
A Virtual Worlds  
Architecture Framework  

VWF

David A. Smith

Chief Innovation Officer

Senior Fellow

Lockheed Martin GTL

david.alan.smith@lmco.com

VWFVision

Frank DiGiovanni, SES
Director, Training
Readiness and
Strategy

Office of the Deputy
Under Secretary of
Defense (Readiness)

The Pentagon,
Washington D.C.

Summary

•  What it is.

•  Why it matters.

•  Demonstration.

•  How it works.

Essential Features of a Next Generation Virtual
World Platform

•  Platform scalability - need to work across OSs and devices (desktops -
handhelds)

•  Distribution - Needs to be easily deployed across an entire organization
with a 0-install preferred. Needs to work on both sides of a firewall.

•  Security - needs to work with existing IT capabilities and requirements

•  Open source - must avoid being a captive solution. Must be accessible to

non-business users, especially education

•  Utilize and Define Standards - for interoperability and scalability. Must

interoperate and fully enable the Global Information Grid (GIG)

•  Future Proof – must scale dynamically with new requirements and new

opportunities while protecting investments in content and infrastructure

•  User Base – must be accessible to large population of developers.

•  Business models - must provide interesting business ecosystem for small

and large organizations. Must lower the cost of content development while
raising the level of quality and affordability.

The Web is the Future of Virtual
Worlds

• The next generation of
browsers incorporating
WebGL coupled with HTML
5 will become the de facto
foundation for the next
generation of shared virtual
worlds.

• The next big 3D platform is
simply the current WWW
with additional capabilities.

Browser 
+  

WebGL 
+  

HTML 5 
+  

JavaScript  
+  

Jabber 
+  

Collada

VWF

•  Replicated computing platform for multi-user
interactive 2D and 3D

•  Focused on training, collaboration and
entertainment

•  Component based model – intelligent objects
that can be easily added to existing spaces

•  Model view architecture to allow multiple
rendering models (2D and 3D) as well as dead-
reckoning models

•  Open Source platform

Release

Alpha released November 2011

Beta released March 2012

Available here:

http://www.virtualworldframework.com

Hosted on Github.

Includes:

•  Full working system

•  Online working Demo applications

•  Demo Servers also distributed as running VMs

•  Apache (in progress)

•  Ruby (available now!)

•  NodeJS (in progress)

•  Documentation (in progress)

•  System docs

•  Developer docs

•  Cookbook

Where?

http://www.virtualworldframework.com

https://github.com/virtual-world-framework/vwf

Demos

Components

•  YAML or JSON based

•  Goal is Drag and Drop – user extendable

•  Programming does NOT require deep

multi-user networking knowledge

•  May require managing multiple user

events – basically matching mouse,
keyboard etc to a given user

•  Support both 2D and 3D

Model/View

View	

	

Rendered image	

Can be 2D, 3D, WebGL, Unity	

Allows for approximate
representation of system state
(eg dead reckoning)	

Model	

	

Replicated state	

Provides replicated “truth”	

Deterministic Simulation
Platform	

Model/View

View	

	

Model	

	

Models are read only from view	

Model/View

View	

	

Model	

	

User Interactions are indirect via a Reflector server	

Reflector	

User Event	

Bobbles* are “safe” replicated
containers of other objects

* Courtesy of Vernor Vinge	

•  Any component can be a
Bobble	

•  Bobbles can also contain
other components	

Bobbles can be easily saved and
duplicated via JSON or YAML

Objects and components can interact
directly with other objects within

Bobbles directly

Replicated Bobbles

Machine A Machine B

Replicated Bobbles

l  Deterministically Equivalent

l  Bobbles replicated via checkpoint mechanism

l  Internal Future messages implicitly replicated

l  External Future amessages explicitly replicated

l  External non-replicated messages VERY bad

l  New objects: Reflectors and Controllers

Timing is Everything!

l  External messages must be executed in the same
order and at the same time in all replicated
bobbles.

l  Internal messages are executed deterministically,
as long as bobble structure remains identical –
we have identical results.

l  But how?

Bobble’s View of Time is defined only
by message order!

Machine A

Target	

	

Message 	

	

Arguments	

	

Time	

Message Queue Sorted by Time

New message inserted with future()

Machine A

Target: cylinder	

	

Message: turn()	

	

Arguments: {25}	

	

Time: now+100	

Message Queue Sorted by Time

(self.future(100).turn(25)

An example (temporal tail recursion):

 ACylinder.aMessage(arg)

 # this is a typical pattern for performing
 # redundant tasks, such as animations

 function doSomethingWith(arg){

 if (arg>0){
 self.spin(10);
 self.future(100).doSomethingWith(arg-1);
 }
 }

Reflectors, Controllers and Genuine
Time Based Replication

The Reflector

l  Acts as the clock for the replicated bobbles

l  Determines when an external message is actually

executed for all bobbles

l  Sends heartbeat messages to move time forward

l  The bobble Creator owns the reflector by default

l  It is possible to have a number of reflectors that

share the ability to grant message send requests.

The Controller

l  Manages the interface between the
bobble and the reflector

l  Manages the message queue

l  Non-replicated part of bobble/

controller pair

l  Can exist without a bobble, acting as a

proto-bobble until the real bobble is
either created or duplicated.

The Reflector/Controller

Machine A

Reflector	

Controller	

FarRef

Message sent to farRef – no time is
specified

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

farRef forwards to controller

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

Controller forwards to Reflector

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

Reflector adds time stamp (and
enumeration), forwards back to

controller

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

Controller forwards time-stamped
message to add to message queue.

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

Bobble executes all messages up to
the new external message

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

Bobble executes all messages up to
the new external message

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

Bobble executes all messages up to
the new external message

Machine A

Reflector	

Controller	

farRef.future.aMessage(args)

FarRef

If there is no external message to
move things forward, the reflector

will manufacture one.

Machine A

Reflector	

Controller	

Heartbeat message

Messages are then executed by
bobble up to and including the

heartbeat message from Reflector

Machine A

Reflector	

Controller	

Heartbeat message

Messages are then executed by
bobbles up to and including the

heartbeat message from  
reflector

Machine A

Reflector	

Controller	

Heartbeat message

Messages are then executed by
bobble up to and including the

heartbeat message from Reflector

Machine A

Reflector	

Controller	

Heartbeat message

This works for any number of
replicated bobbles.

Machine A

Reflector	

Machine B

This works for any number of
replicated bobbles.

Machine A

Reflector	

Machine B

This works for any number of
replicated bobbles.

Machine A

Reflector	

Machine B

This works for any number of
replicated bobbles.

Machine A

Reflector	

Machine B

Reflector/Controller/Bobbles

l  Does not matter where the message comes from

l  Bobbles can not move past whatever time the

Reflector specifies it is

l  Reflector sends heartbeat messages to move time

forward when no external messages are available
to drive time forward

l  Guarantees Bobbles execute identical messages
in identical order

Reflector enumerates messages

l  Messages from reflector are
enumerated.

l  If controller receives m1, m2, m4,
controller knows that it missed m3 and
request that it be resent.

Bobbles view of time

l  Bobbles only understand time in quantized terms
– there is only now (when message is executed)

l  – and now + x (when future message will be
executed)

l  Reflector controls execution time for all bobbles.

l  Reflector needs to send heartbeat messages to

ensure smooth animations.

l  Heartbeat messages can be ignored by

controller, with result of jerky updates.

Starting and Joining

First there was the server/reflector...

Reflector	

The new reflector can be on any machine, not just the users.

User creates a Controller

Reflector	

Controller	

The new Controller will be on the users machine. It is given the
Reflector address and port number. Since it will be used to
construct the initial bobble, we call it the master controller.

Request to join

Reflector	

Controller	

The controller sends a message to the Reflector asking for messages.
The Reflector (if it is authorized) begins publishing its message stream
to the controller.

Join
request

Controller joins Reflector message
stream

Reflector	

Controller	

Once the join is accepted, the Reflector sends all replicated messages
and heartbeats to the controller. The controller saves these into a
message queue.

Message
Stream

Controller constructs new Bobble

Reflector	

Controller	

Message
Stream

Machine A

Adding a new user – construct
controller

Machine A

Reflector	

This is similar to constructing the initial controller/
Bobble pair. First, create the controller.

Request to join Reflector

Machine A

Reflector	

Request to join the reflector.

Start receiving messages

Machine A

Reflector	

Once granted, we add new messages into the
message queue.

Request Bobble

Machine A

Reflector	

The controller can now be used to request a copy of
the bobble.

Bobble checkpointed and sent

Machine A

Reflector	

The bobble is a checkpoint streamed to the new
controller via the reflector.

Bobble checkpointed and sent

Machine A

Reflector	

Bobble checkpointed and sent

Machine A

Reflector	

The controller resurrects the bobble
locally.

Bobble is resurrected and can now be
displayed.

Machine A

Reflector	

Machine B

Message queue is culled to >= Bobble
current time.

Machine A

Reflector	

Machine B

Participating

l  Joining is “view only” interaction – the user
can not modify the Bobble contents until he
gets permission to participate.

l  The user must request permission from the
Reflector to participate.

l  The Reflector grants participation capability
via “facets”

l  Interesting aside – we can manage any
number of “joined” users simply by
broadcasting the message stream to them.
This allows arena type interactions.

Request right to participate from
Reflector

Reflector	

Machine B

Reflector passes a list of facets, or
interfaces to controller.

Reflector	

Machine B

Reflector passes a list of facets, or
interfaces to controller.

Reflector	

Machine B

External message is sent to
controller.

Reflector	

Machine B

Controller looks up object/message
pair in facet dictionary.

Reflector	

Machine B

Facet is used to invoke replicated
message, sent to reflector

Reflector	

Machine B

Reflector performs reverse look-up to
find original message.

Reflector	

Machine B

Actual message is sent to all
controllers.

Reflector	

Machine B

Nice side effects

l  Latency does not create timing problems, just feedback
problems (system acts sluggish if you have higher
latency).

l  Users are not punished for having a high-latency
participant sharing a bobble (though the high latency
participant has a poor experience).

l  Reflectors can be independent of Bobble/controller
pairs, hence can be positioned on minimal latency or
centralized balanced latency servers.

l  Reflectors can even be moved around if necessary to
improve latency for specific users or groups.

Latency does not effect accuracy –
only usability.

Reflector	

Redlector	

Reflector can be moved to more
latency centric location.

Reflector	

End

