
Tradeoffs in Retrofitting Security:
An Experience Report

Mark S. Miller

Early Choice. Late Despair

 ACLs and OCaps start in mid ‘60s.
 DVH before specialization of CS
 ‘70s: Industry took ACL fork in road.
 ‘90s to present: Rise of Malware
 But:

 You can’t start over again
 You can’t add security later

 What to do?

A very powerful program

A very powerful program

Solitaire can delete any file you can.

Functionality vs. Safety?

Safety

Functionality

Functionality vs. Safety?

POLA:
Least Authority

Applets:
Puny Authority

Applications:
User’s Authority

Safety

static sandboxing

web apps

Functionality

A Tale of Two Copies

$ cp foo.txt bar.txt

 vs.

$ cat < foo.txt > bar.txt

Bundle authorization with designation.
Remove ambient authority.

A B

C

Objects

A B

C

b.foo(c)

Objects

A B

C

foo()

Objects

A B

C

Objects

Object-Capabilities

 Inter-object causality
only by sending messages on references

 Reference graph == Access graph
 Only connectivity begets connectivity.

A B

C

foo()

CapDesk demo

CapDesk, Polaris, BitFrost:
Usable POLA

 Double click launch
 File Explorer
 Open dialog
 Drag/Drop
 Etc...

Bundle authorization with designation

Distributed Secure Money in Caja
function Mint(name) {
 caja.requireType(name,’string’);
 var brand = Brand(name);
 return function Purse(balance) {

 caja.requireNat(balance);
 function decr(amount) {

caja.requireNat(amount);
balance = caja.requireNat(balance - amount);}

 return caja.freeze({
getBalance: function() { return balance; },
makePurse: function() { return Purse(0); },
getDecr: function() { return brand.seal(decr); },
deposit: function(amount, src) {

 def newBal := caja.requireNat(balance+amount)
 brand.unseal(src.getDecr())(amount);
 balance := newBal;}});};}

No explicit crypto

POLA

O
bjects

O
bject-C

apabilities

Roadmap, in Hindsight

Safe
Reflection

Scheme

Mutable Static State

Static Native “Devices”

Unprincipled Libraries

Oak, pre.NET

What about
Security?

 ClassLoaders as Principals

 Stack Introspection

 Security Managers Signed Applets

Safe Loading

No problemo

Java, .NET

What about
Security?

Lexical NestingMessage Passing, Encapsulation

Memory Safety, GC, Eval / Loading

W7 E

Message Passing, Encapsulation Lexical Nesting POLA

O
bjects

O
bject-C

apabilities

Detour is Non-Object Causality

Safe
Reflection

Scheme W7 E

Mutable Static State

Static Native “Devices”

Unprincipled Libraries

Oak, pre.NET

 ClassLoaders as Principals

 Stack Introspection

 Security Managers Signed Applets

Memory Safety, GC, Eval / Loading Safe Loading

No problemo

Java, .NET

Oak to Java

 Oak (Java’s simple ancestor)
 + ClassLoaders as Principals
 + SecurityManagers
 + stack introspection
 + policy files
 + signed applets

Painful and Inflexible Security

Don’t add security.

Java to Joe-E

 Java
— all those “security” mechanisms
— mutable static state
— static native “devices”
— unprincipled parts of libraries
 + library of principled replacements

Simple and Expressive Security

Remove insecurity.

But isn’t that stuff useful?

public class Foo {
 static private int count = 0;
 public Foo() {
 count++;
 …
} }

But isn’t that stuff useful?

public class Foo {
 static private int count = 0;
 public Foo() {
 count++;
 …
} }

public class FooMaker {
 private int[] countCell = {0};
 public class Foo {
 public Foo() {
 countCell[0]++;
 …
} } }

But isn’t that stuff useful?

public class Foo {
 static private int count = 0;
 public Foo() {
 count++;
 …
} }

public class FooMaker {
 private int[] countCell = {0};
 public class Foo {
 public Foo() {
 countCell[0]++;
 …
} } }

Unnecessary awkwardness.

But better engineering anyway:
All state is multiply instantiable.

Choice: Intellectual Communities

 Traditional OS access control
 + Brilliant early history
 - Misdirected priorities, Accumulated Myths
 Windows -> Polaris
 Linux -> Plash, BitFrost

 Crypto
 + Serious about security, High standards
 - Platform security is Someone Else’s Problem
 HTTPS -> Webkeys, Foolscap, Second Life

 Programming Language
 + Abstraction, Modularity, Composition
 - Security is Someone Else’s Problem

Choice: How to secure a language

 New language
 Gedanken, Emerald, Joule, Toontalk, E, AmbientTalk, Sebyla

 Statically verified subset
 Joe-E, Emily, Backwater, JSON, ADsafe, Pthin

 Dynamic restrictions, rewriting
 W7, Oz-E, CaPerl, Caja, FBJS?, Squeak-E

 Wrapper-based isolation
 J-Kernel, Squeak Islands, Earlier Caja attempts

 Sandboxed virtual machines
 Java Isolates?, Tweak Islands, Secure Python

New Languages

 Object-grain
 port programmers, not programs

 Algol 60 -> Gedanken

 Pros:
 + Ideal laboratory for new ideas
 + Ideal teaching vehicle

 Cons:
 - Huge barrier to adoption

Statically verified subset

 Object-grain
 No rewrite
 Static library taming

 Joe-E Example: No non-final static variables

 + 100% compatibility with tool chain
 + No measurable runtime cost

 - For dynamic languages, restrictions can be severe
 JSON, ADsafe, Pthin

Dynamic restrictions, rewriting

 Object-grain
 Dynamically substituted scope, rewriting
 Virtualized Libraries

 Caja Example:
 foo.bar
 foo.bar_canRead___ ? foo.bar : ___.read(foo,”bar”)

 + More permissive rules possible

 - Src is one transform removed from IDE’s view
 - Runtime cost

A B

C

Wrapper-based Isolation

A B

C

Wrapper-based Isolation

b.foo(c)

A B

C

Wrapper-based Isolation

foo()

A B

C

Wrapper-based Isolation

foo()

A B

C

Wrapper-based Isolation

Wrapper-based Isolation

 Component-grain
 Synchronous membrane/wrappers
 Virtualized Libraries, Rewriter?

 Java 1.1 -> J-Kernel

 + More compatible with old code

 - Domain switching overhead leads to bad designs
 - Programmer codes in two models, don’t mix well

Sandboxed Virtual Machine

 VM-grain
 Alternative Libraries

 Java Isolates?

 + Technically sound: OS-like isolation

 - Maintaining a forked version
 - Difficult deployment demands

Need hostile environment

 Clean languages are more secureable.
 Scheme, ML, Pict

 Academics too friendly, so no adoption.

 Virtual Realities
 EC Habitats, Den, eMonkey
 Croquet?

 Web/App Server
 Waterken/Joe-E

 Javascript in web pages
 ADsafe, FBJS, Cajax6

Language design by subsetting

 Design to change the world
 New language -> no adoption

 Languages already too large
 “Extra” features destroy useful formal properties

 Insiders can’t subtract. Outsiders can’t add.
 Old code vs. old tools: contravariant compatibility

 Discover the simple language struggling to
get out.

Stop Malware with OO Security

POLA:
Least Authority

Applets:
Puny Authority

Applications:
User’s Authority

Safety

static sandboxing

web apps

Functionality

Alice pays Bob

mint

$100

 $0

$200

var payment = myPurse.makePurse();
payment.deposit(10,myPurse);
bob.buy(..., payment);

Q.when(payment, function() {
 Q.when(myPurse.deposit(10,payment), function() {
 ... # dispense value});});

name
sealer
unsealer

 buy

$90 $210

$10

m
akePurse

deposit

deposit

ACL Epicycles

New Languages

 Object-grain
 port programmers, not programs

 Algol 60 -> Gedanken
 Prolog+Actors -> FCP, Vulcan
 -> Joule, Toontalk
 Java -> E
 C# -> Sebyla
 ?? -> Eden, Emerald

Statically verified subset

 Object-grain
 No rewrite
 Static library taming

 Javascript -> JSON (like S-expression)
 Pict -> Backwater
 OCaml -> Emily
 Python -> Pthin (like Pascal)
 Java -> Joe-E
 Javascript -> ADsafe (blacklisting)
 Java -> Original-E

Dynamic restrictions, rewriting

 Object-grain
 Dynamically substituted scope, rewriting
 Virtualized Libraries

 Scheme -> W7
 Mozart/Oz -> Oz-E
 Perl -> CaPerl
 Javascript -> Wrapperless Cajax3 (FBJS?)

 1) blacklisting, 2) property name lifting,
3) Caja with whitelisting flags

 Smalltalk -> Squeak-E
 CommonLisp -> CL-E

Wrapper-based Isolation

 Component-grain
 Synchronous membrane/wrappers
 Virtualized Libraries, Rewriter?

 Java(1.1) -> J-Kernel (ClassLoader tricks + RMI)
 Javascript -> Wrapper-based Cajax2

 1) Asymmetric suspicion
 2) Mutual suspicion

 Smalltalk -> Lex Spoon’s Islands

Sandboxed Virtual Machine

 Vat-grain
 Modified VM, Async wrappers
 Alternative Libraries

 Erlang -> Erly
 Java -> Java Isolates
 Javascript -> Vats on Gears Workers
 Python -> Brett Canon’s “Secure Python”
 Smalltalk -> Tweak Islands

Escape the Dilemma

Design enforceable language subsets

 “You can’t start over again”
 “You can’t add security later”
 Don’t add security, remove insecurity

 Vendors can only grow their language
 Non-vendors can only shrink it
 Old tools vs. old code: contravariant compatibility

