
Tradeoffs in Retrofitting Security:
An Experience Report

Mark S. Miller

Early Choice. Late Despair

 ACLs and OCaps start in mid ‘60s.
 DVH before specialization of CS
 ‘70s: Industry took ACL fork in road.
 ‘90s to present: Rise of Malware
 But:

 You can’t start over again
 You can’t add security later

 What to do?

A very powerful program

A very powerful program

Solitaire can delete any file you can.

Functionality vs. Safety?

Safety

Functionality

Functionality vs. Safety?

POLA:
Least Authority

Applets:
Puny Authority

Applications:
User’s Authority

Safety

static sandboxing

web apps

Functionality

A Tale of Two Copies

$ cp foo.txt bar.txt

 vs.

$ cat < foo.txt > bar.txt

Bundle authorization with designation.
Remove ambient authority.

A B

C

Objects

A B

C

b.foo(c)

Objects

A B

C

foo()

Objects

A B

C

Objects

Object-Capabilities

 Inter-object causality
only by sending messages on references

 Reference graph == Access graph
 Only connectivity begets connectivity.

A B

C

foo()

CapDesk demo

CapDesk, Polaris, BitFrost:
Usable POLA

 Double click launch
 File Explorer
 Open dialog
 Drag/Drop
 Etc...

Bundle authorization with designation

Distributed Secure Money in Caja
function Mint(name) {
 caja.requireType(name,’string’);
 var brand = Brand(name);
 return function Purse(balance) {

 caja.requireNat(balance);
 function decr(amount) {

caja.requireNat(amount);
balance = caja.requireNat(balance - amount);}

 return caja.freeze({
getBalance: function() { return balance; },
makePurse: function() { return Purse(0); },
getDecr: function() { return brand.seal(decr); },
deposit: function(amount, src) {

 def newBal := caja.requireNat(balance+amount)
 brand.unseal(src.getDecr())(amount);
 balance := newBal;}});};}

No explicit crypto

POLA

O
bjects

O
bject-C

apabilities

Roadmap, in Hindsight

Safe
Reflection

Scheme

Mutable Static State

Static Native “Devices”

Unprincipled Libraries

Oak, pre.NET

What about
Security?

 ClassLoaders as Principals

 Stack Introspection

 Security Managers Signed Applets

Safe Loading

No problemo

Java, .NET

What about
Security?

Lexical NestingMessage Passing, Encapsulation

Memory Safety, GC, Eval / Loading

W7 E

Message Passing, Encapsulation Lexical Nesting POLA

O
bjects

O
bject-C

apabilities

Detour is Non-Object Causality

Safe
Reflection

Scheme W7 E

Mutable Static State

Static Native “Devices”

Unprincipled Libraries

Oak, pre.NET

 ClassLoaders as Principals

 Stack Introspection

 Security Managers Signed Applets

Memory Safety, GC, Eval / Loading Safe Loading

No problemo

Java, .NET

Oak to Java

 Oak (Java’s simple ancestor)
 + ClassLoaders as Principals
 + SecurityManagers
 + stack introspection
 + policy files
 + signed applets

Painful and Inflexible Security

Don’t add security.

Java to Joe-E

 Java
— all those “security” mechanisms
— mutable static state
— static native “devices”
— unprincipled parts of libraries
 + library of principled replacements

Simple and Expressive Security

Remove insecurity.

But isn’t that stuff useful?

public class Foo {
 static private int count = 0;
 public Foo() {
 count++;
 …
} }

But isn’t that stuff useful?

public class Foo {
 static private int count = 0;
 public Foo() {
 count++;
 …
} }

public class FooMaker {
 private int[] countCell = {0};
 public class Foo {
 public Foo() {
 countCell[0]++;
 …
} } }

But isn’t that stuff useful?

public class Foo {
 static private int count = 0;
 public Foo() {
 count++;
 …
} }

public class FooMaker {
 private int[] countCell = {0};
 public class Foo {
 public Foo() {
 countCell[0]++;
 …
} } }

Unnecessary awkwardness.

But better engineering anyway:
All state is multiply instantiable.

Choice: Intellectual Communities

 Traditional OS access control
 + Brilliant early history
 - Misdirected priorities, Accumulated Myths
 Windows -> Polaris
 Linux -> Plash, BitFrost

 Crypto
 + Serious about security, High standards
 - Platform security is Someone Else’s Problem
 HTTPS -> Webkeys, Foolscap, Second Life

 Programming Language
 + Abstraction, Modularity, Composition
 - Security is Someone Else’s Problem

Choice: How to secure a language

 New language
 Gedanken, Emerald, Joule, Toontalk, E, AmbientTalk, Sebyla

 Statically verified subset
 Joe-E, Emily, Backwater, JSON, ADsafe, Pthin

 Dynamic restrictions, rewriting
 W7, Oz-E, CaPerl, Caja, FBJS?, Squeak-E

 Wrapper-based isolation
 J-Kernel, Squeak Islands, Earlier Caja attempts

 Sandboxed virtual machines
 Java Isolates?, Tweak Islands, Secure Python

New Languages

 Object-grain
 port programmers, not programs

 Algol 60 -> Gedanken

 Pros:
 + Ideal laboratory for new ideas
 + Ideal teaching vehicle

 Cons:
 - Huge barrier to adoption

Statically verified subset

 Object-grain
 No rewrite
 Static library taming

 Joe-E Example: No non-final static variables

 + 100% compatibility with tool chain
 + No measurable runtime cost

 - For dynamic languages, restrictions can be severe
 JSON, ADsafe, Pthin

Dynamic restrictions, rewriting

 Object-grain
 Dynamically substituted scope, rewriting
 Virtualized Libraries

 Caja Example:
 foo.bar
 foo.bar_canRead___ ? foo.bar : ___.read(foo,”bar”)

 + More permissive rules possible

 - Src is one transform removed from IDE’s view
 - Runtime cost

A B

C

Wrapper-based Isolation

A B

C

Wrapper-based Isolation

b.foo(c)

A B

C

Wrapper-based Isolation

foo()

A B

C

Wrapper-based Isolation

foo()

A B

C

Wrapper-based Isolation

Wrapper-based Isolation

 Component-grain
 Synchronous membrane/wrappers
 Virtualized Libraries, Rewriter?

 Java 1.1 -> J-Kernel

 + More compatible with old code

 - Domain switching overhead leads to bad designs
 - Programmer codes in two models, don’t mix well

Sandboxed Virtual Machine

 VM-grain
 Alternative Libraries

 Java Isolates?

 + Technically sound: OS-like isolation

 - Maintaining a forked version
 - Difficult deployment demands

Need hostile environment

 Clean languages are more secureable.
 Scheme, ML, Pict

 Academics too friendly, so no adoption.

 Virtual Realities
 EC Habitats, Den, eMonkey
 Croquet?

 Web/App Server
 Waterken/Joe-E

 Javascript in web pages
 ADsafe, FBJS, Cajax6

Language design by subsetting

 Design to change the world
 New language -> no adoption

 Languages already too large
 “Extra” features destroy useful formal properties

 Insiders can’t subtract. Outsiders can’t add.
 Old code vs. old tools: contravariant compatibility

 Discover the simple language struggling to
get out.

Stop Malware with OO Security

POLA:
Least Authority

Applets:
Puny Authority

Applications:
User’s Authority

Safety

static sandboxing

web apps

Functionality

Alice pays Bob

mint

$100

 $0

$200

var payment = myPurse.makePurse();
payment.deposit(10,myPurse);
bob.buy(..., payment);

Q.when(payment, function() {
 Q.when(myPurse.deposit(10,payment), function() {
 ... # dispense value});});

name
sealer
unsealer

 buy

$90 $210

$10

m
akePurse

deposit

deposit

ACL Epicycles

New Languages

 Object-grain
 port programmers, not programs

 Algol 60 -> Gedanken
 Prolog+Actors -> FCP, Vulcan
 -> Joule, Toontalk
 Java -> E
 C# -> Sebyla
 ?? -> Eden, Emerald

Statically verified subset

 Object-grain
 No rewrite
 Static library taming

 Javascript -> JSON (like S-expression)
 Pict -> Backwater
 OCaml -> Emily
 Python -> Pthin (like Pascal)
 Java -> Joe-E
 Javascript -> ADsafe (blacklisting)
 Java -> Original-E

Dynamic restrictions, rewriting

 Object-grain
 Dynamically substituted scope, rewriting
 Virtualized Libraries

 Scheme -> W7
 Mozart/Oz -> Oz-E
 Perl -> CaPerl
 Javascript -> Wrapperless Cajax3 (FBJS?)

 1) blacklisting, 2) property name lifting,
3) Caja with whitelisting flags

 Smalltalk -> Squeak-E
 CommonLisp -> CL-E

Wrapper-based Isolation

 Component-grain
 Synchronous membrane/wrappers
 Virtualized Libraries, Rewriter?

 Java(1.1) -> J-Kernel (ClassLoader tricks + RMI)
 Javascript -> Wrapper-based Cajax2

 1) Asymmetric suspicion
 2) Mutual suspicion

 Smalltalk -> Lex Spoon’s Islands

Sandboxed Virtual Machine

 Vat-grain
 Modified VM, Async wrappers
 Alternative Libraries

 Erlang -> Erly
 Java -> Java Isolates
 Javascript -> Vats on Gears Workers
 Python -> Brett Canon’s “Secure Python”
 Smalltalk -> Tweak Islands

Escape the Dilemma

Design enforceable language subsets

 “You can’t start over again”
 “You can’t add security later”
 Don’t add security, remove insecurity

 Vendors can only grow their language
 Non-vendors can only shrink it
 Old tools vs. old code: contravariant compatibility

