Google

Tradeoffs in Retrofitting Security:
An Experience Report

Mark S. Miller

Early Choice. Late Despair

= ACLs and OCaps start in mid '60s.
= DVH before specialization of CS

= *70s: Industry took ACL fork in road.

= '00s to present: Rise of Malware
= But:

= You can't start over again
= You can't add security later

= What to do?

A very powerful program

A very powerful program

%_:mmmm_mmm%_ 0
BB
E mmm.mmmmml

Solitaire can delete any file you can.

Functionality vs. Safety?

A

Alljeuonoun4

Safety

Functionality vs. Safety?

E—, Applications:. POLA-
c33 User’s Authority Least Authority
=
-
D
<
Applets:
Puny Authority
>
Safety

e

A Tale of Two Copies

S cp foo.txt bar.txt

VS.
S cat < foo.txt > bar.txt

«Bundle authorization with designation.

Remove ambient authority.
-~] ‘J

Objects

Objects

Object-Capabilities

= Inter-object causality
only by sending messages on references

= Reference graph == Access graph
= Only connectivity begets connectivity.

e

CapDesk demo

CapDesk, Polaris, BitFrost:
Usable POLA

= File Explorer Lok [71Desitop = B G B =fe
- AL 2
. Open dlalog #] eBrowser.Ink 2l
] Drag / Drop I _] eLangMachineSetupDirections.td
@ fileBughMarkm.updoc _JJustiﬁcation: To Edit For You
= Etc... #] Outlook Express Data.Ink
#| quickNotes bt
2] auickbotes.b -
File name: |eLangMachineSetupDirections.b{t Grant Editing
Files of type: |AIIFiIes(*.*) _v_| Cancel

Bundle authorization with designation
Q ‘ J

Distributed Secure Money in Caja

function Mint(name) {
caja.requireType(name,’string’);
var brand = Brand(name);
% return function Purse(balance) {
caja.requireNat(balance);
function decr(amount) {
caja.requireNat(amount);
balance = caja.requireNat(balance - amount); }
return caja.freeze({
getBalance: function() { return balance; },
makePurse: function() { return Purse(0); },
getDecr: function() { return brand.seal(decr); },

deposit: function(amount, src) {
def newBal := caja.requireNat(balance+amount)

brand.unseal(src.getDecr())(amount);

balance := newBal;}});};}] Q

No explicit crypto

Roadmap, in Hindsight

What about
Security?

Mutablé Static|State

Static & “Devices”

What about
Security?

Unprincip Libraries

Oak, pre.NET

TEO

Detour is Non-Object Causality

q0

Oak, pre.NET
ST, | TRCLTOE

No problemo

5 P

Oak to Java

Oak (Java'’s simple ancestor)
+ ClassLoaders as Principals
+ SecurityManagers
+ stack introspection
+ policy files
+ signed applets

Painful and Inflexible Security
Don’t add secuirity.

Java to Joe-E

Java
— all those “security” mechanisms
— mutable static state
— static native “devices”
— unprincipled parts of libraries
+ library of principled replacements

Simple and Expressive Security
Remove insecurity.

e

But isn’t that stuff useful?

public class Foo {
static private int count = 0;
public Foo() {
count++;

b}

But isn’t that stuff useful?

public class Foo {

}

static private int count
public Foo() {

count++;

}

0;

public class FooMaker {
private int[] countCell = {0};
public class Foo {
public Foo() {
countCell[0]++;

P}

But isn’t that stuff useful?

public class Foo { public class FooMaker {
static private int count = 0; private int[] countCell = {0};
public Foo() { public class Foo {
count++; public Foo() {
- countCell[0]++;
P}

P}

Unnecessary awkwardness.

But better engineering anyway:
All state is multiply instantiable.

Q‘)

Choice: Intellectual Communities

= Traditional OS access control
= + Brilliant early history
= - Misdirected priorities, Accumulated Myths
= Windows -> Polaris
= Linux -> Plash, BitFrost

= Crypto
= + Serious about security, High standards
= - Platform security is Someone Else’s Problem
= HTTPS -> Webkeys, Foolscap, Second Life
= Programming Language
= + Abstraction, Modularity, Composition
= - Security is Someone Else’s Problem

Choice: How to secure a language

= New language
= Gedanken, Emerald, Joule, Toontalk, E, AmbientTalk, Sebyla

= Statically verified subset
= Joe-E, Emily, Backwater, JSON, ADsafe, Pthin

= Dynamic restrictions, rewriting
= W7, Oz-E, CaPerl, Caja, FB]IS?, Squeak-E

= Wrapper-based isolation

= J-Kernel, Squeak Islands, Earlier Caja attempts

= Sandboxed virtual machines

= Java Isolates?, Tweak Islands, Secure Python

New Languages

= Object-grain
= port programmers, not programs

= Algol 60 -> Gedanken

= Pros:

= + Ideal laboratory for new ideas
= + Ideal teaching vehicle

= Cons:
= - Huge barrier to adoption

Statically verified subset

= Object-grain
= No rewrite
= Static library taming

= Joe-E Example: No non-final static variables

= + 100% compatibility with tool chain
= + No measurable runtime cost

= - For dynamic languages, restrictions can be severe
= JSON, ADsafe, Pthin

Dynamic restrictions, rewriting

= Object-grain
= Dynamically substituted scope, rewriting
= Virtualized Libraries

Caja Example:
foo.bar
=» foo.bar canRead ? foo.bar : .read(foo,"bar”)

+ More permissive rules possible

- Src is one transform removed from IDE’s view
- Runtime cost

Wrapper-based Isolation

a N
&

_
4

G\/
/@\

o /

Wrapper-based Isolation

(< broo(c) h
@

_
e

G\/
/@\

o /

Wrapper-based Isolation

-

~

foo(,)l,@
/

@

o

@

- I
Kl /
I
]
@
y "]

Wrapper-based Isolation

Wrapper-based Isolation

a N
&

_
4

«9

g
o

o /

Wrapper-based Isolation

= Component-grain
= Synchronous membrane/wrappers
= Virtualized Libraries, Rewriter?

= Java 1.1 -> J-Kernel
= + More compatible with old code

= - Domain switching overhead leads to bad designs
= - Programmer codes in two models, don't mix well

e

Sandboxed Virtual Machine

= VM-grain
= Alternative Libraries

Java Isolates?

+ Technically sound: OS-like isolation

- Maintaining a forked version
- Difficult deployment demands

Need hostile environment

= (Clean languages are more secureable.
= Scheme, ML, Pict

|

D
0
Q
Q.
)
3,
®)
n
—
)
o
—h
—.
()
2
=
=
2]
o
{ D
®
Q
Q.
@)
O
=g
o
—

Virtual Realities
= EC Habitats, Den, eMonkey
= Croquet?

Web/App Server
= Waterken/Joe-E

= Javascript in web pages

= ADsafe, FBJS, Cajax6

Language design by subsetting

= Design to change the world
= New language -> no adoption

= Languages already too large
= “Extra” features destroy useful formal properties

= Insiders can’t subtract. Outsiders can't add.
= Old code vs. old tools: contravariant compatibility

= Discover the simple language struggling to
get out.

e

Stop Malware with OO Security

A
L POLA:

c33 Least Authority
=

-

D

<

>
Safety

Alice pays Bob

var payment = myPurse.makePurse(); Q.when(payment, function() {
payment.deposit(10,myPurse); Q.when(myPurse.deposit(10,payment), function() {
bob.buy(..., payment); .. # dispense value})}});

ACL Epicycles

New Languages

= Object-grain
= port programmers, not programs

= Algol 60 -> Gedanken
= Prolog+Actors -> FCP, Vulcan

o -> Joule, Toontalk
= Java -> E

= C# -> Sebyla

. ?? -> Eden, Emerald

Statically verified subset

= Object-grain
= No rewrite

= Static library taming
= Javascript -> JSON (like S-expression)

= Pict -> Backwater

= OCaml -> Emily

= Python -> Pthin (like Pascal)

= Java -> Joe-E

= Javascript -> ADsafe (blacklisting)
= Java -> Original-E

Dynamic restrictions, rewriting

= Object-grain
= Dynamically substituted scope, rewriting

= Virtualized Libraries

= Scheme -> W7

= Mozart/Oz -> Oz-E

= Perl -> CaPerl

= Javascript -> Wrapperless Cajax3 (FBIS?)
= 1) blacklisting, 2) property name lifting,

3) Caja with whitelisting flags
= Smalltalk -> Squeak-E

"-Commonkisp——€L+E

Wrapper-based Isolation

= Component-grain
= Synchronous membrane/wrappers
= Virtualized Libraries, Rewriter?

= Java(1.1) -> J-Kernel (ClassLoader tricks + RMI)
= Javascript -> Wrapper-based Caja*2

= 1) Asymmetric suspicion

= 2) Mutual suspicion
= Smalltalk -> Lex Spoon’s Islands

Sandboxed Virtual Machine

= Vat-grain
= Modified VM, Async wrappers
= Alternative Libraries

= Erlang -> Erly

= Java -> Java Isolates
= Javascript -> Vats on Gears Workers
= Python -> Brett Canon’s “Secure Python”

= Smalltalk -> Tweak Islands

Escape the Dilemma

Ajljeuonnoung

— P

Excess jeast
authority authority

Inadequate
authority

Safety

Design enforceable language subsets

= “You can't start over again”
= “You can't add security later”
= Don't add security, remove insecurity

= Vendors can only grow their language

= Non-vendors can only shrink it
= Old tools vs. old code: contravariant compatibility

e

