
Executing Graph Transformations with the MDELab Story
Diagram Interpreter

Stephan Hildebrandt, Sebastian Wätzoldt, and Holger Giese
Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert-Straße 2-3
14482 Potsdam, Germany

[stephan.hildebrandt|sebastian.waetzoldt|holger.giese]@hpi.uni-potsdam.de

ABSTRACT
This paper presents our solution for the case study “Model
Transformations for Program Understanding” of the Trans-
formation Tool Contest 2011. We briefly explain how we
solved the case study using a domain specific language called
story diagrams and highlight the advantages of our interpre-
tation framework for story diagrams. We also mention some
difficulties, which we encountered.

1. INTRODUCTION
Story diagrams [1] are a visual domain specific language
with an easily comprehensible notation for expressing graph
transformations with control flow. A story diagram model
consists of nodes and edges. For describing the control flow,
some kinds of activity nodes known from UML activity di-
agrams are used. So called story nodes specify graph trans-
formation rules based on an UML collaboration diagram no-
tation.

The Fujaba Tool Suite [6] supports modeling story diagrams
and generating source code from them. In contrast to the
Fujaba code generation approach, we have presented an in-
terpreter for story diagrams [2], which features a dynamic
pattern matching strategy when executing the graph trans-
formation rule inside a story node. At runtime, this strategy
adapts to the specifics of the instance model on which the
graph pattern matching is executed. Furthermore, it pro-
vides seamless integration with the Eclipse Modeling Frame-
work1 and supports OCL to express constraints and queries
in a story diagram.

In the following section, we will briefly explain how the con-
crete syntax and semantics of story diagram models are de-
fined. Afterwards, we discuss different ways how the MDE-
Lab Story Diagram Interpreter is installed and used in Sec-
tion 3. In Section 4, our solution for the program under-
standing case study is presented. Finally, Section 5 closes
the paper.

2. STORY DIAGRAMS
Story diagrams are a domain specific language, which com-
bines UML activity diagrams for modeling control flow and
UML collaboration diagrams for specifying graph transfor-
mation rules. Each story diagram model consists of different
activity node types with edges between them. All activity
node types used in our solution are depicted in Figure 1.

1http://www.eclipse.org/emf

a)

b)

c)

d)

initial node final node

decision

node

merge n.

call node

story node for-each

story node

Figure 1: Activity node types in a story diagram
model

Similar to activity diagrams, a story diagram model starts
at the initial node and ends at a final node (cf. Figure 1a).
Branching and merging control flow can be modeled using
decision and merge nodes (b). With the help of call nodes
(c) and our special CallAction language, it is possible to in-
voke, e.g., other methods or story diagrams within the cur-
rent story diagram. Story nodes (d) include a story pattern,
which descibes a graph transformation rule. This pattern ag-
gregates the left-hand side (LHS) and right-hand side (RHS)
of the graph rule with the semantics of the single-pushout
approach for graph transformation (for further information
see [4]). Elements that belong to the LHS and RHS are
drawn black, elements that belong only the RHS are green
and have the <<create>> stereotype, and elements belong-
ing only to the LHS are red and have the <<destroy>>
stereotype.

Figure 2 shows a simple example story pattern (I). The ex-
ecution of this pattern is separated into two steps. First, a
match for the LHS has to be found in the instance graph. As-
suming an instance situation like in (II), a successful match
will be found for the StateMachine object sm. The second
step is applying the RHS. In the example, a new state s and
a new association states between the StateMatchine and the
State object are created, which leads to an instance situation
like depicted in (III). In a normal story node (Figure 1d) the
included story pattern is applied at most once. In contrast,
in a for-each story node the pattern is applied for all existing
matches.

In addition, activity nodes are connected by activity edges.
For branching the control flow, edges can have guards like
it is shown in figure 3.

sm sm

s

sm : StateMachine

s : State

s
ta

te
s

(I) (II) (III)

<<create>><
<

c
re

a
te

>
>

Figure 2: Story pattern (I), instance situation before
(II) and after (III) applying graph rule

[success]

[failure]

[for each]

[end]

a)

b)

Figure 3: Guard types for story diagram edges

Outgoing edges from a normal story node may have a [suc-
cess] or [failure] guard, indicating the matching status of
the included story pattern. Furthermore, for every success-
ful match in a for-each story node an additional block of ac-
tivity nodes can be executed, which is reached over the [for-
each] edge. The [end] edge is taken when no more match
can be found for the story pattern.

Our interpreter can execute such story diagram models. The
next section discusses three ways to invoke them.

3. STORY DIAGRAM INTERPRETER
The MDELab Story Diagram Interpreter can be downloaded
from our Eclipse update site2. Beside the interpreter itself,
a graphical editor with model validation is also provided.
Currently, the interpreter is mainly used within other appli-
cations, which need to perform graph transformations and
execute the interpreter from Java code. To execute a story
diagram, the diagram itself and a list of its parameter values
have to be provided to the interpreter’s execute() operation.

There is also a launch dialog to execute story diagrams di-
rectly. Here, the story diagram file and an instance model
file have to be specified. From the instance model, one in-
stance object has to be selected, in whose context the story
diagram will be executed. Executing story diagrams without
instance (i.e. like a static method) is not currently possible.

2http://www.mdelab.de/update-site

We also offer a third way to execute story diagrams: The
workflow framework MDELab Workflows. A workflow is a
sequence of workflow components, which are executed suc-
cessively. Each workflow component performs a specific
task, e.g. loading and saving models or executing story
diagrams. Workflow components communicate via named
model slots, e.g., a model reader can load a model from a
file and place it in a specific model slot, another component
can take the model from the model slot and process it fur-
ther. MDELab Workflows ship with a library of commonly
used components for reading and writing models, executing
model transformations with ATL, generating source code
with Xpand, and much more. Our workflow framework is
quite similar to the Modeling Workflow Engine3 but with a
tighter integration with EMF. For more information, see the
documentation in the Eclipse Help provided with MDELab
Workflows.

The solutions4 for the case study make use of such workflows.
They are structured according to the following schema: The
solutions for each subtask are contained in separate folders.
Each folder contains a file execute.workflow to execute the
solution5. In the workflow, the input model and the story
diagram to execute are loaded by ModelReaders. The story
diagram is executed by the interpreter and the output of
the story diagram is saved to a new file “output.xmi” so the
result can be viewed using EMF’s reflective model editor. To
execute the story diagram with a different input model, the
appropriate parameter of the ModelReader can be changed
accordingly.

4. CASE STUDY
In the case study “Model Transformations for Program Un-
derstanding“ [3], an abstract syntax tree of a Java program
has to be analyzed to find state machine implementation
patterns and create a corresponding state machine model.
The AST has to contain an abstract class named “State”.
All non-abstract subclasses of “State” represent states of the
program. For each of these subclasses a corresponding state
has to be created in the state machine. State transitions
are represented by calls to the “Instance” method of a state
class.

The case study consists of a core task and two extensions.
The solution of the core task is explained in the following
section, the solutions of the extensions are described in Sec-
tions 4.2 and 4.3.

4.1 Core Task
In the following, we stepwise present our solution of the core
task looking at every individual story node of the complete
story diagram model from Figure 11.

3http://www.eclipse.org/modeling/emft/?project=mwe
4They can be downloaded from http://www.hpi.
uni-potsdam.de/giese/gforge/mdelab/wp-content/
uploads/2011/05/ttc2011-HildebrandtWaetzoldtGiese.
zip. To be able to execute the case study so-
lution, JaMoPP must also be installed from
http://www.emftext.org/update
5Workflow files are executed by right-clicking the file and
selecting “Execute Workflow”

Figure 4: Setting up data structures

A first minor difficulty of this case study is the fact that
the input model contains multiple root elements. Therefore,
we first need a Container helper object that contains all
elements of the input model. This is shown in Figure 4.
input is the list of input elements and it is assigned to the
elements reference of the Container, which is also created in
this step. The helper class Container is defined in a separate
ecore file, helpers.ecore.

In addition, the StateMachine object is created, which the
story diagram will return after the transformation, as well
as a TraceabilityLinkStore. Its purpose is to store a mapping
between state classes of the input model and created states
of the output model. This is required later on to transform
state transitions. Dedicated model transformation systems
usually provide a built-in mechanism to store traceability
information, e.g., the correspondence model in Triple Graph
Grammar based systems [5].

Figure 5: Searching for the State class

In the next step (see Figure 5), we have to find a match for
a class named State in the input model, because all classes
that represent a state are subclasses of it. container is now
a bound object, indicated by the gray classifier label. This
means, that no match is sought for it, but the existing one
from the previous activity node is reused. Furthermore, we
make use of so-called ContainmentLinks in the story dia-
gram (depicted like compositions in UML but with a dashed
line). This link indicates that the stateClass is directly or
indirectly connected to the container via containment ref-
erences. This is necessary here, because the State class is
nested somewhere in the input model, but we do not know
how deeply. Now, the necessity of container becomes clear,

because the ContainmentLink must start at the root node
of the containment hierarchy.

The stateClass object also has an OCL constraint, which
ensures that the name of the matched element is “State”,
and we require that there is an Abstract modifier denoting,
that the class is abstract. If no match can be found for this
pattern, the story activity node is left via the failure edge
and the stateMachine object is returned. If a match could
be found, the success edge is traversed and the next activity
node is executed.

Figure 6: Transforming states

Figure 6 shows, how subclasses of stateClass are transformed
to States in the state machine in the next step. Again, we
use a ContainmentLink to iterate through all classes in the
input model. The check if a class is a subclass of stateClass
is performed by a second story diagram isSuperType, which
is shown in Figure 10. It walks the generalization hierarchy
recursively upwards until it finds the specified super class
and returns true, or it reaches the top of the hierarchy and
returns false. The story diagram isSuperType is called in
the constraints compartment of the story activity node be-
low the node’s title (cf. Figure 6). The assignments within
round brackets indicate, which values are initially assigned
to the variables in the called story diagram. For example,
the variable subType in the called story diagram isSuperType
is set to the value of subStateClass.

Furthermore, we have to check that subStateClass is not
abstract, i.e. that there is no Abstract modifier connected
to subStateClass. Usually, we would use a negative appli-
cation condition for this purpose, but these are currently
not supported by the interpreter. Therefore, we express this
condition as an OCL constraint:

not self.annotationsAndModifiers->

exists(e|e.oclIsKindOf(modifiers::Abstract))

If a match for this pattern can be found, a new State is cre-
ated in the state machine and its name is set to the name of
subStateClass. Furthermore, a traceability link is created,

which maps the class to its state. Here, we use MapEn-
tryLinks, which allow to use EMF’s map entry pattern 6 in
story diagrams. Instead of a plain list, the traceabilityLinks
reference of TraceabilityLinkStore is a map, where the source
model’s classes are used as keys and their corresponding
states as values. The story pattern adds a new key-value
mapping with key subStateClass and value state to the map.

Because the activity node is modelled as a for-each story
node, the contained story pattern is executed for all matches
that can be found. Therefore, all found subclasses will be
transformed into states. When no more match can be found,
the node is left via the end edge.

Figure 7: Transforming transitions.

Finally, state transitions have to be created. This is shown
in Figure 7. A state transition in the AST model is a method
call of one state class to the “Instance” method of another
state class. This method call may be nested somewhere in
the source class, therefore, we use ContainmentLinks again.
If such a pattern is found, a Transition is created between
the two states in the state machine that correspond to the
matched classes. This activity is also a for-each story node
to transform all existing state transitions.

The traceability links are needed here to find the states cor-
responding to the state classes. The transition is created
between thoses states.

However, a special case is not covered here: Transitions from
a state to itself. The pattern matching in story patterns is
isomorphic be default, i.e. two objects in a story pattern are
never matched to the same instance object. For this reason,
we have to handle this special case in a distinct activity node,
see Figure 8. Then, the created state machine is returned.

6http://wiki.eclipse.org/EMF/FAQ#How_do_I_create_
a_Map_in_EMF.3F

Figure 8: Transforming transitions from and to the
same state.

4.2 Extension 1: Triggers
The first extension of the case study deals with triggers on
transitions. The created transitions in the state machine
can have triggers, whose values are set depending on the call
pattern found in the AST. The trigger patterns are described
in detail in the case study’s description [3].

We have externalized the transformation of triggers to a sep-
arate story diagram createTriggers, which is shown in Fig-
ure 13. The main story diagram createStateMachine was
extended with a call to createTriggers, as can be seen in
Figure 12. Each time a transition is created in one of the for-
each story nodes, createTriggers is called with the matched
methodCall and the created transition as parameters. This
is indicated by the for each guard on the activity edge.

The trigger patterns described are unambiguous. Therefore,
we can search for matches of these patterns in any order in
createTriggers. First, the matches for the three described
patterns are sought. If no match can be found for any of
them, the default case in the last story node is used.

Figure 9: First transition trigger case.

The first activity node of createTriggers contains a peculiar-
ity (see Figure 9): Here, the methodCall is already bound
and the containing method is sought. The interpreter can
also walk containment hierarchies upwards from the con-
tained element to the container to find matches. It can also
traverse links in the other direction than specified in the
story pattern if the metamodel specifies an opposite refer-
ence or if the reference is a containment reference. The latter
case can be found in Figure 7. The members link between in-
stanceMethod and subStateClass2 is a containment. There-
fore, it can be traversed in both directions to find matches.
Which direction the interpreter takes is decided at runtime
depending on the number of elements contain in an instance
link. Links with fewer elements are prefered.

The other activity nodes to transform the remaining trigger
patterns are quite self-explanatory. They are more or less
one-to-one-translations of the textual descriptions given in
the case study description [3]. Due to space limitations, we
cannot explain them in detail.

4.3 Extension 2: Actions
The second extension adds actions to transitions in the state
machine. Implementing support for actions was very easy.
Only the createTriggers story diagram had to be extended.
This is shown in Figure 14. There is only one action pattern,
which is a bit more complex. If this pattern is not found,
the default action is set on the transition.

5. CONCLUSION
In our opinion, the major strengths of story diagrams lie in
their good comprehensibility. Graph patterns can be much
easier recognized in such a graphical notation than in tex-
tual notations, especially by people, who are unfamilier with
story diagrams. This is supported by allowing to use OCL
expressions in any place, where constraints or queries can
be used. However, we are not restricted to OCL. We pro-
vide a plug-in mechanism that can be used to intergrate
interpreters for other expression languages than OCL. In
addition, we provide a special CallAction language to allow
e.g., for method calls via Java reflection. Calling other story
diagrams from within a story diagram is also realized using
CallActions.

Furthermore, we added some features to the original story
diagrams [1] to increase their expressiveness. To solve the
case study, especially ContainmentLinks prooved very use-
ful to express containment relationships between elements
in a concise way. Otherwise, nested recursive calls of story
diagrams would have been necessary to explicitly traverse
the different hierarchy layers in the AST. MapEntryLinks
were helpful, too, to express key-value-mappings in a com-
pact notation. The interpreter also exploits the fact that
the underlying data structures are maps instead of lists to
execute story diagrams quicker.

Finally, like most EMF-based tools, metamodels from differ-
ent sources can be used transparently together in one story
diagram. Metamodels can be referenced directly from ecore
files in the workspace, in a plugin, or in the package registry.
As a result, we are not dependent on an implementation or
the source code of the classes defined in the metamodels.

Our interpretation framework uses dynamic EMF objects if
no source code is available.

The solution of the case study also uncovered some weak-
nesses or at least some things to be aware of. Currently, the
most crucial point is the lack of negative application con-
ditions. These have to be expressed using OCL instead. A
visualization of NACs would improve understandability and
likely also execution time.

Furthermore, story diagrams are no model transformation
system in the strict sense like ATL or QVT. This implies,
that typical model transformation features like implicit trace-
ability links are not available but have to be maintained ex-
plicitly. However, while traceability links are needed quite
often according to our experience, it may be worthwhile to
provide at least a short hand notation for them in story
diagrams.

Moreover, story diagrams are no self-contained program-
ming or modeling language. All classes and datatypes used
in a story diagram must be defined in some metamodel, in-
stead. Thus, we had to define the helper classes necessary
to solve the case study in an additional metamodel.

Altogether, we found story diagrams in general and our ap-
proach in particular very useful and convenient to create a
solution for the case study. The aforementioned problems
did not pose a major obstacle but could be circumvented
quite easily. They point out, of course, where more improve-
ments of the story diagram interpreter would be useful.

6. REFERENCES
[1] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story

Diagrams: A New Graph Rewrite Language Based on
the Unified Modeling Language and Java. In TAGT’98:
Selected papers from the 6th International Workshop on
Theory and Application of Graph Transformations,
volume 1764/2000 of LNCS, pages 296–309, London,
UK, 16-20 November 2000. Springer-Verlag.

[2] H. Giese, S. Hildebrandt, and A. Seibel. Improved
Flexibility and Scalability by Interpreting Story
Diagrams. In T. Magaria, J. Padberg, and G. Taentzer,
editors, Proceedings of the Eighth International
Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2009), volume 18.
Electronic Communications of the EASST, 2009.

[3] T. Horn. Model transformations for program
understanding: A reengineering challenge, 2011.

[4] G. Rozenberg. Handbook of Graph Grammars and
Computing by Graph Transformation. World Scientific,
1997.

[5] A. Schürr. Specification of graph translators with triple
graph grammars. In E. W. Mayr, G. Schmidt, and
G. Tinhofer, editors, Proc. of the 20th International
Workshop on Graph-Theoretic Concepts in Computer
Science, volume 903 of Lecture Notes in Computer
Science, pages 151–163, Herrsching, Germany, June
1994. Spinger Verlag.

[6] Software Engineering Group, University of Paderborn.
Fujaba: From UML to Java and Back again.
http://www.fujaba.de/.

Figure 10: Story diagram isSuperType, which checks if superType is a direct or indirect super type of subType.

Figure 11: Solution story diagram for the core task. The AST model is transformed to a state machine with
states and transitions for the appropriate classes.

Figure 12: Solution story diagram for the case study with both extensions. For each transition that is created
in the state machine, the story diagram createTriggers is called to transform triggers (for Extension 1, see
Figure 13), and triggers and actions (for Extension 2, see Figure 14), respectively.

Figure 13: Story diagram createTriggers for Extension 1. The trigger of the transition is set according to the
call pattern found in the AST.

Figure 14: Story diagram createTriggers for Extension 2. The trigger and action of the transition are set
according to the call pattern found in the AST.

