MDELab Story Diagram Interpreter - Hello World Case
Study Solution

Stephan Hildebrandt, Sebastian Watzoldt, and Holger Giese
Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Stra3e 2-3
14482 Potsdam, Germany

[stephan.hildebrandt|sebastian.waetzoldt|holger.giese]@hpi.uni-potsdam.de

ABSTRACT

This paper presents our solution for the Hello World case
study of the Transformation Tool Contest 2011. We briefly
explain how we solved the case study using story diagrams.
A more thorough explanation of story diagrams can be found
in our solution of the more complex case study “Model Trans-
formations for Program Understanding”.

1. INTRODUCTION

Story diagrams [1] are a visual domain specific language
with an easily comprehensible notation for expressing graph
transformations with control flow. A story diagram model
consists of nodes and edges. For describing the control flow,
some kinds of activity nodes known from UML activity di-
agrams are used. So-called story nodes specify graph trans-
formation rules based on an UML collaboration diagram no-
tation.

The Fujaba Tool Suite [3] supports modeling story diagrams
and generating source code from them. In contrast to the
Fujaba code generation approach, we have presented an in-
terpreter for story diagrams [2], which features a dynamic
pattern matching strategy when executing the graph trans-
formation rule inside a story node. At runtime, this strategy
adapts to the specifics of the instance model on which the
graph pattern matching is executed. Furthermore, it pro-
vides seamless integration with the Eclipse Modeling Frame-
work! and supports OCL to express constraints and queries
in a story diagram.

The Hello World case study of the Transformation Tool Con-
test 2011 contains some simple tasks to be solved by graph
transformation tools. These tasks include creation and mod-
ification of graphs, queries on graphs, and model transforma-
tions. In the following sections, our solution of the individual
subtasks will be presented.

A more thorough explanation of story diagrams and the
story diagram interpreter can be found in our solution de-
scription of the case study “Model Transformation for Pro-
gram Understanding”?.

The solutions for all case studies are also available in the

http://www.eclipse.org/emf

2All our solutions can be downloaded from http://www.
hpi.uni-potsdam.de/giese/gforge/mdelab/wp-content/
uploads/2011/05/ttc2011-HildebrandtWaetzoldtGiese.
zip

Eclipse workspace of the SHARE image. Each solution is
contained in a separate folder. Each folder contains a file
“execute.workflow”, which contains a workflow that executes
the solution. A workflow is a sequence of workflow compo-
nents, which perform specific tasks, e.g., reading and writing
models or executing story diagrams. To execute the work-
flow, right-click it and select “Execute Workflow”. All solu-
tion workflows read the input model (if available), execute
the solution story diagram, and write the output to a new
file “output.xmi”.

2. CASE STUDY SOLUTION
2.1 Hello World!

Story diagrams combine elements of UML activity diagrams
to model control flow with collaboration diagrams to model
graph transformation rules. Therefore, a story diagrams
contains well-known elements like initial and final nodes, as
well as so-called story nodes, which contain a story pattern.
A story pattern is a graph transformation rule. Its notation
combines the left-hand (LHS) and right-hand sides (RHS)
of the graph transformation rule. Black elements belong to
both sides, green elements with the <<create>> stereotype
belong only to the RHS, red elements with <<destroy>>
belong only to the LHS.

The first subtask of the task “Hello World!” requires a con-
stant transformation that creates a simple graph consisting
only of a Greeting node with the text “Hello World!”. In our
solution story diagram in Figure 1, we create such a node
and set its text attribute to the value “Hello World!”. This is
an OCL expression, which defines the “Hello World!” string.
Finally, the greeting object is returned at the final node.
This is also an OCL expression. It references the greeting
object, which was created before. The returned greeting ob-
ject is written to an XMI file by a writer component in the
workflow that executes the solution. The type Greeting is
defined in an ecore file, which is referenced from the story
diagram.

The second subtask demands the creation of a graph of a
slightly more complex metamodel. Figure 2 shows our so-
lution story diagram. Now, a Greeting, a GreetingMessage,
and a Person object have to be created and connected via
appropriate references and the attribute values of message
and person have to be set.

For the last subtask, a Greeting input model is provided
and the graph transformation system has to produce a sin-

gle output element StringResult, whose result attribute is a
concatenation of the text of the GreetingMessage and the
name of the greeted Person. In the story diagram in Fig-
ure 3, the greeting object is a bound object, i.e. its value is
provided as a parameter to the story diagram. Before the
story diagram is executed in the workflow, a model reader
reads the Greeting model and passes the greeting object to
the story diagram.

message and person are unbound objects. When the dia-
gram is executed, the interpreter searches for appropriate
matches, so that the overall story pattern is satisfied, i.e.
the greeting must have a GreetingMessage and a Person.
When such a pattern can be found, a new StringResult ob-
ject is created. Its result attribute is determined by an OCL
expression, which concatenates the message’s text with the
person’s name. Finally, result is returned.

2.2 Count Matches with Properties

The second task of the Hello World case study consists of
several model queries to execute on an input graph. The first
one is to count the number of nodes in the graph. Figure
4 shows the story diagram. graph is provided as an input
parameter and result contains the result value. Here, we
use OCL again to get the number of elements of the nodes
reference of the graph. At the final node, result is returned.

The second query should return the number of looping edges
in a graph. Our solution story diagram is shown in Figure
5. First, we create the result object. After that, we search
for all matches of the story pattern shown in the story node
count loops. This is a for each story node (recognizable by
the shaded border), which means that the story pattern is
executed for all existing matches. Normal story nodes are
only executed for the first match that can be found. In
count loops, edges with the same source and target node are
sought. Each time a match is found, the result attribute is
increased by one. When no more match can be found, the
story node is left via the end edge and result is returned. end
is a special guard on activity edges. Other kinds of guards
can be seen in the next subtask’s solution.

For this subtask, the number of isolated nodes in a graph
must be counted. Figure 6 shows the appropriate story di-
agram. The story node count isolated nodes iterates over
all nodes in the graph. For each match of the pattern, the
control flow branches to check for src edges via the for each
edge. This story node searches for edges, whose src reference
points to node. If such an edge exists, the node is not iso-
lated. Therefore, the control flow returns to count isolated
nodes via the success edge and continues with the next node.
If there is no match, the failure edge is traversed to check
for trg edges. Here, edges are sought, whose trg reference
points to node. If there is no such edge, we have found an
isolated node. Therefore, the result counter is increased by
one in increase result. After all nodes have been analyzed,
result is returned.

The condition, that there must be no edge connected to
the node, could also have been expressed using negative ap-
plication conditions. However, negative application condi-
tions are currently not supported by the story diagram in-
terpreter.

The next query counts the number of circles of three distinct
nodes in a graph. The story diagram is shown in Figure 7.
Here, iterate nodes contains the described pattern. For each
match, the result counter is increased by one. The condition
that the three nodes must be pairwise distinct is implicitly
satisfied in story diagrams, because the pattern matching
searches for isomorphic matches, i.e. two nodes in a story
pattern are never matched to the same instance object.

The last query should count the number of dangling edges
in a graph, i.e. edges without a source or target node. In
our solution (see Figure 8), we express this as an additional
OCL constraint on the edge, which requires that the edges
src or trg reference must be null.

2.3 Reverse Edges

Here, the task is to reverse all edges in a graph. To do so,
we iterate through all edges of the graph (see Figure 9). For
each edge, the existing src and trg references are destroyed
and recreated in the opposite direction.

2.4 Simple Migration

This task deals with a simple model transformation. A new
graph should be created for an input graph of a different
metamodel. The two graphs should be equivalent, of course.
Our solution of this task (see Figure 10) is more complex,
because story diagrams are not model transformation sys-
tem in the strict sense like ATL or QVT. Typical features of
model transformation system, especially implicit traceability
links, are not provided. Therefore, these traceability links
must be maintained explicitly. These links store the map-
ping between source model elements and their corresponding
target elements.

In the solution, we first create a target graph and a Trace-
abilityLinkStore. This helper class is defined in an additional
ecore file “helloWorldHelper.ecore”. It has a reference trace-
abilityLinks, which realizes EMF’s map entry pattern®, i.e.
it is a key-value map.

After that, all nodes of the input graph are transformed to
nodes of the target graph. The target node’s name is set to
the source node’s name and a traceability link is created be-
tween both nodes. Here, we use MapEntryLinks to directly
express the key-value mapping. The source node is used as
the key, the target node is the value.

Subsequently, the input graph’s edges are transformed. For
each source edge, a target edge is created first. Then, the src
reference of the target edge is set to the target node, that
corresponds to the source edge’s src node. Here, we need
the traceability link to find the corresponding target node.
The same is done for the ¢rg reference of the edge. Finally,
the created targetGraph is returned.

In the extension of this task, the target metamodel does
not have distinct Edge objects, but only linksTo references
pointing from one node to the next. Here, the migration
story diagram is slightly simpler (see Figure 11). For each

Shttp://wiki.eclipse.org/EMF/FAQ#How_do_I_create_
a_Map_in_EMF.3F

edge in the source graph, the linksTo reference is created in
the target graph.

2.5 Delete Node

In the first subtask, the node “n1” must be deleted from the
graph. This can be expressed quite easily in story diagrams
(see Figure 12). The story pattern in find node with name
“n1” searches for a node, whose name is “nl1”. If a node is
found, it is deleted from the graph. In the end, the graph is
returned.

In the second subtask, also all edges connected to the node
must be deleted. Now, the deletion is done in four steps (see
Figure 13). First, the story diagram searches for the node
in find node with name “n1”. If one is found, all incoming
edges are deleted, i.e. edges, whose src references point to
node. After that, all outgoing edges are deleted and finally
the node itself is removed.

2.6 Insert Transitive Edges

The last task is to insert transitive edges into a graph. If
there is an edge between two nodes nl and n2, and an edge
between n2 and n3, the graph transformation must insert
an edge between nl and n3 if there is none. At this point,
we assume that there must be no edge at all between nl
and n3, not only no edge from nl to n3. In the solution
story diagram in Figure 14, we first search for a chain of
three nodes in search for three connected nodes. For each
chain, we check that there is no edge from nl to n3 and no
edge from n3 to nl. If this is the case, a new edge from nl
to n3 is inserted. After all chains of three nodes have been
examined, the graph is returned.

3. CONCLUSION

In this paper, we presented our solution of the Hello World
case study of the Transformation Tool Contest 2011. All
tasks could be solved quite easily. A more extensive discus-
sion of advantages and disadvantages of using story diagrams
can be found in our solution description for the case study
“Model Transformation for Program Understanding”.

4. REFERENCES

[1] T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story
Diagrams: A New Graph Rewrite Language Based on
the Unified Modeling Language and Java. In TAGT’98:
Selected papers from the 6th International Workshop on
Theory and Application of Graph Transformations,
volume 1764/2000 of LNCS, pages 296-309, London,
UK, 16-20 November 2000. Springer-Verlag.

[2] H. Giese, S. Hildebrandt, and A. Seibel. Improved
Flexibility and Scalability by Interpreting Story
Diagrams. In T. Magaria, J. Padberg, and G. Taentzer,
editors, Proceedings of the Fighth International
Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2009), volume 18.
Electronic Communications of the EASST, 2009.

[3] Software Engineering Group, University of Paderborn.
Fujaba: From UML to Java and Back again.
http://www.fujaba.de/.

—l_

create model

<<create>>

text := 'Hello World!"

;%; greeting

Figure 1: Create a Greeting object.

!

create model

<<create>>
greeting
:Greeting
<<create>> FEELEED
greetingMessage [PEIEE
<<create>> <<create>>
message person
‘GreetingMessage -Person
text := "Hello' name := 'TTC Participants'
g} greeting
Figure 2: Create a Greeting object with Greet-

ingMessage and Person.

. The greeting
J/ object is given as a
arameter.
create model 2
greeting
erson
reetingMessage B
message person
:GreetingMessage Person

<<create>>
result

result := message.text.concat(' ').concat(person.name)

g} result

Figure 3: Create a greeting message from a Greeting
model.

!

count nodes

The graph object is
given as a parameter.

<<create>>
result
:IntResult

result := graph.nodes->size()

result

Figure 4: Count nodes of a graph.

}

create result object

graph
:Graph

<<create>>

result

result := 0

|

R S

create result object

<<create>>
result
:Graph
result := 0

—

count isolated nodes

graph

od
-Gr: nodes
:Node

count loops

nodes

src

trg

edges

result := self.result + 1

Figure 5: Count looping edges in a graph.

[end]

result

[end]

result

[for each]
check for src edges
[success]
graph - edge node
ges src
:Graph Edge [—>| :Node
[failure]l
[success]
check for trg edges
graph od edge node
ges trg
:Graph Edge [——> :Node

[failure]

increase result

result
AIntResult

result := self.result + 1

Figure 6: Count isolated nodes in a graph.

!

create result

<<create>>

graph
:Graph result
result := 0
iterate nodes
el nl e3
. src trg
:Edge :Node :Edge
edges
edges nodes
graph result
trg src .
:Graph AIntResult
result := self.result + 1
node; }m nodes
ges
n2 e2) n3
:Node | 9
src :Edge :Node

Figure T7:

[end]

@ result

Count circles in a graph.

l

create result object

graph <<create>>
:Graph result
IntResult
result := 0

l

count dangling edges

)

create target graph

<<create>> <<create>>

:Graph targetGraph | | traceabilitylinkStore

graph edges edge
:Graph :Edge

[self.src = null or self.trg = null]

result
:IntResult

result := self.result + 1

:Graph ‘TraceabilitylinkStore

l

The graph object is given as a
paramter. The target graph object will
be the root of the migrated graph.
The traceabilityLinkStore maps
source model elements to targed
model elements.

[end]

result

o

parameter

graph
:Graph

1

iterate edges

) edges .

[end] T 1[for each |

Figure 8: Count dangling edges in a graph.

reverse edge

graph
<<destroy>> <<destroy>>
IC trg
nl el
:Node :Edge
tre
¢ src

Figure 9: Reverse edges in a graph.

transform nodes N
graph inkStore
1nodes <<create>> <<create>>
traceabilityLinks gcs
<<create>>
:Node key value .
:Node
text := node.name
[end]
transform edges N [for each] set source link
ilityLinksS E
:Graph :Graph :Edge :TraceabilityLinkStore| :Edge
src traceabilityLinks ~ |[~~Create>>
edges <<create>> =
gcs
edge <<create>> de value 9
:Node :Node
:Edge targetEdge
:Edge
N J{
I set target link
[end]
edge ilitylinkStore
trg traceabilityLinks l<<°’?8fe>>
rg
targetGraph
ke value | targetNode
:Node

Figure 10: Simple graph migration (subtask 1).

!

find node with name “n1"

graph 4 < <destroy>>
nodes
:Graph nade
create target graph :Node
[self.name ='n1']
I <<create>> <<create>>
:Gra targetGraph traceabilityl inkStore
:Graph ‘TraceabilityLinkStore
graph
l Figure 12: Delete node “nl”.
transform nodes N
! bilityLinks: G
:Graph TraceabilitylinkStore :Graph
nodes <<create>>
<<create>> nodes fail
traceabilityLinks [failure] - - —
node N I <<create>> find node with name "nl The exercise says that
ey value there is at most one
:Node targetNode
~ X node with name "n1".
:Node graph node Therefore, we do not
o nodes . need a For-Each-Loop
text := node.name :Graph :Node here. Furthermore, it is
| [self.name ='n1'] | no problem to support
T more than one
occurrence of "n1"
nodes.
fend] [success]
transform edges N
delete all incoming edges N
graph [©dges edge
-G :Edge graph <<dzs"oy>> <<destroy>> |__ destroy>>
: edges
:Graph edge src .
src tre n2
nl :Node .
Node [end]
key delete all outgoing edges N
key
. L bilityLink traceabilifyLinks
teabilityLinks
TraceabilityLinkStor graph |<<destroy>> | <<ISUOY> g node
. edges edge
:Graph trg .
:Edge Mode
value value
C
nl <<create>> n2
. linke T B [end]
delete the node
N
[end] <<destroy>>
graph <<destroy>>
-Grach nodes node
targetGraph :Node
Figure 11: Simple graph migration (subtask 2).

U graph

Figure 13: Delete node “nl1” together with its edges.

!

check if there is a link from n1 to n3]

At this point, the instructions
are somewhat ambiguous.
Must there be no edge from
n1 to n3 or no edge between
both nodes at all? Here, we
assume the latter case.

graph
edges
nl e3 n3
src trg
:Edge
[failure]

check if there is a link from n3 to n1

search for three connected nodes N
[for each]
graph
[success]
nodes nodes
edges nodes J’edges
. = t o2 &2 1
‘Nod Src | .Edge| 9 | SIC rg
C
[end] success
graph

create a new link between nl and n3

[failure]

graph

<<create>>
edges

src e3

n1 | <<create>>| << create>> | <<create>>

trg

Src

:Edge

Figure 14: Insert transitive edges into a graph.

