
Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 38

Dustin Lange | Christoph Böhm | Felix Naumann

Extracting Structured Information from
Wikipedia Articles to Populate Infoboxes

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.d-nb.de/ abrufbar.

Universitätsverlag Potsdam 2010
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

Das Manuskript ist urheberrechtlich geschützt.
Druck: docupoint GmbH Magdeburg

ISSN 1613-5652
ISBN 978-3-86956-081-6

Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
URL http://pub.ub.uni-potsdam.de/volltexte/2010/4571/
URN urn:nbn:de:kobv:517-opus-45714
[http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-45714]

mailto:verlag@uni-potsdam.de�

Extracting Structured Information
from Wikipedia Articles to Populate Infoboxes

Dustin Lange Christoph Böhm Felix Naumann
firstname.lastname@hpi.uni-potsdam.de

Hasso Plattner Institute, Potsdam, Germany

Abstract. Roughly every third Wikipedia article contains an infobox –
a table that displays important facts about the subject in attribute-value
form. The schema of an infobox, i.e., the attributes that can be expressed
for a concept, is defined by an infobox template. Often, authors do not
specify all template attributes, resulting in incomplete infoboxes.
With iPopulator, we introduce a system that automatically populates
infoboxes of Wikipedia articles by extracting attribute values from the
article’s text. In contrast to prior work, iPopulator detects and exploits
the structure of attribute values for independently extracting value parts.
We have tested iPopulator on the entire set of infobox templates and
provide a detailed analysis of its effectiveness. For instance, we achieve
an average extraction precision of 91% for 1,727 distinct infobox template
attributes.

1 Wikipedia Infoboxes

Wikipedia is a free, collaborative encyclopedia with a huge impact. Since its
foundation in 2001, Wikipedia has become one of the most popular web sites in
the world. As of May 2010, the English version of Wikipedia contained almost
3.3 million articles. Wikipedia articles are expected to offer an overview of its
subject at the beginning of the article. Thus, the article text usually starts with
a definition, a summary, or a short description of the subject. Often, a box
next to the summary offers structured information about the article’s subject in
table form. These so-called infoboxes contain facts about the described subject,
displayed as attribute-value pairs. Figure 1 shows an example. The text summary
and the infobox allow readers to rapidly gather the most important information
about the article’s subject.

Infobox creation is based on templates. In Wikipedia, a template works simi-
lar to a function: it receives parameters that can be viewed as values of attributes,
and it has a well-defined return value, namely the Wikipedia source text. The
template’s attributes describe information about instances of a specific concept,
and the template’s return value contains the source text necessary to display the
box and its content in table form.

Often, an infobox does not contain as much information as possible, i.e., the
infobox template call does not specify values for all of the template’s attributes.
For example, the original infobox shown in Fig. 1 contains only few values for

5

Added by iPopulator

Fig. 1. Example for infobox and for infobox attribute values extracted by iPopulator

the infobox book template, namely author, country, and language. Among
others, no values for the attributes genre and publication date have been
specified. There are several reasons for empty infobox attributes:

– Unknown value: The value of an attribute might be unknown to the author
of the Wikipedia article.

– Inappropriate attribute: The attribute could be inappropriate for the specific
subject. For example, the novel War and Peace is not part of a series, so it
is impossible to specify any predecessors or successors.

– Intentionally empty value: Authors might deliberately omit attribute val-
ues, because they might be deemed uninteresting for this subject, or out of
laziness.

– Unknown attribute: Many infoboxes are created by copying the source code
from another article and replacing the attribute values. If an attribute is
missing in the copied article, it will thus be missing in the newly created
article.

To overcome several of these reasons for missing infobox attribute values,
we propose to examine the article text. Often, article texts contain some of the
values specified in the infobox. Figure 1 shows an example: For several infobox
attributes, the specified values are contained in the article text, such as the title
and author of the book, its genre, and its publication year.

Problem Statement Given a Wikipedia article containing an incomplete infobox
template call, the Infobox Population Problem is to extract as many correct at-
tribute values from the article text as possible. We say an infobox template call
is incomplete if some attributes are unspecified. The problem is restricted to
the extraction from Wikipedia article texts; no external sources are used. Note

6

that there is no limitation on a specific set of infobox templates or on a specific
domain. A system should be able to adapt to any given infobox template, i.e.,
the system should extract attribute values for all attributes in all infobox tem-
plates. Apart from the general difficulty of text extraction, we face the following
additional challenges:

– Large number of diverse infobox templates: Wikipedia contains a huge set of
diverse infobox templates. In the analyzed data set, more than 3,000 different
infobox templates could be distinguished, although some of them are used
by only a small set of articles. Altogether, the infobox templates contain
more than 20,000 different attributes. The developed system should cover as
many of these attributes as possible instead of focusing on a selected subset
of templates.

– Data size: The data set itself is quite large. The used Wikipedia dump as of
August 2009 contains about three million articles and has a size of 23 GB.

– Composite infobox attribute values: Many infobox attribute values are com-
posed of several parts, or are lists of values, e.g.:
• key people: Bill Gates (Chairman)

• number of employees: 93,000 (2009)

• genre: Dystopian, Political novel, Social science fiction

Thus, iPopulator should be able to extract and construct such values accu-
rately.

– Diverse writing styles: Wikipedia is a collaborative encyclopedia, i.e., most
Wikipedia articles can be edited by anyone. Consequently, articles are writ-
ten in different styles. The lack of regularity makes the extraction process
more challenging.

Contributions With iPopulator we present a system that automatically extracts
infobox attribute values from Wikipedia articles. The system automatically cre-
ates training data, which is used to learn Conditional Random Fields (CRF)
models for as many infobox attributes as possible. These models can be ap-
plied to other articles to extract additional, missing attribute values. Within
this overall system we make the following contributions:

– Detection of Attribute Value Structures: We present an algorithm that de-
termines the internal structure of infobox attribute values. The algorithm
analyzes values for each attribute to detect a structure that represents the
syntactic contents of the majority of these values.

– Exploitation of Attribute Value Structures: We use the detected structures to
improve the attribute value extraction process. The structures allow splitting
values into different parts that can be extracted independently from each
other. Afterwards, the structures can be used to align the extracted attribute
value parts.

– Comprehensive Evaluation: To evaluate our ideas we tested on all attributes
of all infobox templates used by at least ten articles in Wikipedia. To the
best of our knowledge, this is the most comprehensive study of an infobox
extraction system.

7

The remainder of this paper is structured as follows: Section 2 gives an
overview of related work. Section 3 presents our extraction system including
structural analysis, training data creation, CRF training, and the final extrac-
tion step. A detailed evaluation is given in Sec. 4. Finally, Sec. 5 concludes this
paper.

2 Related Work

Related research ranges from the more general area of information extraction
from the Web and Wikipedia in particular to the explicit extraction of infobox
attribute values from Wikipedia.

Extraction of Relations from Web and Wikipedia KnowItAll [7] and TextRun-
ner [2] extract knowledge in form of relations from general web documents. Both
systems do not focus on the characteristics of Wikipedia. In contrast, our system
focuses on creating domain-specific extractors for all attributes in all infoboxes.
By specializing on Wikipedia articles, extractors can exploit the encyclopedic
style of these articles. Catriple [13] analyzes category names and co-occurrences
as well as the category hierarchy fromWikipedia articles to extract triples. These
generated triples may contain information that is useful to fill infobox attribute
values. However, the focus on categories does not overlap with our focus on
article text.

Ruiz-Casado et al. [17] present a system that uses lists of term pairs as
training basis and that identifies relations between these terms using Wikipedia
articles. Their system uses a rule-based extraction process and needs a list of
manually tagged training data items. Wang et al. [19] also use a rule-based ap-
proach, but they add selectional constraints on the extracted patterns. Herbelot
and Copestake [8] propose a method to create minimal semantic representations
of sentences and to extract ontological is-a relations from them. The procedure
focuses on is-a relations; on the contrary, iPopulator does not restrict the set of
extracted relations.

Finally, Nguyen et al. [15] extract relations by tagging entities and analyzing
dependencies between them. Their system is restricted to 13 relation types, i.e.,
manual work is needed to add another relation type, which is not the case for
iPopulator. None of these systems deal with the characteristics of Wikipedia
infobox attribute extraction.

Extraction of Wikipedia Infobox Attribute Values Wu and Weld [21] propose
Kylin as a system for automatically generating infoboxes from Wikipedia arti-
cles. Our system is in parts similar to Kylin, but offers important improvements.
Kylin merely labels exact occurrences of attribute values. By applying a simi-
larity measure to the compared infobox attribute values and text occurrences,
iPopulator can find more occurrences (+23%). Dividing the attribute value into
significant substrings allows even more occurrences to be found (+31%). To se-
lect the input of the attribute value extractor, our system reads only the first

8

paragraphs of an article as a basic heuristic, while Kylin uses sentence classifiers.
Both Kylin and iPopulator employ CRFs for the extraction process: Kylin uses
CRFs to extract entire attribute values, while iPopulator uses them to extract
attribute value parts according to prior identified value structures. In contrast
to Kylin, iPopulator is able to reconstruct the structure of attribute values by
aligning the extracted attribute value parts and inserting structural elements.
Wu and Weld chose four specific infobox templates for their experiments, in
which Kylin achieved precision of 0.74 to 0.97 and recall of 0.61 to 0.96. In our
work we evaluated extraction for all Wikipedia templates and achieve average
precision of 0.91 and average recall of 0.66.

In a later work, Wu et al. [20] present an improved version of Kylin that
considers shrinkage, ontologies, and web search results. These improvements re-
sult in an increase in recall of 5.8% to 50.8% while maintaining precision. In
Sec. 4.4, we compare the results of Kylin and its successor with those of our
work in detail.

Hoffmann et al. [9] show a further improvement of Kylin that incorporates
user feedback. Their system visualizes contradictions between infobox attribute
values and article text occurrences. The user is offered the possibility to correct
the information. This feedback is used to improve the performance of the attri-
bute value extractors. Finally, Adar et al. [1] present Ziggurat, a system that
exploits differences between the different language versions of Wikipedia articles.
For this purpose, Ziggurat matches attributes of different language versions of
infobox templates by analyzing, among others, equal values, contained values,
or values in the same cluster. Compared to iPopulator, both works require ad-
ditional input, namely user input or versions of the same article in a different
language.

3 Extracting Attribute Values

iPopulator’s extraction process is shown in Fig. 2. For each infobox template,
the following steps are applied using articles that contain an infobox of this type
as training data:

(1) Structure Analysis: For each attribute of the infobox template, we
analyze its values given in the training article text to determine a structure that
represents the attribute’s syntactical characteristics.

(2) Training Data Creation: For this step, we use articles that specify a
value for an attribute as training data. Occurrences of attribute values within
the training article texts are labeled.

(3) Value Extractor Creation: The labeled training data are used to
generate extractors for as many attributes as possible. We employ Conditional
Random Fields (CRFs) to generate attribute value extractors. Extractors are
automatically evaluated, so that ineffective extractors can be discarded.

(4) Attribute Value Extraction: The extractors can then be applied to
all articles to find missing attribute values for existing infoboxes.

In the following sections, we provide details on the different steps.

9

Artikelinfo
Wikipedia�Article

Infobox Article Text

(1)�Structure�
Analysis

(2)�Training�Data�
Creation

Attribute�Value�
Structures

Training�Data

(3)�Value�Extractor�

CRF�Models

()
Creation

(4)�Attribute�Value�Extraction

Extracted�Infobox

Fig. 2. iPopulator extraction process

3.1 Structure Analysis

Many attributes have a characteristic structure. For example, a value for the
infobox company attribute number of employees might be 12,500 (2003),
which means that 12,500 people were employed in 2003. Many other values of
this particular attribute have a similar structure of the form (Number ‘(’ Number
‘)’). Other typical examples are:

– key people: Samuel J. Palmisano (Chairman, President and CEO)

– revenue: {{loss}} US$ 95 billion (2009)

– residence: The White House (official)

Further, many attributes are multi-valued, such as Bill Gates, Paul Allen

for the founder attribute. iPopulator discovers attribute value structures and
exploits them both for training data and attribute value construction.

In this section, we present our algorithm to discover the structure of attribute
values. The goal of the algorithm is to analyze available values of an attribute
and to discover a structure that represents most of these values and is still easy
to process, i.e., simple, but powerful enough to split values and to combine value
parts.

10

The resulting structure is expressed similarly to a regular expression; hence,
determining the pattern is similar to learning a regular expression from exam-
ples. There are several approaches to this task [3, 4, 12]. These approaches usually
address the problem of finding a preferably small regular expression that covers
every single value. Since attribute values are quite diverse, resulting expressions
using such approaches would become rather complex. Additionally, these ap-
proaches do not consider the varying importance of examples. In the case of
attribute values, we argue that more frequent structures should have a higher
influence on the result pattern, and rare structures need not be reflected in the
result pattern at all. Thus, these regular expression learning approaches are not
well applicable for the problem of discovering attribute value structures.

Structure discovery algorithm We have developed a new algorithm that addresses
the shortcomings of regular expression learning algorithms. The main steps are
shown in Fig. 3 and explained in more detail in the following. Tables I to IV in
Fig. 4 illustrate the algorithm by means of the attribute number of employees

from infobox company. Table I shows some example values for this attribute. At
first, the algorithm determines patterns for all values of an attribute by parsing
them (Step (a)). The patterns for the examples in Table I are shown in Table II.
These patterns are then counted and sorted by their frequency (Step (b)). Ta-
ble III shows the most frequent patterns for number of employees. After that,
the important patterns are merged into the result expression (Step (c)), starting
with the most frequent ones. The result expression for the example attribute is
shown in Table IV. Subsequently, we discuss the functions Parse(), IsImportant-
Pattern(), and Merge().

DiscoverAttributeValueStructure(attribute�values�V)

(a)�Parsing

For�each�value�v in�V:

Create�pattern�p�=�Parse(v)

Add�pattern�to�pattern�list�L

(b)�Counting�&�Sorting

Group�same�patterns�in�L and�sort�by�frequency�(descending�order)

(c)�Merging

Initialize�result�expression�r�with�most�frequent�pattern

For�each�remaining�pattern�p in�L:

If�IsImportantPattern(p):

Merge(r,�p)�next�frequent�pattern�p into�current�result r

Return rReturn�r

Fig. 3. Structure discovery algorithm

11

Table I Table II Table III
Attribute Values Attribute Value Patterns Attribute Value Patterns Freq.
36,518 (2007) Number "(" Number ")" Number 2872
5.538 Number Number "(" Number ")" 2116
92,000 (2008) Number "(" Number ")" Number Text 507
34,000 (2008) Number "(" Number ")" Text Number 393
24,000 (2004) Number "(" Number ")" Number Format
circa 37,000 Text Number "(" Number ")" Format

Number "(" Text Number ")" 278
… …

4000 (2008) Number "(" Number ")"
1,440 (as of 2004) Number "(" Text ")"
82.773 Number Table IV
1,545 paid staff Number Text Result Expression
… … (Text)? Number ("(" Number ")")?

355

35,258 '(2008)' Number Format "("
Number ")" Format

(c) Merging

(a
) P

ar
si

ng

(b
) C

ou
nt

in
g

&
 S

or
ti

ng
Fig. 4. Example for applying the structure discovery algorithm (Fig. 3) to values of
the attribute number of employees from infobox company

Function Parse() A pattern should divide an attribute value into meaningful
parts. This allows us to label parts independently, as shown in Sec. 3.2. Text to-
kens can be distinguished from number tokens. Additionally, special Wikipedia
syntax elements, such as links and template calls, can be identified. Further-
more, structural elements can be recognized and used during attribute value
construction, as described in Sec. 3.4. For this purpose, brackets, commas, and
other formatting symbols are identified. The Parse function is implemented using
regular expressions for each of the mentioned types.

Function IsImportantPattern() For each attribute, there is a variety of different
patterns that represent the format of the attribute’s values. If all these patterns
had to be covered by a single structure, the resulting expression would become
overly complex. If only the most frequent pattern would be considered, the re-
sult structure would cover only the respective fraction of an attribute’s values.
For these reasons, iPopulator considers all frequent patterns; rare patterns are
ignored. The function IsImportantPattern returns True only if the pattern cov-
ers at least 20 values and at least one percent of the values. We empirically
determined these thresholds on a representatively chosen set of attributes from
different infobox templates.

If there are not enough attribute values available to determine an attribute
structure, we do not consider the attribute at all. In this case, creating a learner
for the few and diversely specified values would be unpromising, anyway.

Function Merge() The merging algorithm is responsible for combining the cur-
rent result expression (basic pattern) and another pattern (merging candidate).
To merge the two patterns, we apply the following two rules.

12

Rule (1): Basic pattern extension

– Condition: The merging candidate includes and extends the basic pattern.
– Action: Additional value parts from the merging candidate are added to the

basic pattern and marked as optional (with a question mark).
– Example: Merging the basic pattern (Text) with the merging candidate

(Text “(” Number “)”) results in (Text (“(” Number “)”)?).

Rule (2): List recognition

– Condition: The current result expression ends with at least three repetitions
of the same token sequence and at least two repetitions are marked as op-
tional. Separator tokens (e.g., commas) are used to separate the repeated
token sequences.

– Action: The list is summarized and repeated parts are marked (with an
asterisk).

– Example: The attribute starring from infobox film comprises a list
of actors, such as [[Humphrey Bogart]], [[Ingrid Bergman]], [[Paul

Henreid]]. In this case, the corresponding pattern is (Link Separator Link
Separator Link). Other value patterns for this attribute end with even more
sequences of Separator and Link tokens. The rule merges this list into the
result expression (Link (Separator Link)*).

If none of the rules can be applied, the pattern cannot be merged into the
result structure and is ignored.

3.2 Training Data Creation

Training data are a basic prerequisite for any machine learning technique. In our
case, we need to spot and label attribute value occurrences in Wikipedia article
texts. Such a search is not an easy task, because attribute values usually do not
occur verbatim in texts. We define a simple heuristic to discover fuzzy matches
of attribute values. Additionally, the volume of text under consideration is quite
large. To restrict the corpus size on the one hand, but also examine only useful
text passages, we first filter article paragraphs.

Article Paragraph Filtering Many Wikipedia articles are rather long and contain
much information that is irrelevant for the Infobox Population Problem. For ex-
ample, the infobox book attribute name refers to the book name that is usually
mentioned in the very first sentence of the corresponding article. Figure 5 shows
an analysis of the 15 most frequent attributes of infobox book. It plots in which
paragraph attribute values occur the first time (if contained at all). For example,
to find out the book name, reading only the first paragraph is sufficient for 92%
of all book articles. This tendency holds for most attributes in most templates,
i.e., most graphs have a relatively high slope for the first paragraphs, but level
out for following paragraphs.

In conclusion, examining more than a few initial paragraphs does not sig-
nificantly add attribute value occurrences. Moreover, experiments have shown

13

that examining more paragraphs may even cause worse extraction results due
to the consideration of much useless information, which makes the extraction
model more noisy and thus error-prone. For several different infobox templates,
we evaluated different amounts (1-10 paragraphs) and determined a length of
five paragraphs as an optimal compromise between precision and recall. Figure 5
underpins this discussion.

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pr
op

or
ti

on
 o

f a
rt

ic
le

s

Number of paragraphs

author

name

genre

series

country

title_orig

pub_date

release_date

illustrator

preceded_by

In 73% of all article texts that contain the respective
"preceded_by" attribute value, this value is contained
in the first three paragraphs.

Fig. 5. Proportion of articles containing the respective attribute value in the specified
number of paragraphs (15 most frequent attributes in infobox book)

Labeling with Similarity Measure To create training data for CRF learning, we
now label occurrences of infobox attribute values in article texts. Often times,
an attribute value and its occurrence in the text do not exactly match. For ex-
ample, the value of the attribute company name might be Fantastic Holdings

Ltd; but the article text mentions Fantastic Holdings Limited. To handle
such differences, we define a similarity measure that determines whether an ar-
ticle text token is a fuzzy match of an attribute value or not. The measure
combines an approximation measure for numeric values and edit distance for all
other strings. Functions 1 and 2 define the similarity for numbers and strings. If
only one of two compared tokens is a number, they are evaluated as dissimilar.
We chose the Levenshtein edit distance [11] for the ed (edit distance) function.
Although there are distance measures that are better suited for specific string
matching tasks [6], Levenshtein distance with equal weights for insertion, dele-
tion, and update of characters is an adequate choice for the generic setting of
matching all kinds of strings in Wikipedia. The similarity thresholds were de-
termined empirically using 20 representatively chosen attributes in 5 frequently

14

used infobox templates.

snum(s1, s2) :=

{
True |s1− s2| ≤ 1

1000s1

False otherwise
(1)

sother(s1, s2) :=

{
True ed(s1, s2) ≤ 1

4 length(s1)

False otherwise
(2)

In our evaluation, we compare the occurrence rates for exact matching and
fuzzy matching and observe an improvement for all considered infobox templates:
More occurrences can be found by applying the similarity measure. Using similar
matching, we achieve an average occurrence rate of 26.0%, which is an increase
of 23%.

Labeling Value Parts Besides fuzzy matching, we leverage attribute value struc-
tures to further improve training data creation. The structure that is determined
for each attribute in each infobox is useful to improve training data creation. All
attribute values are divided into several parts according to the corresponding
attribute value structure. Each part of the value structure is labeled separately.
For example, the value of number of employees in infobox company can be
54,400 (2008). On the other hand, the corresponding article might state In

2008, the company had 54,400 employees. Although both numbers occur in
the sentence, no token would be found if only entire values were labeled. Labeling
value parts allows us to individually label the parts 54,400 and 2008.

A statistical analysis shows that searching value parts independently signif-
icantly increases the probability to find an attribute value occurrence. Figure 6
shows a comparison between occurrence rates of complete attribute values and
value parts. Here we show the average of value occurrence rates for each in-
fobox template. On average, searching for value parts increases the rate of found
occurrences from 26.0% to 33.9%; an improvement of 30.5%.

To retain the identity of the value part that is being labeled, a number is
assigned to each structure part and used as the actual label. Only the value part
occurrences in the sentence that contains the most individual parts are labeled.
A sentence that contains only such parts of an attribute value that have been
marked as optional is disregarded. Thus, for instance spurious occurrences of
year values are ignored.

3.3 Value Extractor Creation

With labeled training data at hand, we can now create and apply attribute-
specific extractors. Extracting attribute values from Wikipedia articles is an
information extraction problem [18]. To tackle this, we employ learning-based
methods rather than hand-coded techniques, since our goal is to build a system
that extracts attribute values for all attributes of all infoboxes. Further, Wiki-
pedia allows anyone to add new content, which causes articles to show many

15

0%

20%

40%

60%

80%

100%

O
cc

ur
re

nc
e

ra
te

Infobox template
Complete match (fuzzy) Part match (fuzzy)

On average, 42 % of the infobox_album attribute values can be
found using part matching. This is an improvement of 62 % in
comparison to complete matching.

Fig. 6. Comparison of complete attribute value occurrences and average attribute value
part occurrences, i.e., average fraction of token parts that occur in the article text

different writing styles. Due to a lack of common sentence structures, we pre-
fer statistical methods over extraction rules. Specifically, we chose Conditional
Random Fields (CRF) [10] as extraction method, because they have proven a
strong performance in labeling tasks [18].

CRFs learn to label tokens based on features. The features should represent
key characteristics of a token in the analyzed domain. Our features are shown in
Table 1. Token labels have been determined in the previous step and represent
the position of the labeled token in the attribute value structure. By using posi-
tion numbers as labels, we can exploit the dependencies of value parts in article
texts; e.g., if part 1 is often followed by part 3, then the CRF can recognize this
dependency.

For each infobox template attribute, we determine the labels and feature
values of the tokens in the training articles. These data represent the input
of the CRF learner that determines attribute-specific weights for the features.
Applied to an unseen article, the CRF predicts labels based on calculated feature
weights. As CRF implementation, we used CRFsuite [16] with L-BFGS [5] as
feature weight estimation method.

Attribute value extractors are selected according to their extraction per-
formance. We automatically evaluate attribute extraction performance of all
generated extractors. Details are presented in Sec. 4.3. Since precision is more
important than recall for automatic content generation in Wikipedia, we select
all attributes for which we achieve a precision of at least 0.75. For all other
attributes, the extractors are discarded.

16

Description

Length
Small token (length < 10)
Within long paragraph (#sentences > 2)
Relative token positions
Position in article: in 1st, 2nd, 3rd third
Position in paragraph: in 1st, 2nd, 3rd third
Position in sentence: in 1st, 2nd, 3rd third

(a) Features for the currently analyzed token only.

Description Example

General
Value of the token 2010
Type Number, String
Part-of-speech tag NN
Enclosed by formatting symbols? [”] Hi [”]
Enclosed by the formatting symbols ”’? [”’] Title [”’]
Structure
Two-digit number 17
Four-digit number 2010
Number 1511
Formatted numbers (thousand sign) 1,121
Formatted numbers (thous., mill./bill.) 1 mill.
Alphanum. char. (start: letter) Company
Alphanum. char. (start: letter, end: dot) end.
Check for Occurrence
Token km/mi/miles km
Token contains “http” http://faz.de
Token contains “?” Who?
Token contains “.” him.

(b) Features for all tokens inside a window of five tokens before and after the
currently analyzed token.

Table 1. CRF features determined for each token

17

3.4 Attribute Value Extraction

The generated attribute value extractors can now be applied to unseen articles.
For this task, iPopulator determines the infobox template specified in the article.
Then, all attribute value extractors that have been learned for this template are
applied to the article. The result of this step is a labeled article text where the
labels represent identified attribute value parts according to the attribute value
structure as described in Sec. 3.2.

When constructing an attribute value from labeled tokens, the learned attri-
bute value structure is used in various ways:

– Align value parts: Assigned token labels represent the value part positions
in the value structure. Hence, extracted value parts in the result value are
aligned according to value part positions. For repetitions, the order of ap-
pearance in the article text is retained.

– Insert structural elements: Structural elements, such as brackets and com-
mas, are not extracted from article texts, but pre-defined for the entire attri-
bute. In the case of opening and closing brackets, the actual bracket symbol
is encoded in the value structure part. In the case of Separator and Format
tokens, the most frequent value for this token is determined by analyzing
the training data for the considered attribute.

– Avoid meaningless values: Optional tokens often have no meaning without
related mandatory tokens; hence, attribute values must consist of at least one
mandatory token. For this reason, if only optional tokens could be extracted
from the article text, no attribute value is constructed.

For instance, the text “IBM’s key people are Sam Palmisano, who

serves as CEO, and Mark Loughridge as SVP.” is used to construct Sam

Palmisano (CEO), Mark Loughridge (SVP) for the key people attribute.

4 Evaluation

After clarifying evaluation measures, we present the results of our evaluation.
First, we analyze selected infobox templates in detail, then we evaluate perfor-
mance over the entire set of infoboxes. Finally, we contrast our results with those
of Kylin [21] and its successor [20].

4.1 Evaluation Measures

For the evaluation of extracted attribute values, we distinguish the correctness of
a complete value and the correctness of value parts. In both cases, the similarity
measure defined in Sec. 3.2 is used.

To evaluate complete values, we compare the values extracted by iPopulator
with the expected attribute values in existing infoboxes. Fcomplete is the har-
monic mean (F-measure) of precision (Pcomplete) and recall (Rcomplete) regarding
complete values.

18

Note that values extracted by iPopulator are often not entirely true or false.
By dividing a value into parts, we can specify more fine-grained evaluation mea-
sures. The correctness regarding value parts is determined by the proportion
of correct value parts. The usage of value part numbers as labels allows the
alignment of extracted and expected value parts. The aligned parts are classified
as

– Correct (C), if expected and extracted value parts match,
– Substituted (S), if expected and extracted value parts do not match,
– Deleted (D), if no value has been extracted for an expected value even though

the expected value appears in the article text, or
– Inserted (I), if an additional value part has been extracted.

This notation is based on the work by Makhoul et al. [14]. The performance
measures are defined as follows: Fpart is the harmonic mean of precision Ppart

and recall Rpart with

Ppart =
|C|

|C|+ |S| Rpart =
|C|

|C|+ |S|+ |D|
Insertions are not considered incorrect, since it is desired to extract additional

value parts. But because their correctness cannot be evaluated automatically,
insertions are ignored in this measure.

To further illustrate the difference between value parts and complete values,
we use the following example: An infobox contains a single value that consists
of three parts p1p2p3 and the article text contains all three desired value parts.
If iPopulator extracts p1p2p3, then Pcomplete = Ppart = 1. If iPopulator extracts
p1p2p4 with p3 �= p4, then Pcomplete = 0, since the complete values are too
different, but Ppart =

2
3 , since only one of the three value parts is not correct.

4.2 Experiment 1: Selected Infobox Templates

Methodology Four different infobox templates have been chosen for a
detailed discussion: infobox actor, infobox book, infobox company, and
infobox planet. These templates are among the 50 most frequently used tem-
plates, but they differ in their domains. For each infobox template, 50% of all
articles having an infobox of this type were randomly selected and used for
training and evaluation by means of 3-fold cross-validation. Table 2 summarizes
the overall results and Fig. 7 shows results for different attributes within the
analyzed templates. Note that this experiment covers all respective template
attributes to allow a detailed analysis. Therefore, the results include attributes
for which it is known that extraction yields poor results. For the actual use,
iPopulator excludes such poor extractors.

Discussion Figure 7 allows an analysis of differences between Fpart and Fcomplete.
Fpart shows the extraction quality of the token value parts, while Fcomplete indi-
cates the quality of the attribute value construction from value parts. On average,

19

0

0.2

0.4

0.6

0.8

1

F-
m

ea
su

re
 /

 o
cc

ur
re

nc
e

ra
te

Attribute
F (part) F (complete) Occurrence rate (part)

(a) infobox planet

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F-
m

ea
su

re
 /

 o
cc

ur
re

nc
e

ra
te

Attribute
F (part) F (complete) Occurrence rate (part)

(b) infobox book

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F-
m

ea
su

re
 /

 o
cc

ur
re

nc
e

ra
te

Attribute
F (part) F (complete) Occurrence rate (part)

(c) infobox company

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F-
m

ea
su

re
 /

 o
cc

ur
re

nc
e

ra
te

Attribute
F (part) F (complete) Occurrence rate (part)

(d) infobox actor

Fig. 7. Extraction results and attribute value part occurrence rates (as introduced in
Sec. 3.2) for attributes in the analyzed infobox templates. Attributes are sorted by
Fpart.

20

Infobox template #articles Avg. Fpart Avg. Fcomplete

infobox actor 12168 0.59 0.38
infobox book 6256 0.62 0.41
infobox company 7589 0.51 0.28
infobox planet 5470 0.98 0.82

Table 2. Average extraction results per infobox template, calculated by weighting
results of all infobox attributes by attribute frequency

Fcomplete is about one third lower than Fpart. This means that in two of three
cases, complete attribute values could be constructed correctly from value parts
using the attribute value construction algorithm (Sec. 3.4). In the other cases,
at least one meaningful part of the value could be extracted.

For some attributes, such as occupation and location in infobox actor,
or foundation and revenue in infobox company, Fpart is considerably higher
than Fcomplete. There are several reasons for that. First, if some parts of an
attribute value could not be extracted, it is impossible to construct a complete
attribute value. For example, many values for revenue in infobox company

contain a small icon indicating whether the revenue is a profit or loss. This
icon is implemented as a template call, such as {{profit}} or {{loss}}, and
thus never contained in article texts. This always yields a wrong complete value,
even if other correct parts for the value were extracted correctly.

Another reason for incorrect complete results can be the order of value parts.
Although the attribute value construction algorithm presented in Sec. 3.1 aligns
the token value parts according to the extracted attribute value pattern, there are
cases in which no alignment is possible. For example, the value for occupation
in the infobox of the article on Dolores Hart is [[Actress]], [[nun]]. The
extracted value is [[nun]], [[actress]]. Since the value structure for this
attribute contains a list, the extracted attribute value parts are sorted by their
order of appearance in the article text, which contradicts the order given in the
article’s infobox.

Moreover, the overall results in Table 2 show considerable differences between
infobox planet and all other infobox templates. A manual inspection of planet
articles revealed that many are rather short and share a similar structure. This
similar structure allows the attribute value extractors to easily identify the cor-
rect attribute values, if they are contained in the article at all. Presumably, only
a relatively small community of authors regularly edits planet articles, while
much more and more diverse authors edit articles about books or companies.
Hence, generating extractors for these domains is more challenging.

An important factor for the extraction quality is the quality of the training
data. For example, labeling a year is quite difficult, because numbers often appear
in several sentences and different contexts. For selected attributes (five attributes
per infobox template), we manually analyzed the quality by judging the context
of the labeled attribute value occurrence. When comparing training data and

21

extraction quality, a correlation can be seen for some attributes. For example, for
all name attributes, only few errors were made during training data construction,
and good extraction results can be achieved (see Fig. 7 (a)–(d)). In contrast,
for the attribute isbn in infobox book, all labeled occurrences are in a wrong
context; the extraction result for this attribute is unsurprisingly poor (Fpart =
0.32). These findings indicate that further research on improving training data
quality may also help improving extraction quality.

To further analyze reasons for good or poor extraction results, Fig. 7 also
shows occurrence rates of the attribute values. For several attributes, such as
name and author in infobox book, or name and birthname in infobox actor,
there are high occurrence rates as well as good extraction results. For other at-
tributes, e.g., followed by and image caption in infobox book, or image and
spouse in infobox actor, values occur only rarely in article texts, and extrac-
tion results are rather poor. This indicates a relationship between occurrence
rate and extraction performance. Note that for low occurrence rates, Fcomplete

is often rather low, while considerably better results could be achieved for Fpart.
This indicates that, even for rarely occurring attribute values, we can extract at
least parts of a value.

4.3 Experiment 2: All Infobox Templates

Methodology In this experiment, we apply iPopulator to all infobox templates.
On average, an infobox template is used by 311 articles (minimum: 1 article,
maximum: 55.300 articles). For each template, 50% of all articles containing a call
to this template have been selected for evaluation1. From each article, the first
five paragraphs have been considered. Each attribute is evaluated using 3-fold
cross validation. On a 64-bit Linux 2.6.18 system with 8-core CPU and 16 GB
RAM, this test took about 18 hours. The goal of this experiment is to specify
precisely for which infobox templates and attributes therein we want to actually
apply extraction. Only promising attributes will be chosen. To characterize this
freedom, we calculated precision of extraction results for all created extractors.
The results are shown in Fig. 8.

Discussion Figure 8 shows for how many attributes iPopulator achieves good
extraction results. For example, we achieve precision Ppart ≥ 0.8 for 1521 at-
tributes and Ppart ≥ 0.9 for 1127 attributes.

We also examined the sensitivity of our approach to training data size. In
Fig. 9, each point represents (at least) one attribute value extractor. The graph
shows the number of considered training articles as well as the extraction perfor-
mance. We can see that there is no direct correlation between training data size
and extraction performance: there are extractors created with only few training
articles achieving good extraction results as well as extractors with much training
data and poor results, and vice versa. iPopulator’s performance does not seem

1 For performance reasons, we chose a subset of all available articles.

22

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1
25

1
50

1
75

1
10

01
12

51
15

01
17

51
20

01
22

51
25

01
27

51
30

01
32

51
35

01
37

51
40

01
42

51

Pr
ec

is
io

n

Number of attributes

Fig. 8. Precision of attribute value extractors for all attributes with Ppart > 0 of all
infobox templates, sorted by precision

to be sensitive on training data size. Other attribute properties, as examined in
the previous experiment, are more relevant for extraction performance.

For the following, we select only those 1,727 attributes with Ppart ≥ 0.75.
The resulting average extraction results for all infobox templates are shown in
Fig. 10. The overall average measures for all selected attributes are Fpart = 0.73,
Ppart = 0.91, and Rpart = 0.66.

4.4 Comparison with Related Work

The results of iPopulator and related systems presented in Sec. 2 are difficult to
compare. Relevant differences between the evaluation methodologies of iPopula-
tor and Kylin [21] as well as its successor [20], dubbed K2 in the following, are
shown in Table 3.

Despite these differences in evaluation, we offer a comparison of extraction
results for all domains for which results of Kylin/K2 are known (Table 4). For
K2, the authors did not state overall precision and recall numbers; thus, we
eyeballed presumably optimal precision and recall values for each domain from
their P/R-graphs.

The results show that iPopulator competes with Kylin and K2; in some
domains, iPopulator even outperforms Kylin’s and K2’s results. Especially pre-
cision is iPopulator’s strength, one reason being its ability to restrict extraction
to promising attributes. Kylin and K2 cannot perform such restriction automat-
ically, because their ground truth is manually extracted whereas we determine it
automatically. Since iPopulator uses a similarity measure and divides attribute
values into parts for labeling article texts, one could expect higher recall as well
as lower precision values. However, since we use the same techniques for training
as for evaluating the system, we argue that the calculated precision and recall
values are not affected by these differences.

23

Kylin/K2 iPopulator

Evaluation of 8 concepts Evaluation of all infobox templates (≈
800 concepts)

Tests on 20-50 randomly selected arti-
cles for each concept

Tests on 50% of all available articles for
each concept (average for all concepts:
311 articles, average for Kylin/K2’s
selected concepts: 1471 articles), ran-
domly selected

All attributes that appear in at least
15% of all infoboxes for the concept

All attributes that appear in at least
5% of all infoboxes for the concept and
for which precision >= 0.75

Ground truth = manually extracted at-
tribute values

Ground truth = existing infobox attri-
bute values

Table 3. Differences between iPopulator and Kylin/K2 relevant for evaluation

Infobox templ. Extraction performance

Kylin iPopulator

P R # P R #
Actor 0.88 0.86 50 0.93 0.81 4470
Airline 0.87 0.64 50 0.77 0.69 546
County 0.97 0.96 50 0.94 0.77 329
University 0.74 0.61 50 1.00 0.55 2368

K2 iPopulator

P R # P R #
Baseball Stadium 0.53 0.45 40 0.84 0.30 55
Irish Newspaper 0.75 0.46 20 1.00 0.42 9
Performer 0.65 0.40 44 0.95 0.25 19
Writer 0.60 0.35 40 1.00 0.23 507

Table 4. Comparison of Kylin’s, K2’s, and iPopulator’s extraction results and numbers
of evaluated articles

24

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Pr
ec

is
io

n

training articles

Fig. 9. Number of selected training articles and achieved extraction precision per at-
tribute value extractor

5 Conclusion and Future Work

By automatically extracting infobox attribute values, iPopulator supports read-
ers, authors, as well as external applications that access Wikipedia content.
Exploiting the structure of attribute values improves the training quality as well
as the data quality of the extracted values. Resulting values are structured sim-
ilarly to the majority of attribute values in the training data. Homogeneously
structured attribute values help maintain high data quality and support external
applications that rely on a specific structure of infobox attribute values.

We leave for future work the application of our techniques to improve the
structure of existing attribute values and to include external sources for further
improvement of extraction results.

References

1. E. Adar, M. Skinner, and D. S. Weld. Information Arbitrage across Multi-lingual
Wikipedia. In Proc. of the 2nd Intl. Conf. on Web Search and Data Mining, pages
94–103, 2009.

2. M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open
Information Extraction from the Web. In Proc. of the 20th Intl. Joint Conf. on
Artificial Intelligence, pages 2670–2676, 2007.

3. G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning Deterministic
Regular Expressions for the Inference of Schemas from XML Data. In Proc. of the
17th Intl. Conf. on World Wide Web, pages 825–834, 2008.

4. A. Brazma. Efficient Algorithm for Learning Simple Regular Expressions from
Noisy Examples. In Proc. of the 4th Intl. Workshop on Analogical and Inductive
Inference, pages 260–271, 1994.

5. R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A Limited Memory Algorithm for
Bound Constrained Optimization. SIAM J. Sci. Comput., 16(5):1190–1208, 1995.

25

0

0.2

0.4

0.6

0.8

1

1.2

be
ac

h_
vo

lle
yb

al
l_

pl
a…

in
fo

bo
x_

ce
lts

_o
f_

en
…

in
fo

bo
x_

fil
m

_b
on

d
in

fo
bo

x_
iw

i
in

fo
bo

x_
m

us
ic

al
_a

rt
i…

in
fo

bo
x_

pr
o_

fo
ot

ba
ll…

in
fo

bo
x_

tt
c_

st
at

io
n

sw
c_

se
as

on
_i

nf
ob

ox
in

fo
bo

x_
ne

pa
l_

di
st

ri
ct

in
fo

bo
x_

cr
ic

ke
t_

to
ur

…
in

fo
bo

x_
bu

dd
hi

st
in

fo
bo

x_
hu

rl
in

g_
al

l-
…

in
fo

bo
x_

na
tio

na
l_

fo
…

in
fo

bo
x_

co
m

pu
te

r_
h…

in
fo

bo
x_

te
le

vi
si

on
_e

…
in

fo
bo

x_
nb

a_
pl

ay
er

in
fo

bo
x_

au
to

m
ob

ile
…

in
fo

bo
x_

ol
ym

pi
c_

ev
…

in
fo

bo
x_

ro
m

an
ia

n_
p…

in
fo

bo
x_

ra
lly

in
fo

bo
x_

na
tio

na
l_

ba
…

in
fo

bo
x_

ic
e_

ho
ck

ey
_…

F (Part)

P (Part)

R (Part)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 26 51 76 10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

52
6

55
1

57
6

60
1

Pr
ec

is
io

n
/

Re
ca

ll
/

F-
M

ea
su

re

Number of infobox templates

F (Part) P (Part) R (Part)

Fig. 10. Performance measures for all infobox templates with Fpart > 0, sorted by
Fpart

6. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string dis-
tance metrics for name-matching tasks. In Proceedings of IJCAI-03 Workshop on
Information Integration, pages 73–78, August 2003.

7. O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland,
D. S. Weld, and A. Yates. Unsupervised Named-entity Extraction from the Web:
an Experimental Study. Artificial Intelligence, 165(1):91–134, 2005.

8. A. Herbelot and A. Copestake. Acquiring Ontological Relationships from Wikipe-
dia Using RMRS. In Proc. of the ISWC 2006 Workshop on Web Content Mining
with Human Language Technologies, 2006.

9. R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty, and D. S. Weld. Amplifying
Community Content Creation with Mixed-Initiative Information Extraction. In
Proc. of the 27th Intl. Conf. on Human Factors in Computing Systems, pages
1849–1858, 2009.

10. J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In Proc. of the
18th Intl. Conf. on Machine Learning, pages 282–289, 2001.

11. V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10, February 1966.

12. Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V. Jagadish.
Regular Expression Learning for Information Extraction. In Proc. of the 2008
Conf. on Empirical Methods in NLP, pages 21–30, 2008.

13. Q. Liu, K. Xu, L. Zhang, H. Wang, Y. Yu, and Y. Pan. Catriple: Extracting Triples
from Wikipedia Categories. In Proc. of the 3rd Asian Semantic Web Conf., pages
330–344, 2008.

14. J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel. Performance Measures
For Information Extraction. In Proc. of DARPA Broadcast News Workshop, pages
249–252, 1999.

15. D. P. T. Nguyen, Y. Matsuo, and M. Ishizuka. Exploiting Syntactic and Semantic
Information for Relation Extraction from Wikipedia. In Proc. of the IJCAI 2007
Workshop on Text-Mining & Link-Analysis, 2007.

26

16. N. Okazaki. CRFsuite: a fast implementation of Conditional Random Fields
(CRFs), 2007. http://www.chokkan.org/software/crfsuite/.

17. M. Ruiz-Casado, E. Alfonseca, and P. Castells. Automatising the Learning of Lexi-
cal Patterns: An Application to the Enrichment of WordNet by Extracting Seman-
tic Relationships from Wikipedia. Data & Knowledge Engineering, 61(3):484–499,
2007.

18. S. Sarawagi. Information Extraction. Foundations and Trends in Databases, 1(3),
2008.

19. G. Wang, H. Zhang, H. Wang, and Y. Yu. Enhancing Relation Extraction by
Eliciting Selectional Constraint Features from Wikipedia. In Proc. of the 12th
Intl. Conf. on Applications of Natural Language to Information Systems, pages
329–340, 2007.

20. F. Wu, R. Hoffmann, and D. S. Weld. Information Extraction from Wikipedia:
Moving Down the Long tail. In Proc. of the 14th Intl. Conf. on Knowledge Dis-
covery and Data Mining, pages 731–739, 2008.

21. F. Wu and D. S. Weld. Autonomously Semantifying Wikipedia. In Proc. of the
16th Conf. on Information and Knowledge Management, pages 41–50, 2007.

27

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

37 978-3-86956-

078-6
Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple
Graph Grammars

Holger Giese,
Stephan Hildebrandt,
Leen Lambers

36 978-3-86956-
065-6

Pattern Matching for an Object-oriented
and Dynamically Typed Programming
Language

Felix Geller, Robert Hirschfeld,
Gilad Bracha

35 978-3-86956-
054-0

Business Process Model Abstraction :
Theory and Practice

Sergey Smirnov, Hajo A. Reijers,
Thijs Nugteren, Mathias Weske

34 978-3-86956-
048-9

Efficient and exact computation of
inclusion dependencies for data
integration

Jana Bauckmann, Ulf Leser,
Felix Naumann

33 978-3-86956-
043-4

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS '10)

Hrsg. von Bram Adams,
Michael Haupt, Daniel Lohmann

32 978-3-86956-
037-3

STG Decomposition:
Internal Communication for SI
Implementability

Dominic Wist, Mark Schaefer,
Walter Vogler, Ralf Wollowski

31 978-3-86956-
036-6

Proceedings of the 4th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

30 978-3-86956-
009-0

Action Patterns in Business Process
Models

Sergey Smirnov, Matthias
Weidlich, Jan Mendling,
Mathias Weske

29 978-3-940793-
91-1

Correct Dynamic Service-Oriented
Architectures: Modeling and
Compositional Verification with Dynamic
Collaborations

Basil Becker, Holger Giese,
Stefan Neumann

28 978-3-940793-
84-3

Efficient Model Synchronization of
Large-Scale Models

Holger Giese, Stephan
Hildebrandt

27

978-3-940793-
81-2

Proceedings of the 3rd Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

26

978-3-940793-
65-2

The Triconnected Abstraction of Process
Models

Artem Polyvyanyy, Sergey
Smirnov, Mathias Weske

25

978-3-940793-
46-1

Space and Time Scalability of Duplicate
Detection in Graph Data

Melanie Herschel,
Felix Naumann

24

978-3-940793-
45-4

Erster Deutscher IPv6 Gipfel

Christoph Meinel, Harald Sack,
Justus Bross

23

978-3-940793-
42-3

Proceedings of the 2nd. Ph.D. retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

22

978-3-940793-
29-4

Reducing the Complexity of Large EPCs

Artem Polyvyanyy, Sergy
Smirnov, Mathias Weske

21

978-3-940793-
17-1

"Proceedings of the 2nd International
Workshop on e-learning and Virtual and
Remote Laboratories"

Bernhard Rabe, Andreas Rasche

	TB_liste_bis37.pdf
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

