O Clojure

A Dynamic Programming Language for the VM

Rich Hickey

Agenda

Fundamentals
Rationale
Feature Tour

Experiences on the VM

Q&A

Clojure Fundamentals

® Dynamic
® a new Lisp, not Common Lisp or Scheme
® Functional
® emphasis on immutability
® Supporting Concurrency
® Hosted on the VM
® Compiles to JVM bytecode

® Not Object-oriented

Why the JVM?

® VMs, not OSes, are the target platforms of future
languages, providing:

® Jype system
® Dynamic enforcement and safety
® |ibraries
® Huge set of facilities
® Memory and other resource management

® GC is platform, not language, facility
® Bytecode + JIT compilation ﬂ

Language as platform vs.
Language + platform

® Old way - each language defines its own
runtime

® GC, bytecode, type system, libraries etc
® New way (JVM, .Net)
e Common runtime independent of language

® Platforms are dictated by clients

® Huge investments in performance,
scalability, security, libraries etc.)

Java/]JVM is language + platform

® Not the original story, but other languages for
JVM always existed, now embraced by Sun

® |VM has established track record and trust level
® Now open source

® |nterop with other code always required
® C linkage insufficient these days
® Ability to call/consume Java is critical

® Clojure is the language, JVM the platform

>

Why a Lisp?

® Dynamic
® Small core

® Clojure is a solo effort
® FElegant syntax

® Core advantage still code-as-data and
syntactic abstraction

® Saw opportunities to reduce parens-

overload ﬂ

Why Functional?

® Easier to reason about
® FEasier to test
® Essential for concurrency
® Few dynamic functional languages
® Most focus on static type systems

® Functional by convention is not good
enough

Why Focus on Concurrency!?

® Multi-core is here to stay

® Multithreading a real challenge in Java et al
® | ocking is too hard to get right

® FP/Immutability helps
® Share freely between threads

® But ‘changing’ state a reality for simulations and

working models

® Automatic/enforced language support needed

Why not OO!

® Encourages mutable State

® Mutable stateful objects are the new
spaghetti code

® Encapsulation != concurrency semantics

® Common Lisp’s generic functions proved
utility of methods outside of classes

® Polymorphism shouldn’t be based (only) on
types

® Many more... ’

Feature Tour

® Data types and data abstractions
® Syntax
® Persistent Data Structures
® Functional Programming
® Abstraction-based library
® Concurrent Programming
® Transactions and Agents

® |VM/Java Integration

Atomic Data lypes

Arbitrary precision integers - 12345678987654
Doubles 1.234 , BigDecimals 1.234u

Ratios - 22/7

Strings - “fred” , Characters - \a \b \c
Symbols - fred ethel , Ke)'WOI"dS - :fred :ethel
Booleans - true false , Null - ni1

Regex patterns #“a*b”

Data Structures

® |ists - singly linked, grow at front

e (12345), (fred ethel lucy), (list 1 2 3)

® Vectors - indexed access, grow at end

e [12 3 45], [fred ethel lucy]

® Maps - key/value associations

e {:al, :b 2, :c 3}, {1 “ethel” 2 “fred”}
® Sets #{fred ethel lucy?

® Everything Nests

@,

Syntax

® You've just seen it
® Data structures are the code
® Not text-based syntax

® Syntax is in the interpretation of data
structures

® Things that would be declarations, control
structures, function calls, operators, are all
just lists with op at front

® Everything is an expression | ’

Syntax Comparison

Java Clojure

int 1 = 5; (def 1 5)
LF(x == 0) (if (zero? x)
return vy,
else Z)
return z;
X*y * z; (* xy z)
foo(x, vy, z); (foo x y z)

file.close();

(.close file)

Norvig’s Spelling Corrector in Python
http://norvig.com/spell-correct.html

def words(text): return re.findall('[a-z]+"', text.lower())

def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] += 1
return model

NWORDS = train(words(file('big.txt"').read()))
alphabet = "abcdefghijklmnopgrstuvwxyz'

def editsl(word):
n = len(word)
return set([word[0@:1]+word[1+1:] for 1 in range(n)] +
[word[0@:1]+word[1+1]+word[1]+word[1+2:] for 1 in range(n-1)] +
[word[@:1]+c+word[1+1:] for 1 in range(n) for c in alphabet] +
[word[@:1]+c+word[1:] for 1 1n range(n+l) for c 1in alphabet])

def known_editsZ2(word):
return set(e2 for el in editsl(word) for eZ2 in editsl(el) if eZ2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)
def correct(word):

candidates = known([word]) or known(editsl(word)) or known_editsZ2(word) or [word]
return max(candidates, key=lambda w: NWORDS[w])

; Norvig’s Spelling Corrector in Clojure
; http://en.wikibooks.org/wiki/Clojure_Programming#Examples

(defn words [text] (re-seq #"[a-z]+" (.toLowerCase text)))

(defn train [features]
(reduce (fn [model f] (assoc model f (inc (get model f 1))))

{} features))
(def *nwords* (train (words (slurp "big.txt"))))

(defn editsl [word]
(let [alphabet "abcdefghijklmnopgrstuvwxyz", n (count word)]

(distinct (concat
(for [1 (range n)] (str (subs word @ 1) (subs word (inc 1))))
(for [1 (range (dec n))]
(str (subs word @ 1) (nth word (inc 1)) (nth word 1) (subs word (+ 2 1))))
(for [1 (range n) c alphabet] (str (subs word @ 1) c (subs word (inc 1))))

(for [1 (range (inc n)) c alphabet] (str (subs word @ 1) c (subs word 1)))))))

(defn known [words nwords] (for [w words :when (nwords w)] w))

(defn known-editsZ [word nwords]
(for [el (editsl word) e2 (editsl el) :when (nwords e2)] e2))

(defn correct [word nwords]

(let [candidates (or (known [word] nwords) (known (editsl word) nwords)
(known-editsZ2 word nwords) [word])] ‘

(apply max-key #(get nwords % 1) candidates)))

http://en.wikibooks.org/wiki/Clojure_Programming#
http://en.wikibooks.org/wiki/Clojure_Programming#

Persistent Data Structures

® |mmutable, + old version of the collection is still
available after 'changes’

® (Collection maintains its performance guarantees
® Therefore new versions are not full copies

® Structural sharing - thread safe, iteration safe

® All Clojure data structures are persistent

® Hash map/set and vector based upon array
mapped hash tries (Bagwell)

® Practical - much faster than O(logN))

Bit-partitioned hash tries

Abstraction-based Library

® Sequences, replace traditional Lisp lists

® Seqgs on all Clojure collections, all Java
collections, Strings, regex matches, files...

® Can be lazy - like generators
® All Collections
® Functions (call-ability)
® Maps/vectors/sets are functions

® Many implementations ﬂ

® Extensible from Java and Clojure

Sequences

® Abstraction of traditional Lisp lists
e (seqg coll)

® if collection is non-empty, return seq
object on it, else nil

o (first seq)

® returns the first element

e (rest seq)

® returns a seq of the rest of the elements,
or nil if no more

Sequences

(drop 2 [1 2 3 45]) -> (3 45)

(take 9 (cycle [1 2 3 4]))
> ((123412341)

d:e] [12 3 45])

(1interleave [:a :b :c
3 :d4 :e5)

-> (a1l :b 2 :c

(partition 3 [1 234567 8 9])
> ((123) (4506) (7 89)

(map vector [:a :b :c e
d

34 5])
—>([al][b2][c3][e 5

[1 2
4] L:e 5D
Capply str (interpose \, "asdf"))

_> "a,s,d,_Fll

(reduce + (range 100)) -> 4950

Maps and Sets

(def m {:a 1 :b 2 :c 3})
(m :b) -> 2 ;also (:b m)
(keys m) -> (:a :b :c)

(assocm :d 4 :c 42) -> {:d 4,

cal, :b 2, :c 42}

(merge-with + m {:a 2 :b 3}) -> {:a 3, :b 5,

(union #{:a0 b :c} #{:c :d :e})
(join #{{:a0 1 :b 2 :c 3} {:a 1
#{{:a0 1 :b 2 :e 5} {:0 1

, b 21, :c 42}

-> #{:d :a

1 :c 42}}%
1 :d 4}})

b

cc 3}

.C

e}

Concurrency

Interleaved/simultaneous execution
Must avoid seeing/yielding inconsistent data

The more components there are to the data,
the more difficult to keep consistent

The more steps in a logical change, the more
difficult to keep consistent

Clojure also supports parallel computation

® Emphasis here on coordination ﬂ

Concurrency Methods

® Conventional way:
® Direct references to mutable objects
® | ock and worry (manual/convention)
® Clojure way:

® |ndirect references to immutable persistent data
structures (inspired by SML’s ref)

® Concurrency semantics for references

® Automatic/enforced

® No locks in user code! ’

Typical OO - Direct
references to Mutable Objects

foo
.\;:____f‘_____:_ _________
T B S
- o T R .
d | ?

Unifies identity and value

Anything can change at any time
Consistency is a user problem
Encapsulation doesn’t solve concurrency

problems ﬂ

Clojure - Indirect references
to Immutable Objects

"fred"

"ethel"

42

olalo|lo|o

17

o— +‘ o @foo >

* Separates identity and value
* Obtaining value requires explicit
dereference
* Values can never change
* Never an inconsistent value
* Encapsulation is orthogonal

6

™

Persistent ‘Edit’

"fred"
"ethel"
42
17

ola|lo|o|w

o— +‘ o @foo —>-

"lucy”
"ethel"
42
17

o |6|6|o|sfF---

New value is function of old
Shares immutable structure
Doesn’t impede readers
Not impeded by readers

Atomic Update

"fred"
"ethel"
42
17

\
/[
:

@foo !
\ T
b "ethel"
. :C 42
* Always coordinated d 17
€ 6

 Multiple semantics
e Next dereference sees new value
e Consumers of values unaffected

Clojure References

® The only things that mutate are references
themselves, in a controlled way

® 3 types of mutable references, with
different semantics:

® Refs - Share synchronous coordinated
changes between threads

® Agents - Share asynchronous
autonomous changes between threads

® Vars - Isolate changes within threads g)

Refs and Transactions

® Software transactional memory system (STM)
® Refs can only be changed within a transaction
® All changes are Atomic and Isolated

® Every change to Refs made within a
transaction occurs or none do

® No transaction sees the effects of any
other transaction while it is running

® [ransactions are speculative

® Will be retried automatically if conflict
® Must avoid side-effects! L ’

The Clojure STM

Surround code with (dosync ...)
Uses Multiversion Concurrency Control (MVCC)

All reads of Refs will see a consistent snapshot of
the 'Ref world' as of the starting point of the
transaction, + any changes it has made.

All changes made to Refs during a transaction
will appear to occur at a single point in the
timeline.

Readers never impede writers/readers, writers
never impede readers, supports commute)

Refs in action

(def foo (ref {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))
@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(assoc @foo :a "lucy")
-> {:d 17, :a "lucy", :b "ethel", :c 42, :e 06}

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(commute foo assoc :a "lucy")
-> IllegalStateException: No transaction running

(dosync (commute foo assoc :a "lucy"))
@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

@,

Agents

Manage independent state

State changes through actions, which are
ordinary functions (state=>new-state)

Actions are dispatched using send or send-
off, which return immediately

Actions occur asynchronously on thread-
pool threads

Only one action per agent happens at a
time

Agents

Agent state always accessible, via deref/(@,
but may not reflect all actions

Can coordinate with actions using await

Any dispatches made during an action are
held until after the state of the agent has
changed

Agents coordinate with transactions - any
dispatches made during a transaction are
held until it commits

Agents are not Actors (Erlang/Scala))

Agents in Action

(def foo (agent {:a "fred"
@foo -> {:d 17, :a "fred",
(send foo assoc :a "lucy")
@foo -> {:d 17, :a "fred",
(await foo)

@foo -> {:d 17, :a "lucy",

b

b

"ethel" :c 42 :d 17 :e 6}))

"ethel”,

"ethel”,

"ethel”,

C 42,

C 42,

C 42,

e o}

e b}

‘e o}

@,

Java Integration

Clojure strings are Java Strings, numbers are
Numbers, collections implement Collection,
fns implement Callable and Runnable etc.

Core abstractions, like seq, are Java interfaces

Clojure seq library works on Java lterables,
Strings and arrays.

Implement and extend Java interfaces and
classes

New primitive arithmetic support equals

Java’s speed. (’

Java Interop
Math/PI

3.141592653589793

(.. System getProperties (get "java.version™))
"1.5.0_13"

(new java.util.Date)
Thu Jun @05 12:37:32 EDT 2008

(doto (JFrame.) (add (JLabel. "Hello World")) pack show)

;expands to:
(let [x (JFrame.)]
(do (. x (add (JLabel. "Hello World")))
(. x pack)
(. x show))

@ D,

Swing Example

(import '(javax.swing JFrame JLabel JTextField JButton)
"(Java.awt.event ActionListener) '(java.awt GridlLayout))

(defn celsius []
(let [frame (JFrame. "Celsius Converter™)
temp-text (JTextField.)
celsius-label (JLabel. "Celsius™)
convert-button (JButton. "Convert™)
fahrenheit-label (JLabel. "Fahrenheit")]
(.addActionlListener convert-button
(proxy [ActionListener] []
(actionPerformed [evt]
(let [c (. Double parseDouble (.getText temp-text))]
(.setText fahrenheit-label
(str (+ 32 (* 1.8 ¢)) " Fahrenheit"))))))
(doto frame
(setLayout (GridLayout. 2 2 3 3))
(add temp-text) (add celsius-label)
(add convert-button) (add fahrenheit-label)
(setSize 300 80) (setVisible true))))

(celsius)

@,

Experiences on the |VM

® Main complaint is no tail call optimization
® HotSpot covers the last mile of compilation
® Runtime optimizing compilation

® Clojure can get ~| gFlop without even
generating JVM arithmetic primitives

® Ephemeral garbage is extremely cheap

® Great performance, many facilities

® Verifier, security, dynamic code loading ﬂ

Benefits of the |VM

Focus on my language vs code generation or
mundane libraries

Sharing GC and type system with
implementation/FFl language is huge benefit

Tools - e.g. breakpoint/step debugging etc.

Libraries! Users can do UI, database, web, XML,
graphics, etc right away

Great MT infrastructure - java.util.concurrent

® well-defined memory model ’

There’s much more!

Metadata

Recursive functional looping
Destructuring binding in let/fn/loop
List comprehensions (for)
Relational set algebra
Multimethods

Parallel computation

Namespaces, zippers, XML ... | ’

Why Clojure!

Expressive, elegant

Approachable functional programming
Robust, easy-to-use concurrency

Powerful extensibility

Good performance

Leverage an established, accepted platform
Good documentation

Growing community

Thanks for listening!

http://clojure.org

Questions!?

http://www.clojure.org
http://www.clojure.org

