
Johannes Gosda

AUTOSAR

Communication Stack

March 31, 2009

V

Summary. The drastically increasing of complexity within the automotive domain
due to an increasin number of embedded computing units per car leads to the need
of a framework for accomplishing this high complexity. Therefore AUTOSAR was
developed. The AUTOSAR framework provides specifications for communication
modules, which are described in this document. The focus lies on the AUTOSAR
Communication Stack and its Basic Software Modules associated with the com-
munication. The different kinds of signals traversing the communication stack up
and down are introduced as well as the different softwarelayers they belong to, like
Communication Services Layer, Communication Hardware Abstaction Layer and
Communication Drivers Layer.

Contents

1 Introduction . 1
1.1 Scope of this Document . 1
1.2 AUTOSAR . 2

1.2.1 AUTOSAR Concept . 2
1.2.2 ECU Software Architecture . 3

1.3 Implementation and Simulation . 5

2 Signal, PDU and SDU . 7
2.1 Signal . 7
2.2 Signal Group . 7
2.3 PDUs . 8

2.3.1 PDU. 8
2.3.2 SDU . 8
2.3.3 PCI . 9
2.3.4 DLC . 9
2.3.5 PDU Naming Conventions . 9
2.3.6 I-PDU Group . 9

2.4 I-PDU Multiplexing . 10

3 Basic Software Communication Modules 13
3.1 Communication Stack Modules . 13
3.2 Communication Services . 14

3.2.1 AUTOSAR COM . 14
3.2.2 PDU Router . 14
3.2.3 IPDU Multiplexer (IPduM) . 16
3.2.4 Transport Layer (TP) . 17
3.2.5 Communication Manager (ComM) 18
3.2.6 CAN/FlexRay/LIN Bus State Manager 18
3.2.7 Network Management Modules (NM) 18
3.2.8 Diagnostic Communication Manager (DCM) 19

3.3 Communication Hardware Abstraction . 19

VIII Contents

3.3.1 CAN Interface (CanIf) . 19
3.3.2 FlexRay Interface . 20
3.3.3 LIN Interface . 20

3.4 Communication Drivers . 20
3.4.1 CAN Driver . 20
3.4.2 FlexRay Driver . 21
3.4.3 LIN Driver . 21

4 Communication . 23
4.1 Application Layer and RTE . 23
4.2 Transmission Modes and Transmission Mode Selection 24
4.3 Communication Interaction . 24

References . 27

1

Introduction

The automotive electronics market is exposed to an rising demand from cus-
tomers in the domains of comfort, safety and fuel efficiency. The basic func-
tionality within a car is solved by hardware, while software handles the multi-
ple extra functions. Because of hardware devices alone can not satisfy the con-
sumers needs and wishes, the Original Equipment Manufacturers (OEMs) are
exploring new markets with new software applications and features. Therefore
a competition in mounting software on the available hardware starded and led
to a higher complexity of solutions. Because of the automotive electronics has
evolved from component level solutions to system level architecture, testing
and maintenance became more and more difficult. [1].
The drastically increasing of complexity within cars due to an increasing num-
ber of embedded computing units (ECUs) per car [2] leads the automotive
industry to develop methods to cope with this complexity. OEMs are looking
for solutions at an application level while semiconductor suppliers started to
work together with software developers because of high price pressures and
the possibility of providing complete solutions to OEMs.

1.1 Scope of this Document

This document shall not explain the autosar concepts in detail. The knowledge
about the concepts and the rough structure of the AUTOSAR architecture
is assumed to be present and only a short introduction to the AUTOSAR
concept is given in the beginning of this paper after introducing the moti-
vation for the AUTOSAR framework. Then the differences between signals,
signal groups and PDUs, which are all necessary for communication, are ex-
plained. After this, the focus will be on the Basic Software Communication
Modules. The AUTOSAR COM, PDU Router and IPDU Multiplexer are
described more detailed than the other BSW modules. The Network Manage-
ment is only short introduced. At the end there is a more detailed description
of the transmission of signals and an explanation of the determinition of the

2 1 Introduction

transmission modes of PDUs. Complex device drivers are not scope of this
document, even if they are associated with communication. Within this paper
parts of the Basic Software other than Communication Services, Communi-
cation Hardware Abstraction and Communication Drivers are neglected.

1.2 AUTOSAR

The partnership of automotive manufacturers and suppliers develop and es-
tablish together the AUTomotive Open System ARchitecture (AUTOSAR).
AUTOSAR is a de-facto open industry standard ror automative E/E architec-
tures. The automotive engineering environments change mentioned in chapter
1 makes the members of the automotive industry developing solutions to man-
age the increasing E/E complexity associated with the growth in functional
scope, to improve flexibility, scalability, quality and reliability of their systems
and to detect errors in early design phases [3].
AUTOSAR shall provide an opportunity for seamless tool chain, an enhance-
ment of software quality, the possibility of developers to concentrate on func-
tions with competitive value. More detailed benefits of the AUTOSAR frame-
work can be found in [3] and [4].

1.2.1 AUTOSAR Concept

The basic approach of AUTOSAR is providing a framework for developing
application components independet from the hardware. Applications shall be
implemented in form of AUTOSAR Software Components (SWC) which en-
capsulate this application running on the AUTOSAR infrastructure. A SWC
has well-defined interfaces, which are described and standardized within AU-
TOSAR. These components are connected via the Virtual Functional Bus
(VFB), who provides all communication mechanisms on an abstract and tech-
nology independet level. With the VFB AUTOSAR SWCs will be virtual inte-
grated when the connections between each other are defined. This component
view alleviates the development of software application, because developers
need not to know the specific hardware. This concept will is described in more
detail in [5].
From the hardware view there still exist the different ECUs wich are intercon-
nected with different bus systems. Each ECU may have a different hardware-
layout like different processors or communication bus systems and additionally
different SWCs running on. Therfor AUTOSAR supplies different abstraction
layers to provide a common upper interface. Figure 1.1 envisibles the basic
AUTOSAR approach.
The AUTSOSAR SWCs interconnected via the VFB have to be mapped to the
different ECUs. Because of the fact that AUTOSAR SWCs are programmed
against the VFB and are using specified interfaces [6] these mapping can be
conducted without changing the SWCs. The Runtime Environment (RTE) is

1.2 AUTOSAR 3

Fig. 1.1. Basic AUTOSAR approch with component view (up) and ECU software
architechture and hardware topology (down) [3]

the, with tool support generated, implementation of the VFB from the com-
penent’s view. AUTOSAR offers a methodology described in [7] for creating
the resulting RTE and further software running on an ECU.

1.2.2 ECU Software Architecture

AUTOSAR devides the software situated on an ECU into different layers
which are shown in figure 1.2. The most top layer is the application layer that
contains application software components, actuator software components and
sensor software components. These components communicate via AUTOSAR
interfaces [6] and the AUTOSAR RTE with themselfs. Under the RTE and
above the ECU hardware is located the AUTOSAR Basic Software. The Basic
Software is the standardized software providing necessary services for running
the functional part of the software.
The Basic Software (BSW) conains services for e.g. diagnostic protocols and
memory managemant. Communication, I/O management and network man-
agement are part of the BSW as well as an Operating System. The BSW
can be divided monolithically into the Services Layer, Hardware Abstraction
Layer and Microcontroller Abstraction Layer (MCAL). The ECU abstraction
decouples higher-level software from all underlying hardware dependencies by
providing a software interface to the electrical values of any specific ECU.
The MCAL ensures a standard interface to the BSW modules by managing
the microcontroller peripherals and by providing microcontroller independent

4 1 Introduction

Fig. 1.2. Overview of Software Layers [8]

values. As visible in figure 1.3 these layers themselfs can be devided by their
purpose.

Fig. 1.3. Overview of Software Layers in detail [8]

1.3 Implementation and Simulation 5

1.3 Implementation and Simulation

Different tools already support modelling AUTOSAR systems and RTE code
generation. Sebastian Wätzoldt shows in his paper [9] how AUTOSAR systems
can be modeled within dSPACE SystemDesk. He displays the modelling of
components including integrating runnables, integrating the hardware topol-
ogy of the system, the mapping of the network communication and the RTE
and Operation System (OS) generation.
The paper [10] deals with the simulation of automotive systems within the
different development process stages and points which kind of simulation is
possible at that stages. There is also described which tools can be used to sim-
ulate AUTOSAR architectures and a short indroduction to the use of dSPACE
SystemDesk and TargetLink for simulating these architectures is given.

2

Signal, PDU and SDU

2.1 Signal

An AUTOSAR signal is similar to a signal in AUTOSAR COM but not always
the same (the transformation may change the syntax of the signal for complex
data tpyes) and an AUTOSAR COM signal is the same as a message in OSEK
COM [11]. The RTE performs the transformation from an AUTOSAR Signal
to a signal in COM and an AUTOSAR signal is carried by one or more signals
in COM [12].

2.2 Signal Group

In AUTOSAR there can be used so called complex data types. Inside a com-
plex data type there are one or more data elements and to ensure data con-
sistency a complex data type must be treated as an atomic unit [13]. A set of
signals that must always be kept together in a common I-PDU is presented
by a signal group. With a signal group can be guaranteed that AUTOSAR
composite data types are transfered atomicly. Every signal can belong to at
most one signal group and a signal group can belong to at most one I-PDU
but signal groups could contain no signals (then they are empty). The signals
that belong to the signal group are contiguous. Which signals are grouped to
which signal group is assumed to be an input for the COM generation process
[12].
Update-bits supported by AUTOSAR COM are a mechanism which provides
for the receiver the identification whether the sender has updated the data in
this signal or signal group before sending. These Update-bits are not allowed
if direct/n-times transmission mode with n greater 1 is used.

8 2 Signal, PDU and SDU

2.3 PDUs

2.3.1 PDU

PDU is the abbreviation of Protocol Data Unit. It contains SDU and PCI.
Each PDU has a static PDU ID which is used to identify PDUs [14]. On
PDU transmission the upper layer sends its PDU to the lower layer, which
interprets this PDU as the SDU of its own PDU. This mapping depicts figure
2.1. Non-TP I-PDUs shall not exceed a length of 8 bytes. This ensures that
an I-PDU can be transmitted in a single CAN message [15].

Fig. 2.1. Packing of SDU into PDU over different layers [8]

2.3.2 SDU

SDU is the abbreviation of Service Data Unit and is a part of a PDU. The
SDU is the data passed by an upper layer with the request to transmit the
data. It is as well the data which is extracted after recaption by the lower
layer and passed to the upper layer [8].

2.3 PDUs 9

2.3.3 PCI

Protocol Control Information (PCI) is the information that is needed to pass
a SDU from one instance of a specific protocol layer to anonther instance. On
transmission side there is added the PCI by the protocol layer and removed
on receiving side. In a PCI is contained e.g. source and target information [8].

2.3.4 DLC

DLC means Data Length Code and is part of an L-PDU. The DLC describes
the length of the related SDU [16].

2.3.5 PDU Naming Conventions

PDUs can hold a layer specific prefix to distinguish the PDUs of the different
layers from each other. The PDUs are devided into I-PDUs, L-PDUs and N-
PDUs.
An I-PDU is used for the data exchange of the modules directly above the
PDU Router. These mudules are ATUOSAR COM and AUTOSAR DCM. The
Interaction Layer Protocol Data Unit (I-PDU) is assembled and disassebled in
AUTOSAR COM. It consists of one or more signals [12]. Every I-PDU must
belong to exactly one I-PDU group.
The maximum length of an I-PPDU depends of the maximum length of the L-
PDU of the underlying communication interface because the I-PDUs of COM
are passed via the PDU router directly to the communication interfaces. An
L-PDU is a Data Link Layer Protocol Data Unit which is assembled and
disassembled in AUTOSAR Hardware Abstraction layer. In AUTOSAR the
Data Link Layer is equivalent to the Communication Hardware Abstraction
and Microcontroller Abstraction Layer [13]. The L-PDU consists of Identifier,
DLC and data (L-SDU). The maximum length of a CAN and LIN L-PDU is
8 bytes and for FlexRay the maximum length of the L-PDU is 254 bytes.
An N-PDU is a PDU of the network layer and this denotation is used in the
AUTOSAR TP Layer.

2.3.6 I-PDU Group

An I-PDU group is a collection of I-PDUs in COM and contains zero or more I-
PDUs or I-PDU groups. But in can only either hold I-PDUs or I-PDU groups.
An I-PDU that is part of another I-PDU group can not contain another I-
PDU group so the I-PDU group hirarchy is limited to two (figure 2.2). No
I-PDU group can be included in more than one other I-PDU group and a
I-PDU group must not contain itself. A mixture of received I-PDUs and sent
I-PDUs in a single I-PDU group is not allowed. [12]
The number of I-PDU groups is limited to 32. I-PDU groups are stopped by
default. AUTOSAR COM provides routines for starting and stopping I-PDUs.

10 2 Signal, PDU and SDU

Fig. 2.2. Grouping of I-PDUs and I-PDU groups [13]

Stopping I-PDU groups shall disable the transmission of I-PDUs which belong
to the I-PDU group and only the Com TriggerTransmit function is processed
because this can not be prohibited by AUTOSAR COM. In an I-PDU group
containing I-PDU groups is started or stopped, the contained groups shall
also be started or stopped.

2.4 I-PDU Multiplexing

I-PDU multiplexing is performed by the IPduM (ch. 3.2.3) and means using
the same I-PDU ID transferred from the PDU-Router to the Communication
Hardware Abstraction Layer with more than one unique layout of this I-
PDU [17, p. 19f]. The IPduM always comines only two I-PDUs of COM to a
multiplexed I-PDU because in COM there is one COM I-PDU for the static
part and one COM I-PDU for each layout of the dynamic part of one IPduM I-
PDU. Within COM the static and the dynamic parts are treated as separated
I-PDUs with their own I-PDU IDs. Figure 2.3 shows the possible layout of a
multiplexed I-PDU.

2.4 I-PDU Multiplexing 11

Fig. 2.3. Possible layout of a multiplexed I-PDU [17]

3

Basic Software Communication Modules

3.1 Communication Stack Modules

Fig. 3.1. Communication Stack Modules and structure [14]

14 3 Basic Software Communication Modules

3.2 Communication Services

3.2.1 AUTOSAR COM

A main-feature of AUTOSAR COM is the provision of a signal oriented data
interface for the RTE and its single lower layer interfaces is the PDU Router.
COM controls the communication transmission which means e.g. starting and
stopping of I-PDU groups. It is sending signals congruent to the signals trans-
mission type (see also: ch. 4.2) specified in the VFB specification. Minimum
distances between transmission requests involving COM shall be guaranteed.
There is a filtering mechansims and different notification mechanisms for in-
coming signals. COM supports monitoring of receive signals to notice possible
signal timeouts. Initial values and update indications are provided as well as
endianness conversion or sign extension if necessary. AUTOSAR signals are
packed and unpacked by COM to I-PDUs to be transmitted and the received
signals are provided to the RTE. The signals or signal groups are routed from
received I-PDUs into I-PDUs to become transmitted by the AUTOSAR COM
module.
Gateway functionality on signal level aka signal-based gateway is provided by
the Signal Gateway, which is integral part of COM. The signal gateway pro-
vides forwarding signals and signal groups in a 1:n manner and the signal gate-
way provides mapping of signals or groups of signals (Complex Data Types)
initiated by a signal routing trigger. Signal routing trigger is generated by
COM core funtionality. Signal gateway uses packing/unpacking mechanisms
and timeout handling mechanisms of COM. If no signal routing functionality
is needed, the gateway should scale down to no size. The destination of a
signal or of a signal group is determined by using unique static names of the
signals and signal groups and by using a configuration table [13].
COM shall provide support for endiannes conversion of all integer types to
support the types boolean, uint8, uint16, uint32, sint8, sint16, sint32, uint8[n].
The conversion shall take place before notification detection on receiver side
[13].
If an I-PDU is received and shall be unpacked there are two different config-
urable signal indication modes [13]:

• Immediate: the signal indications / confirmations are performed in ”Com
RxIndication”

• Deferred: singal indication / confirmations are deferred for example to a
cyclic task

3.2.2 PDU Router

The PDU Router module must be instantiated in every AUTOSAR ECU.
Its main task is routing I-PDUs between the Communication Services and
Hardwareabstraction Layer modules. The parts PDU Router routing tables
and PDU Router Engine compose the PDU Router. The static routing tables

3.2 Communication Services 15

can be updated post-build time in the programming state of the ECU and
are describing the routing attributes for each PDU that shall be routed. The
PDU Router Engine is the actual code thats performs the routing while em-
bracing the routing tables. The supported communication is shown in figure
3.2. In addition to the routing algorithm the PDU Router Enginge provides a
minimum routing capability for routing specific PDUs without using the PDU
Router routing tables. This supports accessing the DCM for activation of the
ECU bootloader even when post-build time configurable PDU Router routing
tables are corrupted. The set of PDUs for the minimum routing capability
can not be changed after build-time [14].
There are three different classes of operations the PDU Router modules per-
forms, which are PDU reception receive I-PDU and send to upper layer, PDU
transmission (transmit I-PDU on request of an upper layer) and PDU gate-
way (receive and I-PDU from an lower layer and immediately send it via the
same or another lower layer module).
The PDU Router provides Gateway functionality on PDU level aka frame-
based Gateway. A special case is routing on-the-fly, which means that the
transfer of TP data is started although not the full TP data is yet buffered.
Therefore the gateway provides to the receifing TP module a smaller buffer
than the overall size of the data and when it is filled, the gateway starts
transmitting these data on the destination bus. The receiving TP module
gets another buffer in parallel to continue receiving the data.
In addition the PDU Router provides routing of PDUs between COM and
CAN/LIN/FlexRay interfaces and between DCM (see: 3.2.8) and TP (see:
3.2.4, 3.3.3) modules, and between the communication interface layers and
between TP modules [15]. Figure 3.2 depicts the different communication
traces including the communication between PDU Router and IPduM.
The routing operation of the PDU Router module does not modify the I-PDU
itself. The I-PDU is simply forwarded to the destination module. To allow the
drectly upper modules DCM and COM and the lower level TP modules and
communication interfaces to communicate with the PDU Router, it provides
an API for all these modules [14]. In addition an interface for the IPduM is
provided. The PDU Router supplies the Indication of incoming multiplexed I-
PDUs, a sending interface for outgoing I-PDUs and a confirmation of I-PDUs
which went out to the IPduM [17]. All these mentioned interfaces are con-
structed in that way, that the operations required to pass the data beween
the upper and lower layers are minimized.
The PDU Router is initiated by a PDU routing trigger which may be gener-
ated by the CAN, LIN, or FlexRay interfaces, the corresponding TP modules,
the service layers COM and DCM or IPduM. A multicast operartion is the
transmission of PDUs to a group of receivers [14].
The Routing Configuration comprehends configuration data that controls the
operation of the PDU Router and Signal Gateway and should be encapsulated
to allow updates. With the configuration data is defined which destination
each PDU of the PDU Router and each Signal of the signal gateway have

16 3 Basic Software Communication Modules

Fig. 3.2. Different possibilities for communication paths relating the PDU Router

[15]. The PDU Router determines the destination of a PDU by using this
static configuration table and the static PDU ID.
The routing layer is statically configurabele per ECU and its size is ECU
specific. If no gateway functionality is needed, the routing layer can be con-
figurated down to zero size.
The PDU Router is not responsible for network management data exchange
because this communication is separated from the PDU Router. It also is not
in authority for signal extraction or conversion mechanisms, data integrity
checking, modifying I-PDUs, PDU payload dependent routing decisions, rout-
ing between TP modules and communication interface modules.

3.2.3 IPDU Multiplexer (IPduM)

The AUTOSAR IPduM is situated within the Communication Services part
of AUTOSAR Basic Software next to the PDU Router (ch. 3.2.2) as can be
seen in figure 3.3. The IPduM is used for multiplexing of I-PDUs which is
currently known from CAN [18].
An multiplexed I-PDU is an I-PDU with more than one unique layout of its
SDU but therfor using the same PCI (see ch. 2.3 for details). The SDU is
containing a selector field for distinguishisng the different layouts of the mul-
tiplexed I-PDUS from each other. The selector field is a set of following bits

3.2 Communication Services 17

Fig. 3.3. IPduM and its surrounding modules [18]

and determine the layout of the multiplexed part of the I-PDU.
On sender side the I-PDU Multiplexer module receives appropriate I-PDUs
from COM (ch. 3.2.1), assembles them to new multiplexed I-PDUs and sends
the new I-PDU back to the PDU Router. Receiving these I-PDUs from COM
always implies the participation of the PDU Router because this is the sole
communication module interacting with the IPduM. On receiver side the IP-
duM interprets the content of multiplexed I-PDUs and sends the resulting
separated I-PDUs back to COM while taking into account the value of the
selector field.
The IPduM provides an interface for indication of incoming de-multiplexed
I-PDUs to the PDU Router, a sending interface for I-PDUs that have to be
multiplexed and a confirmation interface for transmitted I-PDUs [17].

3.2.4 Transport Layer (TP)

For each communication bus system there is a Transport Layer module within
the services layer except for LIN. The LIN TP is situated within the LIN IF.
It will only be dealt with the CAN TP because describing FlexRay TP and
LIN TP aswell whould exceed the scope of this document. These modules are
specified in [19] and [20].
The CanTp is needed to segment and reassemble CAN I-PDUs with a lenght
greater than 8 bytes. Its main tasks are controlling the data flow, detection of
errors in segmentation sessions, transmit cancellation, segmentation of data in
transmit direction and reassembling of data in receive direction. The CanTp
has an interface to the lower level CanIf and uses a single upper layer module,
the PDU Router. The CanTp module is able to deal with multiple connections,
with its maximum number specified, simultaneously [21]. Figure 3.4 shows the
interaction of the CanTP and its upper and lower layer.

18 3 Basic Software Communication Modules

Fig. 3.4. CAN Transport Layer interactions [21]

3.2.5 Communication Manager (ComM)

The ComM is a resource manager which encapsulates the control of the under-
lying communication services. It controls the basic software modules related to
communication and coordinates the bus communication access requests. The
ComM shall simplify the usage of the bus communication stack for the user. It
shall offer an API for disabling the sending of signals, shall be able to controll
more than one communication bus channel of an ECU and shall simplify the
resource management by allocating all resources necessary for the requested
communication mode [22]. The COM Manager (ComM) controls the starting
and stopping of sending and receiving I-PDUs via AUTOSAR COM. The NM
is used by the ComM to synchronize the control of communication capabilities
across the network.

3.2.6 CAN/FlexRay/LIN Bus State Manager

The actual bus states are controlled by the corresponding Bus State Manager.
The actural states of the bus corresponds to a communication mode of the
ComM. The ComM requests a specific communication mode from the state
manager and the state manager shall map the communication mode to a bus
state [22].
E.g. the comM uses the API of the CanSM to request communication modes
of CAN neworks. The CanSM uses the API of COM to controll CAN related
PDU groups and it communicates with the CanIf to conrol the operating
modes of the CAN controllers and to get notified by the CanIf about peripheral
events [23].

3.2.7 Network Management Modules (NM)

The Generic Nework Management Interface adapts the ComM to the bus
specific network management modules. It provides an inteface to the ComM

3.3 Communication Hardware Abstraction 19

and uses services of the network management modules. The bus specific net-
work management modules are CAN NM, FlexRay NM and LIN NM. The
AUTOSAR NM Interface can only be applied to communication systems that
support broadcast communication and bus-sleep mode [24]. For network man-
agement data exchange the PDU Router module is bypassed.

3.2.8 Diagnostic Communication Manager (DCM)

The main purpose of the DCM is providing a common API for diagnostic
services. It is used while development, manufactoring or service by external
diagnostic tools [25]. In figure 3.5 there is an overview of the communication
over the DCM. The DCM performs the scheduling of diagnostic PDUs. It acts
as a user by requesting full communication from the ComM if diagnostic shall
be performed [22].

Fig. 3.5. Overview of the communication between the external diagnostic tools and
the onboard AUTOSAR Application [25]

3.3 Communication Hardware Abstraction

3.3.1 CAN Interface (CanIf)

The CanIF is situared in the communication stack between the lower level
CAN Driver and the upper level communication service modules and it repre-
sents the interface to the services of the CAN Driver for the upper communi-
cation layers, which includes managing the different CAN hardware devices.
The CanIf initializes the CAN Driver module during startup phase. It has to
call the CAN Driver modules periodical processing function periodically via
the interface provided by the CAN Driver module. The CanIf has to check

20 3 Basic Software Communication Modules

the validity of state changes for the CAN Driver module, because the CAN
Driver does not check for validity of these changes.

3.3.2 FlexRay Interface

The FlexRay interfaces main task is to provide to upper layers an abstract
interface to the FlexRay Communication System. The FlexRay interface ac-
cesses the hardware not directly but over the hardware specific FlexRay in-
terfaces. More information and detailed specification a depicted in [26] and
[27].

3.3.3 LIN Interface

The LIN Interface is designed to be hardware independent and provides trans-
mit requests from the upper layers and receive notifications for the upper
layers. For details please refer to [28] and [19].

3.4 Communication Drivers

3.4.1 CAN Driver

The CAN Driver is part of the lowes layer and offers the CAN Interface
uniform interfaces to use. It hides hardware specific properties of the CAN
Controller as far as possible [29]. The CAN Driver performs the hardware ac-
cess and provides a hardware independent API to the upper layer, the CAN
Interface (CanIf). Services for initiating transmission are offered by the CAN
Driver and it calls the callback funtions of the CanIf module for notifying
events hardware independently. In addition there are services provided by the
CAN Driver module to control the state of all CAN controller belonging to
the same CAN hardware unit. A CAN controller serves exactly one physical
channel. A detailed description of the CAN bus is given in [30]. A CAN hard-
ware unit is represented by one CAN Driver and either on chip or an external
device. It may consist of one or multiple CAN controllers of the same type
and one or multiple CAN RAM areas [29]. A single CAN Driver module can
handle multiple CAN controllers if they belong to the same hardware unit as
shown in figure 3.6.

If an L-PDU shall be transmitted, the CAN Driver writes the L-PDU in a
buffer inside the CAN controller hardware and if an L-PDU is received, the
CAN Driver module calls the RX indication callback funtion with the L-PDUs
ID, the DLC (see: ch. 2.3) and with a pointer to the L-SDU. The CAN Driver
can access hardware resources and converts the given information for trans-
mission into a hardware specific format and triggers the transmission. The
CAN Driver module offers the CanIf services to control the state of the CAN

3.4 Communication Drivers 21

Fig. 3.6. A CAN hardware unit consisting of two CAN controllers connected to one
physical channel each. [16]

Controllers by callback fucktions for bus-off and wake-up events. It imple-
ments the interrupt service routines for all CAN hardware unit interrupts
that are needed. While startup the CAN Driver initializes static variables in-
cluding flags, sets common settings for the complete CAN hardware unit and
sets CAN controller specific settings for each CAN controller.

3.4.2 FlexRay Driver

The use of the FlexRay Driver is abstracting from the hardware related im-
plementation details of spedific FlexRay Communication Controllers. A de-
scription of the FlexRay Driver can be found in [31].

3.4.3 LIN Driver

The LIN driver is part of the Microcontroller abstraction layer and performs
the hardware access and offers a hardware independent API to the upper
layer. For further information please consult [32].

4

Communication

4.1 Application Layer and RTE

Applications written in the context of AUTOSAR consist of components.
These components communicate with each other via ports (component view
see: 1.1, [3] and [5]). The communication between two components can consist
of a single (AUTOSAR) signal or a whole signal group. From the view of the
AUTOSAR SWC it is not known at implementation time, which communica-
tion media is used. All bus specific replications of send requests by a SWC to
underlying layers and bus specific timing behavior must be done by COM or
by the appropriate bus interfaces and drivers [13]
The RTE uses the capability to send and receive signals of AUTOSAR COM.
Figure 4.1 shows the VFB’s send modes corresponding to the transfer prop-
erty of a signal and the transmission mode of an I-PDU described in ch. 4.2.

Fig. 4.1. Mapping of transfer property and transmission mode to send modes of
the VFB [13]

After a send request from an upper layer for a specific signal, the signal is
written to the appropirate I-PDU buffer as defined by configuration and the
selection of the transmission mode of the I-PDUs in done.

24 4 Communication

4.2 Transmission Modes and Transmission Mode
Selection

COM shall provide different transmission modes for each I-PDU [12].

• Periodic: transmissions occur indefinitely with a fixed period between them
• Direct / n-times: event driven transmission with n-1 repetitions
• Mixed: periodic transmission with direct/n-times transmissions in between
• None: no transmission

Two of these transmission modes shall be supported for each PDU so that it
will be possible to switch between both modes during runtime. To decide which
of the two transmission modes is selected, COM shall provide the possibility to
attach a condition to each signal within an I-PDU separately. If all conditions
that are defined for signals within one specific I-PDU evaluate to true then one
transmission mode shall be used for this I-PDU. If at least a single condition
defined for a signal within this I-PDU evaluates not to true, then the other
mode shall be used. These conditions shall be checked directly if a related
signal or signal group is sent by the RTE.
The attached condition on a signal for evaluating the transmission mode for
an I-PDU is called transfer property. A transfer property of a signal can either
be triggered or pending. A transfer property of a signal with the triggered-
value causes an immediate transmission of the I-PDU except if transmission
mode periodic or none is defined for the I-PDU. If the transfer property of a
signal is pending, no transmission of an I-PDU is caused.
Because of I-PDUs can contain more than one single signal there is needed
a method to derive the I-PDU’s transmission mode from the state of signals
that are contained in one specific I-PDU. For this method signals within a
signal group are treated like normal signals.
For each I-PDU there is defined a Transmission Mode Selector (TMS). The
TMS is calculated by evaluating the Transmission Mode Conditions (TMC)
of a configurable subset of signals belonging to the specific I-PDU. The TMS
is defined to be true if at least one TMC of the configurable subset of signals
evaluates to true. If all TMCs evaluate to false the TMS is defined to be false.
If Com SendSignal or Com SendSignalGroup are called, the TMS of the I-
PDU shall be re-calculated. Figure 4.2 shows the mapping of signals into an
I-PDU and the evaluation of the TMS. A detailed description of the selection
of transmission modes is situated in [13, ch. 7.4.3.3].

4.3 Communication Interaction

Here is a short example for the path of interaction for sending a signal. An
application is deciding internally to update e.g. an actuators value. Here is
expected, that the application already requested its communication mode
from the ComM. The application will only call a Write Signal ... function.

4.3 Communication Interaction 25

Fig. 4.2. Signal flow and TMS evaluation [13]

26 4 Communication

This function will be, while generating the RTE, mapped to a RTE Write ...
function. Within this funtion there will be either a Com SendSignal or a
Com SendSignalGroup (or Com UpdateShadowSignal) function call, depend-
ing on whether the signal to send was a normal AUTOSAR signal or an
AUTOSAR complex data type. In COM the signal is packed into a PDU
and the signals transferproperty is evaluated to determine the I-PDUs trans-
mission mode. The AUTOSAR COM module calls the PduR ComTransmit
function for forwarding the PDU to the PDU Router. The PDU Router gets
based on the PDU ID and its PDU Router routing table the target of the
PDU and sends it e.g. to the CanIf with the use of CanIf Transmit. The
CanIf calls Can Write from the CAN Driver that will copy the L-PDU into
the CAN hardware. If the PDU was sent on the bus the CAN hardware trig-
gers a transmit interrupt at the CAN Driver. The CAN Driver then calls
CanIf TxConfirmation, the CanIf calls PduR TxConfirmation and the PduR
calls Com TxConfirmation. Sequence diagramms of the transmission, confir-
mation and receive indication operation can be found in ch. 9 in [16, ch. 9],
[33, ch. 9.1, 9.3], [14, ch. 9] and [13, ch. 9].

References

1. Rajagopalan, R.: Automotive software market - mix of opportunities and im-
plications. Frost & Sullivan (September 2004)

2. Murphy, M.: The rise and fall of ecu numbers per vehicle. Automotive World
(October 2007)

3. AUTOSAR GbR: Technical Overview. 2.2.2 edn. (August 2008)
4. Schlegel, J.: Technical foundations for the development of automotive embedded

systems. Technical report, Hasso-Plattner-Institut für Softwaresystemtechnik
GmbH (2009)

5. Warschofsky, R.: Autosar software architecture. Technical report, Hasso-
Plattner-Institut für Softwaresystemtechnik GmbH (2009)

6. Naumann, N.: Autosar runtime environment & virtual function bus. Technical
report, Hasso-Plattner-Institut für Softwaresystemtechnik GmbH (2009)

7. Hebig, R.: Autosar methodology & templates. Technical report, Hasso-Plattner-
Institut für Softwaresystemtechnik GmbH (2009)

8. AUTOSAR GbR: Layered Software Architecture. 2.2.2 edn.
9. Wätzoldt, S.: Modeling and development of autosar using systemdesk. Technical

report, Hasso-Plattner-Institut für Softwaresystemtechnik GmbH (2009)
10. Krasnogolowy, A.: Simulation of automotive systems in the context of au-

tosar. Technical report, Hasso-Plattner-Institut für Softwaresystemtechnik
GmbH (2009)

11. : OSEK/VDX Communication. 3.0.3 edn. (July 2004)
12. AUTOSAR GbR: Requirements on Communication. 2.1.3 edn. (August 2008)
13. AUTOSAR GbR: Specification of Communication. 3.0.3 edn. (August 2008)
14. AUTOSAR GbR: Specification of PDU Router. 2.2.3 edn. (August 2008)
15. AUTOSAR GbR: Requirements on Gateway. 2.0.5 edn. (August 2008)
16. AUTOSAR GbR: Specification of CAN. 2.2.3 edn. (August 2008)
17. AUTOSAR GbR: Specification of I-PDU Multiplexer. 1.2.3 edn. (August 2008)
18. AUTOSAR GbR: Requirements on I-PDU Multiplexer. 1.0.5 edn. (August 2008)
19. AUTOSAR GbR: Specification of LIN Interface. 2.0.2 edn. (August 2008)
20. AUTOSAR GbR: Specification of FlexRay Transport Layer. 2.2.2 edn. (August

2008)
21. AUTOSAR GbR: Specification of CAN Transport Layer. 2.2.2 edn. (August

2008)

28 References

22. AUTOSAR GbR: Specification of Communication Manager. 2.0.2 edn. (August
2008)

23. AUTOSAR GbR: Specification of CAN State Manager. 1.0.2 edn. (August 2008)
24. AUTOSAR GbR: Specification of Generic Network. 1.0.2 edn. (August 2008)
25. AUTOSAR GbR: Specification of Diagnostic Communication Manager. 3.1.1

edn. (August 2008)
26. AUTOSAR GbR: Requirements on FlexRay. 2.0.5 edn. (August 2008)
27. AUTOSAR GbR: Specification of FlexRay Interface. 3.0.3 edn. (August 2008)
28. AUTOSAR GbR: Requirements on LIN. 1.1.4 edn. (August 2008)
29. AUTOSAR GbR: Requirements on CAN. 2.2.2 edn. (August 2008)
30. Huang, G., Bose, O., Patel, S.: Can controller area network. Technical report,

Technische Universitt Berlin (June 2003)
31. AUTOSAR GbR: Specification of FlexRay Driver. 2.2.2 edn. (August 2008)
32. AUTOSAR GbR: Specification of LIN Driver. 1.2.2 edn. (August 2008)
33. AUTOSAR GbR: Specification of CAN. 3.0.3 edn. (August 2008)

