
Language Design: Back to the Future?

Laurence Tratt
http://tratt.net/laurie/

Bournemouth University

2008/07/08

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 1 / 31

http://tratt.net/laurie/
http://tratt.net/laurie/

Overview

1 Where are we at today?
2 Why are we where we are?
3 A glance backwards and sideways.
4 A gaze forward.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 2 / 31

http://tratt.net/laurie/

Part I: Where are we at today?

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 3 / 31

http://tratt.net/laurie/

Where are we at today?

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 4 / 31

http://tratt.net/laurie/

We’ve come a long way

Always remember: software today is pretty good.
Many programming languages to choose from.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 5 / 31

http://tratt.net/laurie/

Facing reality

Lisp sucks

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 6 / 31

http://tratt.net/laurie/

Facing reality

Smalltalk
sucks

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 6 / 31

http://tratt.net/laurie/

Facing reality

Python
sucks

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 6 / 31

http://tratt.net/laurie/

Facing reality

Ruby
sucks

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 6 / 31

http://tratt.net/laurie/

Facing reality

Converge
sucks

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 6 / 31

http://tratt.net/laurie/

Facing reality

It sucks
too!

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 6 / 31

http://tratt.net/laurie/

The situation

Every programming language has flaws.

Programming languages vary little.
In C:

In Java:

In D:

In Cyclone:

Is this a problem?
If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 7 / 31

http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.

In C:

In Java:

In D:

In Cyclone:

Is this a problem?
If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 7 / 31

http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

In Java:

In D:

In Cyclone:

Is this a problem?
If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 7 / 31

http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

In Java:

In D:

In Cyclone:

Is this a problem?
If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 7 / 31

http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

In Java:

In D:

In Cyclone:

Is this a problem?
If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 7 / 31

http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

In Java:

In D:

In Cyclone:

Is this a problem?

If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 7 / 31

http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

In Java:

In D:

In Cyclone:

Is this a problem?
If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 7 / 31

http://tratt.net/laurie/

Part II: Why are we where we are?

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 8 / 31

http://tratt.net/laurie/

History is written by the victors.
- Winston Churchill (1874 - 1965)

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 9 / 31

http://tratt.net/laurie/

The gene pool

Source: Wikipedia
L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 10 / 31

http://en.wikipedia.org/wiki/Image:Roman_Baths_in_Bath_Spa,_England_-_July_2006.jpg
http://tratt.net/laurie/

Homogeneity

Most languages draw influences from the same small pool.
A cliché (but true): syntax is often the main differentiator.
Differences are perceived as much larger than they really are.

Why do languages vary so little?

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 11 / 31

http://tratt.net/laurie/

Homogeneity

Most languages draw influences from the same small pool.
A cliché (but true): syntax is often the main differentiator.
Differences are perceived as much larger than they really are.
Why do languages vary so little?

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 11 / 31

http://tratt.net/laurie/

Language communities

Prefer languages ‘to look familiar’.

Demand backwards compatibility.
Language communities are
Informed comparisons are rare.
Language communities beget language designers.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 12 / 31

http://tratt.net/laurie/

Language communities

Prefer languages ‘to look familiar’.
Demand backwards compatibility.

Language communities are
Informed comparisons are rare.
Language communities beget language designers.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 12 / 31

http://tratt.net/laurie/

Language communities

Prefer languages ‘to look familiar’.
Demand backwards compatibility.
Language communities are insular.

Informed comparisons are rare.
Language communities beget language designers.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 12 / 31

http://tratt.net/laurie/

Language communities

Prefer languages ‘to look familiar’.
Demand backwards compatibility.
Language communities are tribal?

Informed comparisons are rare.
Language communities beget language designers.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 12 / 31

http://tratt.net/laurie/

Language communities

Prefer languages ‘to look familiar’.
Demand backwards compatibility.
Language communities are tribal?
Informed comparisons are rare.

Language communities beget language designers.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 12 / 31

http://tratt.net/laurie/

Language communities

Prefer languages ‘to look familiar’.
Demand backwards compatibility.
Language communities are tribal?
Informed comparisons are rare.
Language communities beget language designers.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 12 / 31

http://tratt.net/laurie/

Language designers

The obvious culprit?
Problem #1: really learning a language is hard.
Tend to have one dominant influence.

Sometimes only one
influence.
Problem #2: designer vs. implementer.
Implementation considered hard and expensive but vital for
feedback.
Problem #3: fear of failure.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 13 / 31

http://tratt.net/laurie/

Language designers

The obvious culprit?
Problem #1: really learning a language is hard.
Tend to have one dominant influence. Sometimes only one
influence.

Problem #2: designer vs. implementer.
Implementation considered hard and expensive but vital for
feedback.
Problem #3: fear of failure.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 13 / 31

http://tratt.net/laurie/

Language designers

The obvious culprit?
Problem #1: really learning a language is hard.
Tend to have one dominant influence. Sometimes only one
influence.
Problem #2: designer vs. implementer.
Implementation considered hard and expensive but vital for
feedback.
Problem #3: fear of failure.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 13 / 31

http://tratt.net/laurie/

Examples of a narrow perspective

Scoping.
Statements vs. expressions.

Python: confusion of class meta-levels.
Ruby: blocks aren’t first-class.
Converge: brain-dead class hierarchy.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 14 / 31

http://tratt.net/laurie/

Examples of a narrow perspective

Scoping.
Statements vs. expressions.
Python: confusion of class meta-levels.
Ruby: blocks aren’t first-class.
Converge: brain-dead class hierarchy.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 14 / 31

http://tratt.net/laurie/

The risk of innovation

New features are risky. Will they work?
Most languages either:

1 Have no new features.
2 Have one or two new features.

3 Didn’t mean to have new features but bad design introduced them.

Little risk of ‘failure’ if there are no new features.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 15 / 31

http://tratt.net/laurie/

The risk of innovation

New features are risky. Will they work?
Most languages either:

1 Have no new features.
2 Have one or two new features.
3 Didn’t mean to have new features but bad design introduced them.

Little risk of ‘failure’ if there are no new features.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 15 / 31

http://tratt.net/laurie/

An example

Java checked exceptions.
Possibly Java 1.0’s only novel feature.
public void f() throws X; means callers of f have to
catch X.
Common user solution?

try {
f();

}
catch (X) {
// Empty catch statement. Ouch.

}

Checked exceptions: a bad idea.
The fate of most novel language features: ridicule.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 16 / 31

http://tratt.net/laurie/

An example

Java checked exceptions.
Possibly Java 1.0’s only novel feature.
public void f() throws X; means callers of f have to
catch X.
Common user solution?
try {
f();

}
catch (X) {
// Empty catch statement. Ouch.

}

Checked exceptions: a bad idea.
The fate of most novel language features:

ridicule.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 16 / 31

http://tratt.net/laurie/

An example

Java checked exceptions.
Possibly Java 1.0’s only novel feature.
public void f() throws X; means callers of f have to
catch X.
Common user solution?
try {
f();

}
catch (X) {
// Empty catch statement. Ouch.

}

Checked exceptions: a bad idea.
The fate of most novel language features: ridicule.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 16 / 31

http://tratt.net/laurie/

Language paper writers

People who write papers: designers, extenders, pedants.
Nearly always framed in terms of one language...
...its syntax, semantics,

and culture.
Extracting widely applicable ideas is extremely difficult.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 17 / 31

http://tratt.net/laurie/

Language paper writers

People who write papers: designers, extenders, pedants.
Nearly always framed in terms of one language...
...its syntax, semantics, and culture.
Extracting widely applicable ideas is extremely difficult.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 17 / 31

http://tratt.net/laurie/

Thesis

Language communities are tribal and ignorant.

Language designers are timid and ignorant.
Paper writers are obfuscators. And ignorant.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 18 / 31

http://tratt.net/laurie/

Thesis

Language communities are tribal and ignorant.
Language designers are timid and ignorant.

Paper writers are obfuscators. And ignorant.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 18 / 31

http://tratt.net/laurie/

Thesis

Language communities are tribal and ignorant.
Language designers are timid and ignorant.
Paper writers are obfuscators.

And ignorant.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 18 / 31

http://tratt.net/laurie/

Thesis

Language communities are tribal and ignorant.
Language designers are timid and ignorant.
Paper writers are obfuscators. And ignorant.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 18 / 31

http://tratt.net/laurie/

Part III: A glance backward ands
sideways.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 19 / 31

http://tratt.net/laurie/

Icon

The (indirect) successor to SNOBOL4.
Dynamically typed PASCAL-ish language. But with unique
expression evaluation system.
Particularly intended for string processing.
Expressions succeed (and produce a value) or fail and don’t.
if x := f():
g(x)

else:
// x has no value

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 20 / 31

http://tratt.net/laurie/

Icon

Generators:
procedure upto(x)
i := 0
while i < x do {

suspend i
i := i + 1

}
end

procedure main()
every x := upto(10) do write(x)

end

Conjunction:
every x := upto(10) & x % 2 == 0 do write(x)

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 21 / 31

http://tratt.net/laurie/

Icon

Print all words (from the Icon book):
text ? {
while tab(upto(&letters)) do

write(tab(many(&letters)))
}

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 22 / 31

http://tratt.net/laurie/

Icon

Pretty cool stuff (ignoring minor, rectifiable, design flaws).
Integrated pretty much wholesale into Converge.

Problem #1: text.split(" ").
Problem #2: regular expressions.
Conclusion: much innovation, but only generators and failure in if
useful.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 23 / 31

http://tratt.net/laurie/

Icon

Pretty cool stuff (ignoring minor, rectifiable, design flaws).
Integrated pretty much wholesale into Converge.
Problem #1: text.split(" ").
Problem #2: regular expressions.

Conclusion: much innovation, but only generators and failure in if
useful.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 23 / 31

http://tratt.net/laurie/

Icon

Pretty cool stuff (ignoring minor, rectifiable, design flaws).
Integrated pretty much wholesale into Converge.
Problem #1: text.split(" ").
Problem #2: regular expressions.
Conclusion: much innovation, but only generators and failure in if
useful.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 23 / 31

http://tratt.net/laurie/

Compile-time meta-programming

A.K.A. macros.
They came from Lisp.

...and they ended with Lisp.
Why?
Until: MetaML (and Template Haskell).
Simple inversion of Lisp: ‘macros’ are normal functions but ‘macro
calls’ are special.
$<f> is a macro call.
Code isn’t lists; [| 2 + 3 |] evaluates to an AST
plus(int(2), int(3)).

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 24 / 31

http://tratt.net/laurie/

Compile-time meta-programming

A.K.A. macros.
They came from Lisp.
...and they ended with Lisp.
Why?

Until: MetaML (and Template Haskell).
Simple inversion of Lisp: ‘macros’ are normal functions but ‘macro
calls’ are special.
$<f> is a macro call.
Code isn’t lists; [| 2 + 3 |] evaluates to an AST
plus(int(2), int(3)).

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 24 / 31

http://tratt.net/laurie/

Compile-time meta-programming

A.K.A. macros.
They came from Lisp.
...and they ended with Lisp.
Why?
Until: MetaML (and Template Haskell).
Simple inversion of Lisp: ‘macros’ are normal functions but ‘macro
calls’ are special.
$<f> is a macro call.
Code isn’t lists; [| 2 + 3 |] evaluates to an AST
plus(int(2), int(3)).

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 24 / 31

http://tratt.net/laurie/

An example

func expand_power(n, x):
if n == 0:

return [| 1 |]
else:
return [| $c{x} * $c{expand_power(n - 1, x)} |]

func mk_power(n):
return [|
func (x):

return $c{expand_power(n, [| x |])}
|]

power3 := $<mk_power(3)>

means that power3 looks like:
power3 := func (x):
return x * x * x * 1

by the time it is compiled to bytecode.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 25 / 31

http://tratt.net/laurie/

The macros dark ages

Oh the irony.

An example of insularity?
Sometimes other communities see things our own can’t.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 26 / 31

http://tratt.net/laurie/

The macros dark ages

Oh the irony.
An example of insularity?
Sometimes other communities see things our own can’t.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 26 / 31

http://tratt.net/laurie/

XOM

Nowadays a language needs good libraries.
Same principles.
Converge needed an XML library. XML is easy, right?

No.
XML is simple if you don’t care about being correct.
Standard answer: roll your own.
Think outside the box: steal from XOM.
Thought: libraries effect users almost as much as languages.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 27 / 31

http://tratt.net/laurie/

XOM

Nowadays a language needs good libraries.
Same principles.
Converge needed an XML library. XML is easy, right? No.
XML is simple if you don’t care about being correct.
Standard answer: roll your own.
Think outside the box: steal from XOM.

Thought: libraries effect users almost as much as languages.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 27 / 31

http://tratt.net/laurie/

XOM

Nowadays a language needs good libraries.
Same principles.
Converge needed an XML library. XML is easy, right? No.
XML is simple if you don’t care about being correct.
Standard answer: roll your own.
Think outside the box: steal from XOM.
Thought: libraries effect users almost as much as languages.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 27 / 31

http://tratt.net/laurie/

Part IV: A gaze forward.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 28 / 31

http://tratt.net/laurie/

History will be kind to me, for I intend
to write it.

- Winston Churchill (1874 - 1965)

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 29 / 31

http://tratt.net/laurie/

Conclusions

Language communities need to look outside their own box more.
Orthodoxies aren’t always right.

Language designers need to experiment more.
Look back as well as sideways.

Paper writers should focus less on an individual language and
more on generic issues.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 30 / 31

http://tratt.net/laurie/

Conclusions

Language communities need to look outside their own box more.
Orthodoxies aren’t always right.

Language designers need to experiment more.
Look back as well as sideways.

Paper writers should focus less on an individual language and
more on generic issues.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 30 / 31

http://tratt.net/laurie/

Conclusions

Language communities need to look outside their own box more.
Orthodoxies aren’t always right.

Language designers need to experiment more.
Look back as well as sideways.

Paper writers should focus less on an individual language and
more on generic issues.

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 30 / 31

http://tratt.net/laurie/

Success is not final, failure is not
fatal: it is the courage to continue

that counts.
- Winston Churchill (1874 - 1965)

L. Tratt http://tratt.net/laurie/ Language Design: Back to the Future? 2008/07/08 31 / 31

http://tratt.net/laurie/

	

