sent by clients, is defined by (1) the virtual
camera specification, (2) a list of requested image layers and their
encodings, (3) a list of requested model layers to be rendered, and
(4) the styling and post-processing specifications.
To reduce network communication overhead and to allow for inter-
nal server-side optimization, a client can request several cube maps
each consisting of several image layers with one operation call. The
WVS Endpoint parses a client request according to the WVS specifi-
cation [Hagedorn 2010] and calls the appropriate operation handler,
passes it to the Render Master.

5.1 Parallel Processing of Requests

The Render Master process distributes the workload related to in-
coming requests to available processing resources, denoted by Ren-
der Workers. The Render Master and Web Server perform process
synchronization to manage shared resources. The major goals in-
clude to optimize resource utilization, maximize throughput, and
minimize response times.
The Render Master queues WVS GetView requests, processes them
and assigns Tasks to free Render Workers. When processing a re-
quest, it is split into a set of Tasks; each Render Worker can process
exactly one task at a time. Tasks can be split into subtasks based on
sort-first decomposition For it, the view plane is split into a set of
2D tiles.
A Render Worker has its own thread of execution and an associated
GPU for processing tasks. Either it executes on the same CPU as the
Render Master, on a different CPU on the same computer, or a dif-
ferent computer connected via a network. Each requested view con-
sists of one or more G-buffer layer. Tasks are organized in a way so
that post processing view is done on the same worker that generated
the view. This has several advantages: First, not only the rendering
and G-buffer generation but also post-processing can execute con-
currently on workers. In addition, generated G-buffers still reside
in GPU memory and can be used in-place for post-processing. Fi-
nally, temporary G-buffers created only for post-processing effects
never have to be transferred from GPU memory.
The creation of G-buffer layers of a single cube map side is never
distributed to different tasks as multiple G-buffer layers for a given
view can be most efficiently created on the same worker in one
rendering pass using multiple rendering targets in one OpenGL
context. Furthermore, since OOC rendering techniques must be
applied, the data required for generating a G-buffer layer must be
transferred from external storage prior to rendering. Last, but not
least, post-processing may want to use G-buffer layers, directly
available to the GPU.

6 3D Scene Reconstruction
The 3D client basically displays the textured cube map geometry,
with the initial camera view point in the cube center. The mini-
mal graphics requirements are low: the six-sided cube requires 12
triangles and corresponding six 2D textures (e.g., 512× 512 texel).
The user navigation and interaction operates always on the most
recent G-buffer cube map received. If the camera is moved or
zoomed, a request for a new cube map is filed, and the current cube
map is marked as outdated and an updated one is fetched from the
server. Nevertheless, navigation and interaction can operate on the
current cube map, independently of the provision of the requested
new cube map. The artifacts that tend to occur include insufficient
image resolution (i.e., blurring effects) and incorrect 3D object vis-
ibility.
The client-side 3D rendering process can be enhanced by various
image-based rendering techniques. Most importantly, a cube map’s



depth layer can be alternatively encoded as a depth mesh [Pajarola
et al. 2004], which represents a triangulation of the depth image.
This way, depth meshes are ”directly enabling fast intermediate-
view rendering” [Farin et al. 2007], using the depth mesh instead
of the cube map geometry; efficient algorithm for compression and
meshing exist [Sarkis et al. 2010]. The client switches to a depth
mesh scene representation as soon as the position of the virtual
camera changes. However, if a depth mesh is not displayed from
the reference view, usually holes or rubber-sheets become visible,
which can be avoided by requesting and rendering additional depth
meshes at the cost of performance and utilized network bandwidth.

7 Case Study

We have built the 3D server system based on C++, OpenGL and
OpenSceneGraph; clients have been developed for iPhone, iPad,
and WebGL-enabled browsers. As example, we have used the
large-scale, virtual 3D city model of Berlin (Fig. 1) covering ap-
prox. 890 km2 and including over 550.000 buildings (350 build-
ings modeled in high detail), with nearly 4.000.000 single 2D fa-
cade textures. Further geo-referenced map and feature data can be
accessed on demand by WMS or WFS (e.g., topographic map or
public transport networks). There are two major application sce-
narios, both related to city information and marketing: a) In face-
to-face meetings, representatives of various departments want to
use their tablets to interactively explore and analyze using the vir-
tual 3D city model. Typically, they focus on the specific interests of
customers that are present, i.e., they have to have interactive, direct
access according to the course of the conversation and b) Presen-
tations of selected areas of interests, for example, on exhibitions
or trade fairs, are used to communicate potentials, or concepts of
future real-estate projects.

In our prototype implementation, we integrated a specialized vari-
ant to include 2D and 3D scene data on demand. For it, the vir-
tual 3D city model is enhanced and can be reconfigured by differ-
ent geodata such as topographic maps, standard land value maps,
transportation and infrastructure networks, architectural models,
etc. The data can be accessed, e.g., by OGC WMS and WFS, which
are accessed via the 3D server process. The activation and config-
uration, however, can be controlled by the session management of
the 3D client.

To measure the speed of the 3D rendering process and required
bandwidth, we have set up a service consumer (running on a PC)
to stress the 3D rendering process. The experiment was performed
on a dedicated server system (Ubuntu, 3.4GHz quad core, 16 GB
RAM, GeForce GTX 560 Ti) in an intranet environment. The ser-
vice consumer received images at an average rate of 4.6 G-buffer
cube maps per second for an image resolution of 512x512 and of 2.1
1024x1024. The memory size of cube maps while simulating navi-
gating through the 3D scene (resolution 512x512) required on aver-
age 78.95 kbytes for color (JPEG), 199.63 kbytes for depth (PNG),
and 9.56 kbytes for object-ids (PNG).

The implemented iOS application running on an iPad2 worked con-
stantly at interactive frame rates (>= 60 fps) during camera rota-
tion (i.e., pure rendering of the cube map), flight-mode navigation
(using regular depth mesh triangulation). ,and walk-mode naviga-
tion (rendering up to 12 depth meshes). It is obvious that today’s
mobile devices with 3D graphics support are able to render the G-
buffer cube maps in real-time; there is even a large potential for
advanced client-side image-based rendering techniques.

The service-oriented 3D rendering approach could significantly re-
duce cost and time intensive efforts, resulting from, e.g., physically
moving the former 3D desktop system (3D and storage hardware)
to remote locations. For example, instead of using a single view on
a large screen, participants can have specific views on their tablets.

8 Conclusions and Future Work
Using our approach, the complexity of 3D scene data and transmit-
ted data is decoupled. Client GPU, memory, and energy resources
are efficiently used by G-buffer cube map processing. The multiple
layers of the G-buffer cube maps allow clients to implement ad-
vanced 3D operations and integrate additional 3D models. The ren-
dering of the 3D scene is in the scope of the server and, therefore,
can be implemented for a-priori known GPU environments, facili-
tating a cross-platform, interoperable use of the rendering service.
3D model data, in addition, is fully kept on the server, thus pro-
viding a high degree of protection for 3D contents. The interactive
client display operates in robust way under unstable and network
throughput fluctuations using a cube map cache. The case study on
large virtual 3D city models indicates that users realize the client
application as ”true 3D” application, and they get rapidly familiar
with the refining delays while new, more appropriate cube maps are
requested, above all, because the interaction never gets stuck.
In future work, we will investigate how we can take advantage of
user navigation prediction to optimize the cube map request man-
agement. Furthermore, the client 3D rendering demands for spe-
cialized image-based techniques to use the potential of multiple lay-
ers encoded by G-buffer cube maps. Currently, the concepts of this
approach have been filed into an ongoing standardization process
of the OGC.

References
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