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ABSTRACT

We demonstrate XClean, a data cleaning system specificzdied
towards cleaning XML data. XClean’s approach is based ohaf se
cleaning operators. Users may specify cleaning progrant®ivy
bining operators using the declarative XClean/PL languagpch

is then compiled into XQuery. We plan to show XClean in action
on several scenarios based on real-world data. A graphsealin-
terface supports users in writing XClean/PL programs aridegu
them through the process to obtain the clean data.

1. MOTIVATION

Data cleaning is the process of correcting anomalies in a dat
source, that may for instance be due to typographical erfors
matting differences, or duplicate representations of dityeit is a
crucial task in customer relationship management, datagiiand
data integration. Relational data cleaning is performesbiecial-
ized frameworks [6, 10, 14], or by specialized modules in erod
relational database management systems [3].

With the growing popularity of XML and the large volumes of
XML data becoming available, approaches to effectively afid
ficiently clean XML data are needed. In developing such an ap-
proach, some of the lessons learned from the relationalalizdia-
ing experience clearly apply.

Modularity. Data cleaning processes shouldrbedularin order
to allow the composition of such processes from a set of emab-
terchangeable building blocks. Modularity brings seveeaiefits.
It facilitates reusing existing cleaning transformatiossnplifies
the process of debugging and inspecting the data transfimmma
process, and it allows incremental development, mainemand
evolution of the cleaning process.

Declarativity. By declaratively describing the cleaning process,
its logic can be decoupled from the actual processing ariihfite-
mentation. This makes data cleaning processes easiertmamd
to debug than alternative approaches, based on imperaide c
Declarative cleaning programs allow concentrating on thargng
tasks, while delegating the storage and optimization s$oehe
underlying data management systems.

DBM S-backed data cleaning. Many transformations involved in
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data cleaning are closely related to those typically appliside
database management systems (DBMSSs). Therefore, cledatiag
on top of a DBMS allows taking advantage of its functionadti
including persistence, transactions etc. but also quergnggation,
which may speed up the cleaning.

Some XML data cleaning features make a departure from its re-
lational counterpart, raising new challenges and opparésn
Cleaning rich-structure data.  Different XML representations
of similar real-world objects may exhibit bigger differescamong
them than similar tuple-based ones. Thus, object progartay be
multi-valued, the order and the hierarchical organizatibdata in-
side elements may vary. Furthermore, crucial informatiescdib-
ing the way XML nodes relate to one another is encapsulated by
their parent-child relationships. Thus, XML data cleanirggds to
preserve and exploit these relationships, whereas retatietween
tuples were fully captured by the values they contained.

Cleaning XML with XQuery? Relational data cleaning’s re-
liance on RDBMSs was limited by expressive power mismatches
between the cleaning primitives and SQL. Features suchexrs us
defined aggregate functions, transitive closure comprtatiested
tables etc. are either not fully supported by the languag@ob
well supported by existing systems. In contrast, the stahd&IL
query language, XQuery, is Turing-complete, raising thestjon
whether simply writing XQuery queries may not suffice foralat
cleaning? While this approach can be made to work, it amdonts
writing fresh code for every new cleaning problem, whichsinet
agree with our modularity requirement.

XML cleaning functions. Typical data cleaning steps, such as
distance computation or duplicate detection, are quite ptexn
and/or expensive [11, 13], and the best way to implement them
may not be via XQuery. XQuery supports external functiori,[1
and RDBMSs feature robust execution techniques for quasieg
such functions [7], which can be easily adopted by XQuerggse
sors, too. Thus, valuable, non query-like libraries uségulXML
cleaning can still be exploited while cleaning XML with XQuwe

We present XClean, the first modular, declarative systemder
tive XML data cleaning. In XClean, cleaning processes ard-mo
eled using a a set afeaning operatorsthat can be combined in ar-
bitrarily complex cleaning processes. The operators’ifipation
is expressed in a high-levelperator definition languagecalled
XClean/PL. Writing XClean programs is supported by a greghi
user interface. An XClean/PL programdasmpiledinto XQuery, to
be executed on top of any XQuery processor. The demo shows the
expressive power and ease of use of XClean by means of several
case studies.

The paper is organized as follows. We present the overaksys
in Sec. 2. We then describe the proposed demo scenarios.iB.Sec
Related work is discussed in Sec. 4, and Sec. 5 concludes.
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Figure 1. XClean Architecture
2. XCLEANIN A NUTSHELL

In this section, we introduce XClean, the first declaratine a
modular XML data cleaning system. We outline its architestu
then describe its cleaning operators, and briefly presete¢CPL,
a programming language to specify these operators.

Due to space constraints, we are very brief on these descrip-
tions. Further detailsare availableat [1].

2.1 XClean Architecture

The architecture of the XClean system is depicted in Fig. 1.
A user specifies an XClean program in our proposed declarativ

XClean/PL language (see Sec. 2.3). An XClean/PL program de-

scribes a set of XClean operators, and the way their inpuls an
outputs are connected. The system provides a functiorryitina
cluding commonly used functions (e.g., date formattingsiznub-
bing, edit distance for string similarity, transitive dwe for clus-
tering), which may be used in XClean/PL programs. The famcti
library can be extended by user defined cleaning functicefied

as XQuery functions and implemented either in XQuery or in an
external language [15].

We compile XClean/PL programs into XQuery; executing such
an XQuery then outputs the clean XML data. This allows to eteec
the programs on top of any XQuery-enabled platform. The XQue
standard language [15] is a feature-rich language widelylem
mented by major DBMS vendors (such as IBM, Oracle, Microsoft
etc.), and free-source projects (e.g. Saxon, BerkeleyMB/¥tc.).
The interest of the XClean/PL language in itself is to previdis-
tom syntax for cleaning-specific operators, increasingdhdabil-
ity and ease of maintenanoé cleaning programs, while being sig-
nificantly moreconcisethan the resulting XQuery programs. The
XQuery is input to an XQuery optimizer before it is executgdih
XQuery processor, who outputs a clean representation dfithe
input XML data.

The focus of the demo is on the expressive power of the few
XClean operators and XClean/PL. The current implememtatio
does not feature any optimizations but the underlying X@eer
gine’s. We plan to use Saxon B and/or MonetDB.

2.2 Operators

XClean's cleaning operators are summarized in Tab. 1. Any
XClean operator inputs and outputs collections of (nestigples.
Atuple consists of attribute-value pairs; values may be Xiddes,
atomic values, or tuple sets. We use tuples as they are demten
for modeling associations of nodes and values which musbbe ¢
sidered jointly during cleaning, as we demonstrate on theviing
example.

Fig. 2 (bottom) presents a sample XML document containing
three versions of the same real-world object (in this exampl
movie), with their respective title, year and actor sets.e Hal-
ditional labelsm1, a1 etc. uniquely identify an element and are

Goal

Select elements to be cleaned.
Remove errors in text (typos, format, ...).
Specify data that supports cleaning.
Filter non-duplicate element pairs.
Classify pairs of elements as duplicated,
non-duplicates, ...

Determine clusters of duplicates.
Create unique representation of an entify.
Create XML view of clean data.

Oper ator
Candidate Selection (CS
Scrubbing (SC)
Enrichment (EN)
Duplicate filtering (DF)
Pairwise duplicate
classification (DD)
Duplicate clustering (DC)
Fusion (FU)

XML view (XV)

Table 1: Overview of XClean Operators

XClean. The process and its intermediary results can bevielt
from the bottom up on Fig. 2.

Thecandidate selection{,S) operator is used to define the ele-
ments subject to data cleaning. In our case, these argmihée)
and (actor) elements in the sample dirty XML documetutc at the
bottom of Fig. 2. Candidate selection operators ((1) andn(#)e
figure) generate two separate tuple sets for movie and aatali-c
dates, respectively.

To split the texts appearing insidector) elements into first name
and last name components, we applgcaubbingoperator (2.1).
Scrubbing is reserved to simple processing of atomic va(tineg
is, text nodes or attribute values). Similarly, to preparetfie task
of choosing a single year per movie, we standardize datedfisrto
a four-digit representation, using another scrubbing atper(1.1).

To help decide whickimovie) elements represent the same real-
world object, we annotate each movie with some extra inftiona
its title, and set of actors. We use anrichment £ N) operator
to associate such extra information to cleaning candiddtethis
simple example, movies were enriched with information aoted
from the same document (1.2), namely their title and thetoraset.
In general, enrichment may add to cleaning candidateseistiag
data from other sources, such as, e.g., alternative tiledjrec-
tors, which in our case may be obtained from a source sucteas th
Internet Movie Database.

A central task in data cleaning is duplicate detection, de-
tecting multiple representations of a same real-world abjdn
its most general form, this process involves pairwise caiapas
among the cleaning candidates. To support flexible spetificaf
duplicate detection tasks, while allowing for their effitiémple-
mentation, XClean provides three distinct operators.

Duplicate filtering (O F) allows to prune pairs of cleaning can-
didates of which it can be declared with certainty that theyndt
represent the same real-world object. In our example, wilctar
instance, specify that actors whose last names do not starthe
same letter, and whose first names do not start with the sdtee le
either, are not duplicates (2.2). We model such pair prubing
separate operator to provide a way for users to inject theink
edge of the application domain in the cleaning process. [Eaids
to avoiding expensive computations (such as sophisticistance
measures, or the application of clustering procedures)nexer
possible, and also has the advantage of minimizing inteiamed
cleaning results. Clearly, the quality of the filter influeac¢he qual-
ity of duplicate detection, because pairs falsely filtereil mever
be found to be duplicate. For the pairs surviving duplicdterfng,
we provide two duplicate detection approaches.

Pairwise duplicate detection{D) considers one pair of clean-

used to reference them in our example. Assume that the goal ofing candidates at a time, and classifies it in one class amadung:

the cleaning process isi)(obtaining one representation for each
movie, includingall alternative titles one year andall actors (but
each actor only once)and §:) restructuring each actor element
into a firstname and a lastname element. A possible resufti®f t
process is shown at the top of Fig. 2.

We now explain how this cleaning process is implemented in

plicates non-duplicatesand possibly other classes, e.qg., reflecting
confidence levels such psssibleunlikelyetc. In our example, we
use pairwise duplicate detection to decide that two acterslapli-
cates if either their firsthame or their lastname are eqtia¢rwise,
they are non-duplicates, i.e., correspond to distinctweald ob-
jects (2.3).
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Figure 2: Sample cleaning process overview.

Pairwise duplicate detection is simple and natural to ueei-h
ever, it does not fit all application scenarios and duplicatection
algorithms. Whereas pairwise duplicate detection appieally
on one pair of (possibly enriched) candidates at a time, Viiaale
our duplicate clustering DC) operator to work globally, taking as
input sets of candidate pairs. Duplicate clustering canpdpdied
to perform transitive closure over a set of detected duidipairs
returned by a pairwise duplicate detection method [8], batso
supports the detection of duplicates using algorithms gt on
relationships between them [4]. In our example, duplichister-
ing produces both actor clusters, and movie clusters (3irTte-
tection relies on the observation that relationships betwaovies
and actors may be used to help cleartagh

From every cluster, a unique cleaned representation isnetta
using thefusion (F'U) operator. In our exampleactor) fusion
(3.2) must reconcile the exact spelling of their first and tesnes,
whereas(movie) fusion (3.1) requires resolving conflicts in their
actor sets, years, and titles.

Our last operator, calle®ML view (X'V), is used for XML re-
structuring operations, e.g., to put together the pargalits of
various cleaning operators into a cleaned document, origm al
differently-structured candidates into a unique syntax.our ex-
ample, XML view encapsulates scrubbed firstnames and lastma
into elements, keeps alternative movie titles and assxiaised
actors with fused movies (4).

ENRICH $m IN $scrubbedMovies
INTO $enrichedMovies
BY $m.mCand/movieftitle/text() AS $title,
$m.mCand/movie/set/actor AS $set;
CLUSTER CLASSIFICATION USING
$xcl:radc($actorDups, $candMovieDups)
INTO $movieClusters SCHEMA [$movieCluster],
$actorClusters SCHEMA [$actorCluster];

Table 2: Sample XClean/PL clauses.

2.3 XClean Programming Language

The specification of a cleaning process can be decomposed in
two parts: ) the specific filters, distance functions, duplicate de-
tection algorithms, clustering algorithms etc. that therehooses;
(i7) and the “surrounding” code necessary to implement the-oper
ators based on the functions (as described in the previati®osg
and to glue the operators among them.

Previous experience in data cleaning [6, 10, 14] demomstrat
that creating or choosing the cleaning functions and algms re-
quires a human expert, and cannot be automated. In corttiast,
second task is repetitive, and amenable to automation. dBaise
this observation, we designed the XClean/PL language ksl

An XClean/PL program is a set of clauses, each of which defines
a cleaning operator. Operators input and output tuples $toawned,
global XClean/PL variables. Sample XClean/PL clauses apipe
Tab. 2. XClean/PL keywords appear in bold font.

The top enrichment clause defines the operator labeledifl.2)
Fig. 2. The clause refers to two named tuple sets, globadlijpha
in the XClean/PL programsscrubbedMovies, the operator’s input,
andsenrichedMovies, its output. The tuple variablign iterates over
the input. They clause introduces the two enrichments: the result
of each query is added as a new variable, part of the output flow

The cluster classification clause defines the operatorddid@)
in Fig. 2. The classifier functiofixcl:radc denotes a relationship-
aware duplicate clustering function [13], which is one agdme
possible classifiers to be used here. The classificatiortiimee-
turns two sets of clusters, one containing movies and anotie
actors. Thento keyword is used, as previously, to capture the out-
puts of$xcl:rade, and make them visible in the XClean program for
further usage. Furthermore, this clause explicitly rermthe at-
tributes in each set of cluster’s schema, througtstireEmA clause.

The full description of XClean/PL's syntax, its translatioo
XQuery, and more detailed examples are delegated to [1].

3. DEMO SCENARIOS

The demo will focus on XClean'’s expressive power, and high-
light the benefits of modular and declarative XML data clegni
by means of several real-life dirty XML data sets, outlinedhis
section. Use case details, sample data sets, full XCleapf&L
grams, and their resulting XQueries, are available at [1].
FreeDB Use Case. This use case concerns CD description data
from the FreeDB site (http://www.freedb.org). The cleanpro-
cess (Fig. 3) includes correcting errors in artist names,(differ-
ent capitalization schemes, Various Atrtists is also represi by
V.A., Various), standardizing dates, correcting titleg(gthe title
element often includes Artist/Title), and track titles §ag capital-
ization). Furthermore, the text including a comma sepdréitt
of track titles is split into several track title elementsheTfinal
task is to de-duplicate CDs: if botfartist) and (title) are equal, we
consider CDs to be duplicates. Clusters of duplicates aredd,
and fused to a single representative for every CD. Duringfys
conflicts may appear in category, genre, year, and tradstidif-
ferent categories, genres, and years are concatenatecsasteets
of (title) elements are unified. Note that the table representation in
Fig. 3 has only been used for readability, the actual dataM& X



Artist Title | Cat. | Genre | Year | Tracks
Corduroy | Out | Jazz | Acid | 1995 | <title>
of Jazz Out Of Here
Here <[title>
<title>
Along The Rooftops
<ltitle> 5C
artist->artist
dtitle->dtitle
Artist Title Cat. | Genre | Year | Tracks data>date
Corduroy | Out of | Jazz Out of Here, tracks>tracks
Here Along the Rooftops
Corduroy | Out Of | Jazz | Acid | 1995 | Out Of Here,
Here Jazz Along The Rooftops

FreeDB

Figure3: FreeDB Use Case

MOVIE Use Case. This is a data integration scenario, in which
movies from two sources are first mapped to a common schema,
and then de-duplicated. The source data originates from the
Internet Movie Database IMDB (http://www.imdb.com) anck th
German Movie Repository FILMDIENST (http:/film-diensik
info.de/). Fig. 4 outlines the two source schema and thestarg
schema. In IMDB titles, the possible leading “The” or “An” &
paper’s title is separated in darticle) element. Non-trivial corre-
spondences between source and target types are rendenec/ég ¢
arrows, possibly annotated with transformation functiofer ex-
ample, IMDB names are split into a firsthame and a lastnant, an
the gender is set to “m” for actor, or to “f” for actresses. th a
dition to performing the transformation into the targetestia, we
also scrub and de-duplicate the data using the same déptieat
tection algorithm used in our motivating example.

movig IMDB Schema

title

ar
aka-title
[: title
info —\
prod-com
country
C company Target Schema
people db
actors !
— actor main-title
“— name + aka-title
actresses split name year
L actress gender = "m" prod-com
— name 4

people
L person
firstname
lastname
gender

split name
e

movie FILMDIENST Schema
movie-title

article
type

firstname
lastname
gender

Figure4: MOVIE Use Case

DBLP Use Case. In the well-known DBLP data source some au-
thors with identical names (e.g., Albrecht Schmidt) shaeesame
page, whereas some researchers’ works are split acrossalseve
pages due to different name spellings. The co-authors ofuan a
thor are a good starting point to fix these data problems: the ¢
author sets of the two same-name researchers are disjdiitg w
the co-author sets of a single person (whose name is speltti i
ferent ways) may overlap. A clustering algorithm workingtbe
co-author relationship is designed to repair these problemd ap-
plied within XClean.

CORA Use Case. The CORA bibliographic data set is frequently
used to evaluate duplicate detection algorithms [4, 12]e $&m-
ple XClean process scrubs, enriches and restructuresrtiieldta.
Using the restructured data, publications, dates, auttratvenues
are deduplicated, and are assigned an identifier. In thisigba
we again scrub dates, reusing a standard function availialhe
XClean function library already used in the MOVIE scenafitso,
detecting duplicates in author names is similar to detgaddiumpli-

gender

concat article and title
main 2 main-title,

aka-title

cates in actor names, so we can reuse the same pairwisealeplic
detection function as in the MOVIE scenario, showing theaadv
tage of modularity.

4. RELATED WORK

We only briefly discuss selected related work to data cleanin
systems, and refer to [9] for a survey on relational datanitep
More recent approaches approaches include AJAX [6] and Pot-
ter's Wheel [10]. XClean is conceptually close to AJAX by its
operator-based approach, however the XML context liftsetae
pressive power barriers that confronted AJAX. In our contes-
vantages of a declarative, modular approach are: ease cfispe
tion and maintenance, and opportunities for optimizati®dAX
moreover provided an exception handling mechanism, whieh w
plan to consider as well in the future. In the data integration-
text, systems dealing with data cleaning have been propased
well. These include [2, 5].

5. CONCLUSION

The advent of XML data, dirty repositories of which already
abound, requires adapted cleaning tools. With XClean, iead-
vantage of the expressive power of XQuery to express XMLrelea
ing programs, while providing to the use) & set of modular clean-
ing operators andi{) a compact cleaning language (which XClean
compiles into XQuery) to specify these operators. The madu$
of the demo we propose is on XClean'’s flexibility, modulgréy-
pressive power, and ease of use, based on a variety of use case
We also plan to present some interesting XQuery performaace
sues raised by the kinds of XQuery queries (rich in grouping a
function calls) that XClean produces.
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