
Software Engineering for Self-Adaptive Systems

by the RE Group

Betty H.C. Cheng, Anthony Finkelstein Jeff Kramer,
Jeff Magee, Sooyong Park, Schahram Dustdar

Jon Whittle, Nelly Bencomo (coordinators)

Once upon a time in Dagstuhl…

Software Engineering for Self-Adaptive Systems

from the perspective of Requirement Engineering (RE)

Self-adaptive systems

• A self-adaptive system is able to modify
its behaviour according to changes in
its environment

• As such, a self-adaptive system must
continuously monitor changes in its
context and react accordingly

Questions
• what aspects of the environment should the self-

adaptive system monitor?
– clearly, the system cannot monitor everything
– … so, what aspects of the environment are relevant?

• … and exactly what should the system do if it
detects a less than optimal pattern in the
environment?
– presumably, the system still needs to maintain a set

of high-level goals
– .. but, non critical goals could well be relaxed, thus

allowing the system a degree of flexibility

Even more questions

• evolution
– made us think that requirements may change

as the system evolves (adapting)

• .. but…which requirements are allowed to vary
or evolve at runtime and which must always be
maintained?

• .. we were sure about something ☺
– about uncertainty

Uncertainty

– RE for self-adaptive systems must deal with
(degrees of) uncertainty

– or may necessarily be specified as incomplete

The requirements specification
should cope with:

• the incomplete information about the
environment

• … and the resulting incomplete
information about the respective behaviour

• the evolution of the requirements at
runtime

State-of-the-art

• people are working hard!
(see some references in report)

– specification and verification of adaptive software
– run-time monitoring of requirements conformance
– goal models as a foundation for specifying the

autonomic behaviour and requirements of adaptive
systems

– and others

Research Challenges
short-term and long-term (more visionary ideas)

• A new requirements language
• Mapping to architecture
• Managing uncertainty
• Requirements reflection
• Online goal refinement
• Traceability from requirements to

implementation

A new requirements language
From shall to maybe, sometimes…

• Current languages for RE do not explicitly support
uncertainty and adaptivity

• Traditional RE:
“the system shall do this“

• Adaptive RE:
“the system might do this"
“but it may do this..." ... as long as it does this"
“the system ought to do this... ." but, “if it cannot, it shall eventually

do this ...“

• definition of terms and their relations (?)

Mapping to architecture
RE specification

Architecture

Support for implementing reconfigurability
(component-based, AOP, SPL, etc technologies)

large gap

(semi) automation

Managing uncertainty

• how much uncertainty we will manage:

a system cannot start out as a transport
robot and self-adapt into a robot chef!

• certain requirements will not change
(invariants)

• and others should permit a degree of
flexibility

Requirements reflection
• self-adaptation deals with requirements that vary at

runtime
• reflection enables a system to observe its own structure

and behaviour

• requirements reflection would enable systems to be
aware of their own requirements at runtime

• a model of the requirements to be available @runtime

• could a system dynamically observe its requirements?
• can we make requirements runtime objects?

Online goal refinement

• to automate and run on-line what we are
doing currently off-line (RE/Design)

Traceability from requirements to
implementation

• a constant challenge in all the topics shown
above is dynamic traceability
– operators of a new RE specification language should

be easily traceable down to architecture, design, and
beyond

– if the RE process is performed at runtime we need to
assure that the final implementation or behaviour of
the system matches the requirements

• different from the traditional requirements
traceability

(Some questions to answer)
We will have fun!

• How can graphical models, formal specifications, policies, etc. be
used as the basis for the evolutionary process of adaptive systems
versus source code?

• How can we maintain traceability among relevant artifacts including
the code?

• How can we maintain assurance constraints during and after
adaptation?

• How much should a system be allowed to adapt and still maintain
traceability to the original system?

• …. ….

Final remarks

• challenges span RE activities during the
development phases and runtime
– monitor adherence and traceability to the

requirements during runtime
– acknowledge and support the evolution of

requirements at runtime

– software artifacts must be more abstract

