
Collecting, Annotating, and Classifying
Public Web Services

Mohammed AbuJarour1 , Felix Naumann1 , Mircea Craculeac2

1 Hasso-Plattner-Institut, University of Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

2 Neofonie, Berlin, Germany
mircea@neofonie.de

Abstract. The limitations of the traditional SOA operational model,
such as the lack of rich service descriptions, weaken the role of service
registries. Their removal from the model violates the basic principles of
SOA, namely, dynamic binding and loose coupling. Currently, most ser-
vice providers publish their Web Services on their websites instead of
publishing them in service registries. This results in poor usability of
these Web Services especially wrt. service discovery and service compo-
sition.
To handle this problem, we propose to increase the usability of pub-
lic Web Services by collecting them automatically from the websites of
their providers with the help of web crawling techniques. Additionally,
the collected services are annotated with descriptions that are extracted
from the crawled web pages and tags that are generated from the same
web pages. These annotations are then used to derive a classification for
each Web Service into different application domains. In this paper, we
introduce the details of our approach and show its practical feasibility
through several evaluation experiments.

Keywords: Web Service, Service Description, Tagging, Classification

1 SOA in Theory and Practice

Due to the increasing complexity of modern software systems, distributed com-
puting has been the typical approach in several application domains, such as
banking, medicine, earth sciences, etc. Additionally, the wide and rapid spread
of Internet technology has been a major driving force that led to the emergence
of new software paradigms, such as the Service-oriented Architecture (SOA) [11].

The basic principles of SOA are captured in the triangular SOA opera-
tional model [17] depicted in Figure 1 (left). Three roles are identified in this
model, namely, service-provider, -consumer, and -registry. Theoretically, service
providers register their services into one or more service registries that play the
role of service brokers. Service consumers use these registries to find services
that satisfy their needs. Afterwards, a direct binding between service consumers
and service providers is done to call the required service(s).

The goal of this operational model is to achieve the main features of SOA,
e.g., high interoperability, flexibility, scalability, fault tolerance, etc. However,
to achieve such goals service consumers should have sufficient knowledge about
the considered services. Much of this knowledge comes from service providers
themselves in the form of service descriptions that they give during the regis-
tration of their services. Service descriptions play a key role in Service-oriented
Computing (SOC). However, service descriptions are typically poor, because ser-
vice providers focus on the implementation aspects of their services rather than
providing rich service descriptions.

Service
Registry

Service
Provider

Service
Consumer

RegisterFin
d

Bind

SOA in Theory SOA in Practice

Service
Provider

Service
Consumer

Bind

Fig. 1. SOA in theory and practice [13]

Service registries do not have control over service providers to force them to
keep the descriptions about their registered Web Services up-to-date. This lack of
control results in a passive and limited role of service registries. On the contrary,
service providers often do keep the published information and descriptions about
their offered Web Services up-to-date via their own websites.

In practice, the role of service registries is typically ignored [13] because of
such limitations. For instance, 48% of a production UDDI registry has links that
are unusable (tModels tested only); these links point to contain missing, broken
or inaccurate information [4]. Removing the role of the service registry (and thus
breaking the triangle) violates the basic SOA principles of loose coupling and
dynamic binding (cf. Fig. 1).

A common approach used by service providers to offer public Web Services is
to provide a list of services with a textual description attached to each service to
explain their functionality. Moreover, several service providers offer a try option,
where one can try their services online. Such options typically include web forms
to collect input parameters from the user. Much of the information provided on
such web pages is not provided in the WSDL description of the corresponding Web
Service. We view such HTML pages and forms as rich sources of information and
descriptions about the considered Web Services.

For instance, Amazon.com provides several public Web Services, e.g., Ama-
zon Relational Database Service (Amazon RDS). Typically, Amazon provides
a detailed description for each of their Web Services in the form of HTML. For

example, Amazon RDS is described in detail on https://aws.amazon.com/rds.
Much of this information, such as the fact that it is based on MySQL, is not
provided in its WSDL description available at
https://rds.amazonaws.com/doc/2010-01-01/AmazonRDSv2.wsdl.
In our approach, we extract the information that service providers release about
their offered Web Services on their websites and generate richer service descrip-
tions from this information.

We propose an approach where service registries take the initiative to collect
public Web Services from the websites of their providers through web crawling
techniques, extract descriptions for these Web Services, generate tags associ-
ated with the collected Web Services from the contents provided by their service
providers, and classify the collected Web Services into several application do-
mains based on their enriched annotations. Our Web Service crawler is limited
to so-called Big Web Services (SOAP-based) only. Further decision rules are re-
quired to incorporate RESTful Web Services.

In [1], we introduced a system that enables users to discover, aggregate, and
consume public Web Services. However, we have observed that choosing the best
services that match some users’ requirements from the service catalog requires
additional information to enhance the quality of the result list. This paper tackles
this problem and serves as an extension to our previous work.
The main contributions of this paper are:

– Automatic collection of public Web Services over the web.
– Automatic enrichment of poor service descriptions with extracted descrip-

tions from the HTML pages of their providers.
– Automatic generation of tags that are associated with collected Web Ser-

vices.
– Supervised classification of collected Web Services.

The remainder of this paper is organized as follows: In Section 2, we give an
overview of the related work. A use-case is introduced in Section 3 to highlight
the targeted problems. In Section 4, we introduce our approach in detail. Sec-
tion 5 shows our experiments, and a summary and future work are given in
Section 6.

2 Related Work

The limitations in the traditional SOA operational model have been highlighted
by several researchers in the community. In [13], the authors showed that the
triangular model is not used widely in practice because of the limited role of
service registries. Removing the role of the service registry (breaking the trian-
gle) violates the basic principles of Service-oriented Computing (SOC), namely
loose coupling and dynamic binding. To restore this broken triangle, the authors
proposed a software engineering approach that enables dynamic binding and
invocations of Web Services. Our approach tackles the limited role of service

registries problem and aims at increasing the active role of service registries in
SOC.

Another approach to achieve active Web Service registries was introduced
in [16]. The authors use RSS feeds to announce changes in the registered ser-
vices to interested service consumers. The information provided by such feeds is
generated by service providers, who tend to focus on the technical part of their
services rather than providing documentation or descriptions. Moreover, such a
service registry cannot force service providers to notify them about any updates
so that they can add RSS feeds to announce the corresponding changes.

The main reason behind the highlighted limitations of the triangular model
in the aforementioned work is the lack of rich service descriptions [12]. Therefore,
researchers have proposed several approaches to gather additional information
about Web Services to handle the problem of poor service descriptions.

In [2], the authors use a specialized crawler to collect Web Services from
multiple UDDI registries. Although the idea of using crawlers to collect Web
Services is innovative, restricting it to UDDI registries does not give the maximum
benefit of web crawling, as such an approach is still limited to what service
providers announce during service registration.

A more advanced Web Service crawler has been introduced by the EU project
Seekda (http://www.seekda.eu). In this recent project, the authors use a spe-
cialized crawler to collect public Web Services over the web, and present them
in a web 2.0 environment, which allows users to annotate, tag, and use the col-
lected Web Services. We extend this approach by annotating the collected Web
Services with automatically extracted descriptions and generate tags, as we show
in Section 4.2.

The automatic assignment of classes to Web Services is known as service
classification. This problem is vital in SOC, because of the increasing number of
Web Services. Therefore, it has been investigated by several researchers in the
community. Typically, machine learning techniques are used to perform auto-
matic service classification, where different approaches are based on argument
definitions matching [6], document classification techniques [8], or semantic an-
notation matching [5]. In most of these approaches, the authors classify formal
service descriptions, e.g., WSDL, or they assume the presence of additional in-
formation, e.g., ontology annotations. Service descriptions appear mostly in the
form of comments written by service developers [15]. In general, these com-
ments are written in English, have a low grammatical quality, punctuation is
often ignored, and several spelling mistakes and snippets of abbreviated text is
present. Assuming the existence of ontology annotations is not realistic [12]. In
our approach, we use formal service descriptions provided by service providers,
e.g., WSDL, in addition to annotations that we extract from the websites of the
providers to apply a machine learning approach to classify Web Services.

3 Example: Gene Trek in Procaryote Space (GTPS)

Gene Trek in Procaryote Space (GTPS) is a service offered by the National
Institute of Genetics (NIG) in Japan. The purpose of GTPS is to re-annotate
the ORFs1 among microorganisms in Genome Information Broker data by using
a common protocol and diffuse the results to users as a resource for gnome-scale
analysis on microbes.

The GTPS Web Service is published with several additional services on the
website of the NIG under http://xml.nig.ac.jp. Figure 2 shows a screenshot
of the web page that shows the details of the GTPS Web Service. Along with the
name of the service, they provide a service description, a hyperlink to the WSDL

file of this service, and a list of methods it offers. The service name is obviously
provided in its WSDL file, but, the description is not. The hyperlink to the WSDL

file represents a candidate place to start searching for service descriptions.

Thursday 4:04 PMWeb API for Biology

Page 1 of 1http://xml.nig.ac.jp/wabi/Method?serviceName=GTPS&mode=methodList&lang=en

TOP REST SOAP Workflow CookBook

Contact us / Sitemap /Japanese

sequence blast search >>more

GTPS
Service Description

"GTPS" is acronym of Gene Trek in Procaryote Space. Various complete genomes of eubacteria and archaea have been
registered in the International Nucleotide Sequence Databases (INSD) of DDBJ/EMBL/GenBank. The annotation and sequence
data are available from GIB (Genome Information Broker; http://gib.genes.nig.ac.jp/). However, annotations for genomic
sequence of eubacteria and archaea released from INSD are often carried out by the different protocols such as minimum length
of the ORF specified by the prediction program, threshold value of blast search and version number of the reference data used
for blast and motif scan. Therefore, some inconsistencies of the ORF data are found in genomic annotations. The purpose of
GTPS is to reannotate the ORFs among microorganisms in GIB data by using a common protocol and diffuse the results to
every users as a resource for gnomescale analysis on microbes. The results are graded into AAAA (top grade) to X (lowermost
grade) categories by curating the result of blastp and InterProScan analysis. We provide you with all the result of reannotated
data by the graphical interface and the flat file.

Please see also the page in detail.
WSDL URL:http://xml.nig.ac.jp/wsdl/GTPS.wsdl

Method List
MethodName Description

checkAnnotation(proteinId)

Check annotation of the specified protein ID. If the annotation is unknown
'hypothetical protein' is returned, otherwise the valid annotation of the
specified protein ID is returned. This method is based on the ontology. See
more detailed information (Hypothetical product ontology in GTPS).

getChIDFromOrganismName(orgName) Get chromosome ID of a organism.
getChIDList() Get chromosome ID list registered in GTPS database.
getFeatureInformation(chid, ftid) Get feature information of a chromosome ID and a feature ID.
getFtIDList(chid) Get feature ID list of a chromosome ID.
getOrganismList() Get organism name list registered in GTPS database.
getOrganismNameFromChid(chid) Get organism name of a chromosome ID.
searchSimple(keyword, offset, limit) Search features against GTPS database.

Copyright(C) National Institute of Genetics, All Rights Reserved

Service
Name

Description

WSDL URL

Methods

Fig. 2. The web page of the Gene Trek in Procaryote Space (GTPS) Web Service

A simplified version of the HTML source code of the same web page is shown
in Figure 3. An important aspect in this code is the relationship between the
element that holds the description (line 3) and the element that holds the WSDL

hyperlink (line 13). These two elements usually have either the sibling or parent-
child relationship. Typically, service providers describe their Web Services and

1 ORF stands for Open Reading Frame, which is a DNA sequence that could poten-
tially encode a protein

then provide their links, or provide the links to their Web Services and then
describe their functionalities. Other cases include more complex relationships,
especially, when tables are used. In our example, the simple sibling relationship
holds.

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17

<div class=message_indent>
 <div class=itemTitle>Service Description</div>

<div class=itemContent>
"GTPS" is acronym of Gene Trek in Procaryote Space. Various complete genomes of eubacteria and archaea have been
registered in the International Nucleotide Sequence Databases (INSD) of DDBJ/EMBL/GenBank. The annotation and sequence
data are available from GIB (Genome Information Broker; http://
gib.genes.nig.ac.jp/). However, annotations for genomic sequence of eubacteria and archaea released from INSD are
often carried out by the different protocols such as minimum length of the ORF specified by the prediction program,
threshold value of blast search and version number of the reference data used for blast and motif scan. Therefore, some
inconsistencies of the ORF data are found in genomic annotations. The purpose of GTPS is to reannotate the ORFs among
microorganisms in GIB data by using a common protocol and diffuse the results to every users as a resource for
gnomescale analysis on microbes. The results are graded into AAAA (top grade) to X (lowermost grade) categories by
curating the result of blastp and InterProScan analysis. We provide you with all the result of reannotated data by the
graphical interface and the flat file.

</div>
<div class=itemTitle>

 Please see also the page in detail.

</div>
<div class=itemTitle>

WSDL URL:

 http://xml.nig.ac.jp/wsdl/GTPS.wsdl

</div>
</div>

Fig. 3. Part of the HTML source of the web page of the Gene Trek in Procaryote Space
(GTPS) Web Service shown in Figure 2

An interesting observation is the lack of similar documentation or descrip-
tions in the WSDL file of the GTPS Web Service.2 This situation makes it difficult
for biologists, who do not have sufficient technical background, to use such im-
portant Web Services. Moreover, discovering such a Web Service is not an easy
task, unless, it is augmented with this description.

By applying our approach to this URL (http://xml.nig.ac.jp), we were able
to find 23 Web Services, and we were able to extract the descriptions provided
in the form of HTML, and generate tags that describe the extracted Web Services.
The list of tags for the GTPS Web Service is [id, chromosome, annotation,

list, chid]. Attaching these annotations to this Web Service increases its us-
ability, because it becomes more convenient for biologists to find and use it.

4 Architecture Overview

Our proposed approach to increase the usability of public Web Services incorpo-
rates four components: a Web Service crawler, a Web Service parser, an anno-
tation extractor, and a Web Service classifier. The architecture of our proposed
approach is depicted in Figure 4.

2 Available at: http://xml.nig.ac.jp/wsdl/GTPS.wsdl

URL

Ar
ch

iv
e

Service Registry
Parser

WS WS WS

Raw WS

Classified WS

1 Crawler

2 Parser

3 Annotation
Extractor

4
C
la
ss
ifi
er

Annotation
Extraction

Web Services

Annotations

Fig. 4. An overview of the architecture of our approach

In our approach, a service registry takes the initiative to collect public Web
Services from the websites of their providers. This task is achieved using a Web
Service crawler (component number 1 in Fig. 4). The main task of this crawler
is to collect XML and HTML resources and store them in a special archive. The
collected XML resources are then parsed and validated through a Web Service
parser (component number 2) to identify valid Web Services. Valid Web Services
are stored in the service registry. Further details about the crawler and the parser
are given in Section 4.1.

The annotation extractor (component 3 in Fig. 4) has the task of analyzing
the collected HTML resources by the crawler to extract annotations that enrich
the descriptions of the collected Web Services. The extracted annotations are
stored in the service registry. Two types of annotations are generated by this
component: service descriptions and tags. We give further details about this
component in Section 4.2.

The annotations generated by the annotation extractor are used to classify
the collected Web Services into several application domains, e.g., education,
telecommunications, finance, government, etc. This task is performed by a service
classifier (component number 4 in Fig. 4). Further details about this component
are given in Section 4.3.

4.1 Crawling and Parsing Public Web Services

To collect public Web Services, we employ web crawling techniques to the web.
We have implemented a focused crawler that targets XML and HTML resources
only. XML files are potential candidates for Web Services descriptions, e.g., WSDL,
whereas, HTML files are potential places to find further information about the
collected Web Services. In this section, we consider XML files only. HTML files are
considered in the following section.

The architecture of our Web Service crawler is shown in Figure 5. We use
the Heritrix [10] crawling framework in our approach. The client on the left
hand side starts the crawler by providing a seed URI that has to be crawled.
The crawler crawls the entire domain of the given seed URI for WSDL documents.

If it is able to gather WSDL files from that domain, then it stores the collected
files into a compressed archive file, called ARC file. This ARC file is passed to
the WSDL parser that extracts the found WSDL documents. Then, each of these
WSDL documents is parsed with the WSDL4J API [9] to extract its port types,
bindings, operations and descriptions if available. If the WSDL file is valid and no
parsing errors occurred, the file is stored in the Web Service registry that can
be directly accessed by the user.

Heritrix Crawler

Web Service
Registry

ARC File

WWW

URL

Client

XML

Parser

Fig. 5. The architecture of our Web Service crawler

The implementation of our focused crawler incorporates a series of “De-
cideRules” to filter URIs. To determine whether a URI falls within the required
scope, all decision rules are applied to it. Accepted URIs should pass all checks
represented by the decision rules. The most important DecideRule that are used
are:

– PathologicalPath: This rule is used to avoid crawler traps. It adds a con-
straint on how many times a path-segment pattern in the URI may be re-
peated. The URI is rejected if the pattern is repeated more than two times,
e.g., “www.example.com/foo/foo/foo” is rejected.

– MatchesRegExp: The goal of this rule is to filter all resources that are
not relevant to our crawling task. Because our goal is to identify WSDL files,
we discard all crawled resources except XML and HTML documents. XML files
could represent WSDL files and HTML files could contain URIs to WSDL files,
in addition to descriptive text that explains the functionality of the Web

Services in the linked WSDL files. All other document types, such as audio,
video, image files, etc. are ignored by the crawler using the regular expression
provided by this rule.

– WSDLRegExp: This second regular expression explicitly accepts all URIs
ending with the case insensitive phrase “wsdl”.

4.2 Annotating Web Services

In the previous section, we explained the process of collecting public Web Ser-
vices over the web using a focused crawler by identifying their formal descriptions
that have XML as a content type. The collected Web Services are then parsed and
validated to identify valid Web Services. This step is then followed by a step to
extract further information about the collected Web Services from the crawled
HTML pages. In this section, we show the types of this additional information
that we extract and the techniques we use to achieve this step.

Because of the lack of rich service descriptions, we propose to extract further
information about public Web Services from the websites of their providers to
enrich poor service descriptions. This extraction is achieved by the annotation
extractor component (cf. Fig. 4). The process of annotation extraction is shown
in Figure 6.

Annotation
Extraction

Heritrix Crawler

Web Service
Registry

ARC File

WWW

URL

Client

XML HTML

Parser

Fig. 6. The Architecture of our Web Service crawler and its annotation extractor (HTML
parser)

According to our set of “DecideRules”, the resulted ARC file contains URIs

whose content type is either XML or HTML. We perform two iterations of parsing
on this ARC file: the first iteration is done by the WSDL parser to identify WSDL

URIs (cf. Sec. 4.1), and the second iteration is done by the annotation extractor
to identify further information about the identified WSDL URIs.

The result of this recent step is formalized in Equation 1. Given a valid URL

where some Web Services are offered, the expected outcome is a list of collected
Web Services ({ws}), extracted descriptions for each Web Service (Desc(ws)),
and a list of tags associated with that Web Services (Tags(ws)).

ExtraWS(url) = {{ws,Desc(ws), Tags(ws)}} (1)

The extracted description for each of the collected Web Services, Desc(ws),
is captured in Equation 2. In our approach, we use the heuristic that the place
where the WSDL of a Web Service is referenced represents a good candidate place
where its description can be found. Typically, service providers describe their
Web Services and then provide their links, or provide the links and then describe
what they do. According to our experiments, this heuristic works in more than
90% of our crawled URLs. In the remaining 10%, service providers either do not
provide textual descriptions on their web pages or they use complex HTML pages,
such as Amazon Web Services, where our heuristic did not find the appropriate
text. Identifying the templates used in such complex HTML structures and smart
extraction of such textual descriptions are part of our future work. This heuristic
is also useful in the case where a web page describes more than one Web Service.
Different descriptive texts can be extracted from the same web page for different
Web Services. However, such Web Services are annotated with the same tags,
unless, they are described in other web pages.

The content of an HTML page that references a WSDL file is parsed as a DOM
tree of HTML elements. The content of an HTML element represents the concate-
nation of its textual content with the textual content of its sub-elements. The
content of the root element represents the entire text in the HTML page. We refer
to the element that contains a link to a WSDL file as (e) in Equation 2. The ele-
ment that contains the description is referred to as (d). If element (d) has either
the sibling or the parent relationship (R) with (e), the content of element (d)
represents the extracted description of the considered Web Service (ws).

Desc(ws) = content(d)|R(d, e) ∈ {sibling, parent} (2)

Web Services can be referenced from multiple web pages. A descriptive text
can be extracted from each web page. In our approach, such Web Services can
have several extracted descriptive texts for each Web Service.

The remaining parts of an HTML page that references a Web Service have
their impact on the generated tags for the considered Web Service. Equation 3
captures this impact. A list of tags for a Web Service contains the most fre-
quent terms (t) in the HTML page (p) where this considered Web Service (ws)
is referenced. All terms in the web page are ranked and the most frequent k

terms represent its list of tags, where k is an application parameter, e.g., k=5
(cf. Sec. 5.2). Common terms are ignored through stop words removal.

Tags(ws) = {t|t ∈ rank(content(p))} (3)

However, this tag generation method can miss some important keywords. For
instance, the tags of GTPS (cf. Table 2) do not include “GIB data”, “microbes”,
“Converts”, or “US” as tags. These keywords are important, but they do not
appear frequently in the text. Moreover, tags give hints to service consumers
about the managed Web Services because selecting proper keywords for service
discovery requires domain knowledge. Such important keywords are still indexed
and involved in the Web Service discovery process.

The main limitation of this approach is the use of a single source of informa-
tion about Web Services, namely, the websites of their service providers. Service
providers may not provide textual descriptions about their offered Web Services
on their websites. In this case, our approach can only identify and collect such
Web Services, but it cannot annotate or classify them. Further information about
such Web Services is still required to increase their usability.

4.3 Classifying Web Services

Gathering Web Services through the crawler results in a large list of Web Services
that do not have categories. This situation makes it difficult to browse through
these Web Services and retrieve the relevant ones upon request. To handle this
issue, we use an automatic classifier that classifies the collected Web Services
into a set of predefined categories, e.g., finance, education, entertainment, etc.
We have compiled this list of categories from well-known service providers and
service registries on the web, such as http://www.programmableweb.com. A
complete list of categories is shown in Section 5.3.

Machine learning techniques are used in our approach to classify Web Ser-
vices, where the features used by the classifier are the WSDL, description, and
tags of each Web Service. The name of the Web Service is not included explic-
itly, because it is included in the WSDL file. The size of some features can grow
unexpectedly or cannot be predicted in advance. The WSDL file of a Web Service
can have a few lines or thousands of lines. The generated tags are domain-specific
and cannot be expected in advance. To meet this challenge, we hash the con-
tents of each feature using the simHash [3] algorithm into a fixed length digest.
SimHash produces similar hash values for similar documents. Therefore, it com-
bines the advantages of the word-based similarity measures with the efficiency
of fingerprints based on hashing.

Most similar approaches (cf. Sec. 2) use WSDL files to classify Web Services,
but such files contain – mainly – technical descriptions. Using the extracted de-
scriptions and tags to classify Web Services is one of the main contributions of
our approach. Common terms, e.g., articles, pronouns, etc., in service descrip-
tions and WSDL files are removed through stopword removal techniques before
applying the simHash algorithm to get the digest of each feature. Additionally,

the snowball stemmer [14] is used to capture the similarity between several
derivations of the same word, e.g., walk, walking, walks.

Our machine learning approach uses a supervised classifier that is trained
on a set of manually classified Web Services. Then, it is tested on the newly
collected unclassified Web Services to infer their classes based on the training
set. The features of each Web Service (i.e., the digests of the WSDL, description,
tags) are then used to infer classes for the unclassified Web Services from the
already (manually) classified ones. The Weka [7] tool has been used to achieve
this goal. Further technical specifications are given in Section 5.3.

5 Experiments and Evaluation

We have implemented a prototype that achieves the aforementioned contribu-
tions. To evaluate its feasibility, we have carried out three sets of experiments.
A set of experiments to evaluate our focused crawler, another set of experiments
to evaluate the extracted annotations, and a third set of experiments to evaluate
the classifier. In this section, we describe these experiments, show the results,
and discuss them.

5.1 Evaluating the Service Crawler

To test our Web Service crawler, we selected a number of service providers and
crawled their websites using our crawler. We compare the number of collected
Web Services from each service provider with the number of Web Services found
by seekda (cf. Section 2) on the same website.

Table 1 shows a list of URLs of service providers (second column), the number
of services found by seekda (third column), and the number of Web Services
found using our crawler (fourth column).

Table 1. Number of collected Web Services per URL

ID Service Provider URL Seekda Result Our Crawler

1 webservice.genotec.ch 8 8

2 api.bioinfo.no 8 9

3 www.servicex.co.uk 9 9

4 xml.nig.ac.jp 2 23

5 www.ecocoma.com 25 25

6 ws.adaptivedisclosure.org 26 26

7 ws.serviceobjects.com 31 31

8 www.webservicex.net 70 70

9 www.strikeiron.com 59 72

10 splices.xignite.com 58 190

In most cases, we are as good as seekda in finding published Web Services on
a website. For instance, URLs in case 1,3,5–8. In other cases, e.g., case 2, 4, 9, 10,
we managed to find more Web Services than seekda. One potential reason for
this behavior, can be the release of new Web Services on a URL after seekda had
crawled it. This situation requires incremental and iterative crawling of URLs to
keep the list of collected Web Services up-to-date.

5.2 Evaluating the Extracted Annotations

Evaluating the extracted service descriptions is not straightforward. It requires
manual checking to determine their quality. Due to space limitations, we show
only the extracted service description for the example Web Service, GTPS in-
troduced in Section 3.

“GTPS” is acronym of Gene Trek in Procaryote Space. Various complete genomes of eubacteria
and archaea have been registered in the International Nucleotide Sequence Databases (INSD)
of DDBJ/EMBL/GenBank. The annotation and sequence data are available from GIB (Genome
Information Broker; http://gib.genes.nig.ac.jp/). However, annotations for genomic sequence of
eubacteria and archaea released from INSD are often carried out by the different protocols such
as minimum length of the ORF specified by the prediction program, threshold value of blast
search and version number of the reference data used for blast and motif scan. Therefore, some
inconsistencies of the ORF data are found in genomic annotations. The purpose of GTPS is to
reannotate the ORFs among microorganisms in GIB data by using a common protocol and
diffuse the results to every users as a resource for gnomescale analysis on microbes. The
results are graded into AAAA (top grade) to X (lowermost grade) categories by curating the result
of blastp and InterProScan analysis. We provide you with all the result of reannotated data by the
graphical interface and the flat file. Please see also the page in detail.

Fig. 7. The extracted service description for the GTPS Web Service from
http://xml.nig.ac.jp/wabi/Method?serviceName=GTPS&mode=methodList&lang=en

The GTPS Web Service is intended to be used by biologists and not IT special-
ists. Its WSDL file gives technical details (http://xml.nig.ac.jp/wsdl/GTPS.
wsdl), but, this description is not useful for biologists. However, the extracted
semantic description – shown in Figure 7 – gives a good overview of its function-
ality and its inputs and outputs in a natural language that is easy to understand
by biologists.

Each found Web Service is annotated with a list of tags that are generated
from the content provided by its service provider. Typically, the content where
a Web Service is referenced represents a potential place for generating tags for
that Web Service. In our approach, we generate up to 5 tags per Web Service.
Common terms, e.g., pronouns, articles, etc., are ignored using stopword removal.
Table 2 shows a list of collected Web Services with a list of generated tags
attached to each Web Service.

Table 2. Examples of generated tags for collected Web Services

ID Service URL Generated Tags

1 Returns a map at a fixed scale or according to a
specific scale.
http://www.servicex.co.uk/wsMapper/

mapping.asmx?WSDL

method, scale, map,

overlaid, icon

2 Re-annotates the ORFs among microorganisms in
GIB data by using a common protocol and dif-
fuse the results to every users as a resource for
gnomescale analysis on microbes.
http://xml.nig.ac.jp/wsdl/GTPS.wsdl

id, chromosome,

annotation, list,

chid

3 Converts a chinese text from traditional to
simplified characters, vice versa, unicode version
to its characters version, or vice versa.
http://service.ecocoma.com/convert/

chinese.asmx?WSDL

text, unicode,

chinese, simplified,

traditional

4 Returns latitude and longitude of a given US
address or vice versa.
http://ws.serviceobjects.com/gcr/GeoCoder.

asmx?WSDL

latitude, longitude,

address, estimate,

location

5 Gets domain name registration record by Host
Name/Domain Name.
http://www.webservicex.net/whois.asmx?WSDL

whois, domain, formal,

host, record

For instance, according to the description of the GTPS Web Service (cf. Sec-
tion 3), the list of its extracted terms [id, chromosome, annotation, list,

chid] looks reasonable.

5.3 Evaluating the Web Service Classifier

We use a supervised classification approach to classify newly collected Web Ser-
vices. Each Web Service is assigned a class from a predefined set of classes
(categories), such as finance, education, computer, entertainment, news, etc. We
classified the first 200 Web Services manually, and used them as a training set
to train the Weka tool to classify new unclassified Web Services. We use three
features to classify Web Services, namely, the service WDSL, descriptions, and
tags. Further details are given in Section 4.3.

Figure 8 shows the categories used to classify Web Services and the number of
Web Services in each category. For instance, among the collected Web Services,
there are 38 Finance, 21 Business, 1 Government Web Services, etc. This figure
represents our training set.

We did several experiments with several classification algorithms, such as,
Naive Bayes, Decision Table, etc. Our experiments showed that the Naive Bayes
classification algorithm gives the best results in our case. Therefore, we used it

0

10

20

30

40

Food

Gove
rn

m
en

t

New
s

Ente
rta

in
m

en
t

Ship
pin

g

Tr
av

el

Com
m

unity

M
ed

ici
ne

Busin
es

s

Te
lec

om
m

unica
tio

ns

Com
pute

r

Oth
er

s

Educa
tio

n

Fin
an

ce

N
um

b
er

 o
f

S
er

vi
ce

s

Fig. 8. The distribution of the 200 manually classified Web Services over 14 categories

to classify about 100 newly collected Web Services. The classifier distributed the
100 Web Services among 8 categories, shown in Table 3.

To show the correspondence between the classified Web Services and the
automatically assigned categories, we give one example per category. Table 3
shows a list of 8 Web Services and their corresponding categories. The “Cocoma
AOL Video Web Service” takes a keyword, and returns a list of AOL videos that
match it. According to its WSDL, extracted description, and generated tags, the
classifier classified it as an “Entertainment” Web Service. The classification in
this case looks acceptable. However, in the case of Web Service number 8, this
Web Service can be classified as “Computer” rather than “Others”.

6 Summary and Future Work

The increasing number of public Web Services over the web has been reflected
in limiting the usability of these Web Services. The main limitation behind the
current poor usability of Web Services is the lack of rich service descriptions.
Service providers tend to focus on the functionality of their services rather than
providing rich service descriptions, especially, for non-technical consumers, such
as biologists.

In this paper, we introduced an approach to increase the usability of the
wealth of public Web Services over the web by crawling the websites of their
providers to collect their offered Web Services in addition to extract further
information about the collected Web Services in the form of service descriptions

Table 3. Examples of automatically classified Web Services

ID Web Service Category

1 Cocoma AOL Video Web Services.
http://service.ecocoma.com/video/aol.asmx?WSDL

Entertainmnet

2 Gives in-depth financial and corporation information
for companies
http://wsparam.strikeiron.com/

GaleGroupBusinessInformation?WSDL

Business

3 Retrieves phone number information.
http://wsparam.strikeiron.com/

PhoneNumberEnhancement5?WSDL

Telecommunication

4 Converts RSS feed into HTML
http://webservice.genotec.ch/utilities.asmx?

WSDL

Computer

5 Keyword search against over 20 life sciences databases
http://xml.nig.ac.jp/wsdl/ARSA.wsdl

Education

6 Returns a SIC code for a company at the given address
http://ws.serviceobjects.com/sa/SICAppend.asmx?

WSDL

Finance

7 US Government Web Services and XML Data Sources
http://usgovxml.com/examples/public/armwsdls/

arm.wsdl

Government

8 Allows file upload, listing of files and file download.
http://api.bioinfo.no/wsdl/FileDepot.wsdl

Others

and tags. This extracted information is used to automatically classify these Web
Services into several application domains, e.g., finance, education, entertainment,
etc.

We implemented a Web Service crawler that crawls the web for public Web
Services, collects, annotates, and classifies the collected services. Our focused
crawler identifies WSDL files and HTML pages that reference them. These HTML

pages are then used to enrich the collected Web Services with extracted an-
notations. We consider two types of annotations: service descriptions and tags.
Service descriptions are information expressed in natural languages to explain
their functionalities, inputs, outputs, etc. Tags are common terms that describe
a Web Service. Both types are then used to classify the collected Web Services
through a supervised classifier.

Our focused crawler is limited to so-called big Web Services (SOAP-based).
Extending our approach to incorporate RESTful Web Services by adding ad-
ditional specialized decision rules is part of our future work. Additionally, our

plans include smart annotation extractions by identifying HTML templates, such
as the ones used by Amazon Web Services.

Acknowledgment The authors would like to thank Dustin Lange for his hints
on service classification and Matthias Pohl for his implementation of SimHash.

References

1. Mohammed AbuJarour, Mircea Craculeac, Falko Menge, Tobias Vogel, and Jan-
Felix Schwarz. Posr: A Comprehensive System for Aggregating and Using Web
Services. Services, IEEE Congress on Services – I, 0:139–146, 2009.

2. Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the world
wide web. In WWW ’08: Proceeding of the 17th international conference on World
Wide Web, pages 795–804, New York, NY, USA, 2008. ACM.

3. Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC ’02: Proceedings of the thiry-fourth annual ACM Symposium on Theory of
computing, pages 380–388, New York, NY, USA, 2002. ACM.

4. Mike Clark. UDDI weather report. http://www.webservicesarchitect.com/

content/articles/clark04.asp, 2001. Accessed June, 2010.

5. Miguel Ángel Corella and Pablo Castells. Semi-automatic semantic-based web
service classification. In Johann Eder and Schahram Dustdar, editors, Business
Process Management Workshops, volume 4103 of Lecture Notes in Computer Sci-
ence, pages 459–470. Springer, 2006.

6. Zhang Duo, Li Juan-Zi, and Xu Bin. Web Service Annotation Using Ontology
Mapping. In SOSE ’05: Proceedings of the IEEE International Workshop, pages
243–250, Washington, DC, USA, 2005. IEEE Computer Society.

7. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA data mining software: an update. SIGKDD Explor.
Newsl., 11(1):10–18, 2009.

8. Andreas Heß and Nicholas Kushmerick. Learning to Attach Semantic Metadata to
Web Services. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors, In-
ternational Semantic Web Conference, volume 2870 of Lecture Notes in Computer
Science, pages 258–273. Springer, 2003.

9. IBM developerWorks. Web Services Description Language for Java Toolkit
(WSDL4J). http://sourceforge.net/projects/wsdl4j.

10. Internet Archive. Heritrix Web Crawler Project. http://crawler.archive.org.

11. Nicolai Josuttis. SOA in Practice: The Art of Distributed System Design. O’Reilly
Media, Inc., 2007.

12. Dominik Kuropka, Peter Tröger, Steffen Staab, and Mathias Weske. Semantic
Service Provisioning. Springer Publishing Company, Incorporated, 2008.

13. Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and
Schahram Dustdar. Towards recovering the broken SOA triangle: a software engi-
neering perspective. In IW-SOSWE ’07: 2nd International Workshop on Service-
oriented Software Engineering, pages 22–28, New York, NY, USA, 2007. ACM.

14. Martin F. Porter. Snowball: A language for stemming algorithms. http:

//snowball.tartarus.org/texts/introduction.html, October 2001. Accessed
June,2010.

15. Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne. Learning domain
ontologies for Web service descriptions: an experiment in bioinformatics. In WWW
’05: Proceedings of the 14th international conference on World Wide Web, pages
190–198, New York, NY, USA, 2005. ACM.

16. Martin Treiber and Schahram Dustdar. Active Web Service Registries. IEEE
Internet Computing, 11(5):66–71, 2007.

17. Liang-Jie Zhang, Jia Zhang, and Hong Cai. Services Computing. Springer and
Tsinghua University Press, New York and Beijing, 2007.

