Hasso
Software Architecture Group Plattner
Hasso-Plattner-Institute Institut

UniverSity Of POtSdam IT Systems Engineering | Universitit Potsdam

Master’s Thesis

Squeak Save

An Automatic Object-Relational
Mapping Framework

Thomas Kowark
April 28, 2009

Supervisors:
Dr. Michael Haupt
Prof. Dr. Robert Hirschfeld

Abstract

The maintenance of application data within persistent storage spaces is an important aspect of
application architectures and development processes. Especially small development teams use
dynamically-typed object-oriented programming languages for those development processes,
since they provide a programming paradigm that embraces changing of existing implementa-
tions. Therefore, it is necessary that persistence mechanisms do not impede the agile application
development, but instead can be seamlessly integrated into already present applications and also
support their adaption to new project requirements. Persistence should, accordingly, be added
as an almost transparent aspect that minimally intrudes the object model and the programming
principles.

Many different solutions in the field of object persistence have evolved over the last decades
and new approaches are still subject to research. One of the most popular techniques is the
utilization of relational databases along with an object-relational mapping (O/R mapping) layer
that translates object structures into relational constructs. While the required effort for the cre-
ation of mapping descriptions has been reduced drastically in current implementations that favor
convention over configuration or utilize an extensive toolset for automatically generated map-
pings, the maintenance of object-relational mapping descriptions is still a task that impedes agile
development processes.

In addition to the impact of this new description layer, other aspects of O/R mapping frame-
works also influence the application development. Especially the means to perform queries
on the underlying databases differ vastly in the degree of interface transparency. While some
approaches implement query APIs that almost seamlessly integrate into the respective program-
ming language, others offer only a minimalist abstraction from the corresponding database query
language.

Another challenging task for O/R mapping solutions is the interoperability with other frame-
works. While standard patterns for the creation of relational structures for object persistence
exist, manual mappings or custom mapping conventions aggravate the joint usage of the same
database by multiple O/R frameworks.

This thesis presents an approach to object-relational mapping that strives to eliminate the need
for manually created mapping descriptions by the utilization of language-integrated features like
meta-programming and reflection. The presented system uses those techniques to automatically
derive suitable relational structures from the introspection of existing object models. Thus, it
frees developers from the task to synchronize changes to object models and table structures and,
accordingly, improves the required development times for the implementation of object model
alterations. Additionally, the system provides a language-native query interface and means to
support the collaboration with other O/R mapping solutions.

1ii

Zusammenfassung

Die Verwaltung von Anwedungsdaten in persistenten Speicherbereichen ist ein wichtiger Aspekt
von Anwendungsarchitekturen und Entwicklungsprozessen. Besonders kleine Entwicklerteams
benutzen dynamisch typisierte, objektorientierte Programmiersprachen fiir diese Prozesse, da
sie ein Programmierparadigma bieten, das die Verdnderung existierender Implementierungen
erleichert. Deshalb ist es notwendig, dass Persitenzmechanismen die agile Entwicklung nicht
behindern, sondern sich nahtlos in bestehende Anwendungen einbinden lassen und deren An-
passung an neue Projektvorgaben unterstiitzen. Persitenz sollte folglich als beinahe transparenter
Aspekt hinzugefiigt werden konnen, der das Objektmodell und die Programmierprinzipen nur
minimal beeinflusst.

Viele verschieden Losungen im Bereich der Objektpersitenz sind in den letzten Jahrezenten
entstanden, und neue Ansdtze werden immer noch erforscht. Eine der meistgenutzen Techni-
ken ist die Benutzung relationaler Datenbanken im Zusammenspiel mit einer objekt-relationalen
(O/R) Abbildungsschicht, die Objektstrukturen in relationale Konstrukte iibersetzt. Obwohl der
Aufwand fiir die Erstellung von Abbildungsbeschreibungen in neueren Implementierungen dra-
stisch reduziert wurde, da diese Koventionen iiber Konfiguration stellen oder umfangreiche
Werkzeuge zur automatischen Erzeugung nutzen, ist die Wartung von objekt-relationalen Ab-
bildungsbeschreibungen noch immer eine Aufgabe die agile Entwicklungsprozesse behindert.

Zusitzlich zu den Auswirkungen dieser neuen Beschreibungsschicht beeinflussen auch an-
dere Aspekte von O/R Ansitzen die Anwendungsentwicklung. Besonders die Methoden zur
Ausfithrung von Anfragen an die zugrunde liegende Datenbank unterscheiden sich erheblich im
Grad der Schnittstellentransparenz. Wihrend einige Ansitze Anfrageschnittstellen bereitstellen,
die sich nahtlos in die gewihlte Programmiersprache einfiigen, bieten andere nur eine minimale
Abstraktion von der Datenbankanfragesprache.

Eine weitere Herausfordeung fiir O/R Losungen ist die Interoperabilitit mit anderen Ansdtzen.
Obwohl es Standardmuster fiir die Generierung relationaler Strukturen fiir Objektpersitenz gibt,
erschweren manuell erstellte Abbildungen und indivduelle Abbildungskonventionen die ge-
meinsame Nutzung gleicher Datenbanken durch verschiedene Losungen.

Diese Arbeit stellt einen Ansatz fiir objekt-relationale Abbildung vor, der versucht die Not-
wendigkeit manueller Abbildungserzeugung zu beseitigen, indem programmiersprachliche Ei-
genschaften wie Metaprogrammierung und Reflexion genutzt werden. Das vorgestellte System
benutzt diese Techniken um automatisch geeignete relationale Strukturen aus der Untersuchung
existierender Objektmodelle herzuleiten. Dadurch befreit es Entwickler von der Aufgabe, An-
derungen von Objektmodellen und Tabellenstrukturen synchron zu halten. Folglich werden die
Implementierungszeitriume fiir Anderungen am Objektmodell deutlich verkiirzt. Zusitzlich bie-
tet das System ein Anfrageschnittstelle, die in die Programmiersprache integriert ist, und Mittel
zur Unterstiitzung der Zusammenarbeit mit anderen O/R Losungen.

Eidesstattliche Erklarung

Hiermit erkldre ich an Eides statt, dass ich die vorliegende Masterarbeit selbstindig und ohne
fremde Hilfe verfasst habe. Ich habe dazu keine weiteren als die angegebenen Hilfsmittel benutzt
und die aus anderen Quellen entnommenen Stellen als solche gekennzeichnet.

Thomas Kowark Potsdam, den 31.03.2009

vii

Acknowledgments

I would like to thank Prof. Dr. Robert Hirschfeld for the support and supervision of this thesis.
Special thanks belong to Dr. Michael Haupt for many enlightening remarks regarding the imple-
mentation aspects of the thesis, as well as the extensive reviews of the written text. Furthermore,
I am thankful to Arne Bergmann, Martin Beck, Michael Perscheid, and Bastian Steinert, who
reviewed this thesis and helped me to improve its quality and contents.

X

Table of Contents

1 Introduction

2 Background

2.1
2.2

23

Persistence Management in Dynamically-Typed Object-Oriented Environments

Persistence Strategies

2.2.1 Relational Persistence

2.2.2 Object-Relational Persistence

2.2.3 Object Databases . . .

Requirements for Automatic Object-Relational Support

3 SqueakSave

3.1
32

33

34

Introduction

Basic Persistence Mechanisms

3.2.1 Initial Setup and Configuration

3.2.2 Persisting Objects . .
3.2.3 Object Query Interface

3.2.4 Multi-Developer Collaboration

Customization
3.3.1 Custom Configuration
3.3.2 Session Usage

3.3.3 Performance Optimization

3.3.4 Custom Object-Relational Mapping Descriptions

Summary

4 SqueakSave Framework Architecture

4.1

Basics

4.1.1 Object-Relational Mappings - Creation and Update
4.1.2 Table Structure Adaption

4.1.3 Storage Wrapper Class

O 0 9 N N Lt

11
11
12
14
15
16
18
18
19
21
22
23

25
25
25
29
30

X1

42 Utility CIasses o . v v e e e e e e e e e e e

421 ObjectCaches
4.2.2 Database Connection Handling
4.2.3 Configuration and Customization
43 Query Generation e e e e e e e e e e e
4.3.1 Collection Protocol Emulation
4.3.2 Convention Based Query Methods
4.4 Framework Extension oL L
4.4.1 Custom Object-Relational Mapping Descriptions
442 Table Structures L.
4.43 Database Adapters
45 Summary e e e e e
5 Evaluation
5.1 Performance
5.1.1 Comparison with other Object-Relational Mappers
5.1.2 Development vs. Production Environment
5.1.3 Framework Profiling
5.2 Interoperability
53 Summary e e e e
6 Related Work
6.1 Static Object-Relational Mappers
6.2 Dynamic Object-Relational Mappers
6.3 ObjectDatabases e
7 Summary and Outlook
Bibliography

Xii

41
41
42
47
49
50
51

53
53
54
55

57

57

List of Figures

3.1
32

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

5.1
52
53
54
55
5.6
5.7
5.8

Example Application Class Structure 12
Configuration Class Structure L. 13
Overview of SqueakSave System Classes 26
Workflow of Automatic OR-mapping description updates 28
Table Description Classes v i it 29
Additions to the Object Protocol 30
Internal Workflow of the Save-Operation 31
Retrieval of Database Connections 34
Collection Protocol Emulation Classes 36
Description Handler Inheritance 38
007 Benchmark - ClassModel 42
007 Benchmark - Database Creation Times for Different OR-Mappers 44
OO7 Benchmark - Query Times 45
OO7 Benchmark - Traversal Times 46
007 Benchmark - Database Creation Times for SqueakSave Modes 47
007 Benchmark - Query Times for SqueakSave Modes 48
007 Benchmark - Traversal Times for SqueakSave Modes 49
Example Application - Class Structure with ActiveRecord 51

Xiii

Listings

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12

4.1
4.2
4.3
4.4

Connection Specification. oL 12
Configuration Set-Up. 13
Basic Object Storage. 15
Query Examples - Emulated Collection Protocol. 15
Query Examples - Convention-Based Dynamic Finders. 16
Query Examples - Convention-Based Dynamic Finders on Classes. 17
Migration Usage. i i e e e e e e 18
Extended Configuration., 19
Alternative Ways to Retrieve Session Objects. 20
Transactions within Sessions. L. L. 20
Different Save Levels of SqueakSave. 21
Custom Mapping Description., 23
Language-Native Query Before Translationto SQL. 35
SQL WHERE Statement Generated from Language-Native Query. 35
Dynamic-Finder Method Before Conversion into Block-Closure. 37
Block-Closure Generated from Dynamic-Finder Method. 37

XV

1 Introduction

Maintaining application data in persistent storage spaces is an inherent requirement of most ap-
plications. Especially the web applications that have evolved over the past few years need to
handle steadily growing and evolving data schemes. While this requirement obviously has an
impact on the complexity and execution speed of applications, it also influences their develop-
ment processes.

One of the main criteria for the choice of a suitable persistence strategy is the scope of a
project. While enterprise applications rely on robustness, execution speed and scalability [5],
smaller projects additionally focus on the flexibility to quickly adopt to changes within the object
model [4]. Thus, development teams need a persistence solution that does not impede their
development process, but allows them to implement new features in a simple and straightforward
manner.

In addition to the project scope, decisions regarding the development environment and lan-
guage also influence the choice between available persistence strategies. Especially dynamically-
typed languages vastly reduce turn-around and implementation timeframes by offering a pro-
gramming paradigm that embraces change of existing implementations [52] and strong meta-
programming and reflective features. Those techniques, however, impose non-trivial challenges
for the implementation of persistence management systems. Since real-life applications exist
that utilize features such as class creation and alteration during runtime [41], means have to be
applied to persist instances of those classes as well.

Today many persistence strategies are available [10, 17, 33, 43, 49] to developers and their
underlying data storage technologies cover a wide spectrum. It reaches from pure relational
databases, through relational databases that have been enriched with object-oriented techniques,
to completely object-oriented implementations. The ease-of-integration of those solutions into
dynamic, object-oriented applications differs strongly [23], since the mismatch between the
paradigms founding the application development and the persistence framework varies in its
extent [4].

A widely adopted solution within this field is the usage of relational databases along with an
object-relational mapping (O/R mapping) layer that bridges the gap between an application’s
object model and the relational schema of the underlying database [3]. Even though it would
be possible to implement a custom mapping layer for each application, the general rules of
object-relational mapping follow a number of standard patterns and are therefore integrated into
generic object-relational mapping frameworks. Those frameworks cover a variety of aspects
reaching from basic CRUD' functionality to more elaborate features like transaction processing.
However, most available systems require extensive meta-description of the object model in order
to be able to perform the aforementioned tasks.

ICreate, Read, Update, Delete

Such descriptions impose an undeniable burden on application development. Upon each
change of the object model, the description layer has to be altered, as well [38, 40]. Addi-
tionally, manual mapping creation impedes the interoperability between different O/R mapping
approaches. All design decisions that underly the mapping descriptions and do not follow stan-
dard conventions, have to be manually ported to the description systems of other O/R mappers
whenever two applications are supposed to share a common data set.

Another important aspect regarding the seamless integration of O/R mapping frameworks
into applications is the intrusiveness into the existing object and programming model. While
overall a high degree of transparency of the underlying database structures and systems should
be achieved [36], the existing implementations vastly differ in the extent of implementation
detail exposure to the user. This includes query APIs that are not integrated into the chosen
programming language and the need to alter inheritance hierarchies or even object layouts in
order to store objects within relational databases.

Contribution The objective of this thesis is to develop and evaluate a framework that auto-
mates the creation and maintenance of object-relational mappings. All changes to an applica-
tion’s object model are reflected by altered mapping descriptions, as well as adaptions of the
resulting relational database schemas. By following numerous standard patterns for the trans-
formation of object structures into database structures, the framework is supposed to provide a
high degree of interoperability with other solutions.

As previously mentioned, non-intrusiveness into object and programming models is also
essential for a transparent integration of the framework into applications that require object-
relational persistence. Therefore, the framework’s implementation is carefully designed to min-
imize the required alterations.

Additionally, extension points for existing functionality are a viable aspect of the implemen-
tation. By incorporating means to adopt different mapping patterns, database access techniques
and mapping description flavors, the framework should not only be able to interoperate with
existing solutions, but also with new frameworks that are yet to be developed.

This thesis therefore proposes an object-relational mapping framework using meta-programming
and reflective capabilities to introspect applications during their runtime and automatically de-
rive the mappings and table structures that are required to persist objects in an almost transparent
manner. The framework is named SqueakSave. Due to its highly incisive object metaphor, that
is manifested not only within the language itself, but also in the tools available within the pro-
gramming environment, Smalltalk [22] has been selected as the dynamic programming language
for the implementation of the framework.

Structure of the Thesis In order to facilitate a profound understanding of the underlying
technologies, chapter 2 provides insights into the distinctive challenges of persistence in dy-
namic, object-oriented environments. Additionally, different approaches to the subject of object
persistence are presented and evaluated with regards to their suitability for the previously men-
tioned tasks. The chapter concludes with an analysis of the requirements for an object-relational
persistence framework and thus provide the foundation for the description of the framework
itself.

Chapter 3 presents the intended usage workflow for the integration of SqueakSave into appli-
cations as the chosen persistence management system. This includes a detailed description of
the basic mechanisms for simple, straightforward implementations, as well as more elaborated
constructs like custom object-relational mapping descriptions. A running example accompanies
this chapter.

Following the usage description, the architecture of the framework is discussed in chapter 4.
While the focus resides on how the mechanisms offered by the system have been implemented,
topics like thread safety and performance improvements through the usage of object caches are
also reviewed. The second part of this chapter describes essential extension points for various
parts of the framework.

Evaluation of the implementation is the topic of chapter 5. The SqueakSave implementation
of the aforementioned guiding example is compared to an implementation that uses a different
O/R mapper. Additionally, profound performance measurements are presented. This includes
a standard benchmark, which is performed with multiple persistence frameworks, as well as a
detailed analysis of the different operational modes provided by SqueakSave.

Related work in the field of object persistence technologies is dealt with in chapter 6. A dis-
tinction between techniques for dynamic object-relational mappers, as well as for those dealing
with statically typed languages is made. Additionally, some interesting solutions in the field of
object databases are presented, as they strive to provide compatibility with relational systems.

The thesis is summarized in chapter 7 along with a brief discussion of possible future work,
which can be based on the introduced implementation.

2 Background

Various different strategies exist to enrich applications with the means to persist objects. In
addition to the strategy descriptions the development environment used for the implementation is
presented. The chapter concludes with a discussion of the requirements that can be derived from
the analysis of other persistence frameworks and the peculiarities of the chosen development
environment.

2.1 Persistence Management in Dynamically-Typed
Object-Oriented Environments

Dynamically-typed object-oriented environments imply numerous challenges for the implemen-
tation of persistence management systems. The most obvious one is a direct consequence of the
dynamic typing of objects: It is possible to assign each variable within the system of arbitrary
types without altering variable definitions or method signatures.

While this behavior aids agile development of applications [39], it also enforces persistence
strategies to be highly flexible in order to not impede the development process. If for example
relational persistence is the technology of choice, changing the type of an instance variable also
has to be taken into account for the database schema required to store instances of a particular
class.

The possibilities provided by meta-programming and reflection capabilities are another im-
portant aspect of the desired programming environment. Especially the creation of new classes
as well as the alteration of existing ones during the execution of an application are very chal-
lenging tasks for a persistence framework [41]. Since no user-written database mapping can be
presumed for such classes, the framework itself has to provide means to serialize this data into
matching database structures. However, since persistence frameworks for a particular program-
ming environment are usually being written within the language itself, the same reflective and
introspective capabilities can be used in order to deduce the corresponding database schemas.

In addition to the intended changes of class structures, dynamically-typed environments also
are more error-prone with regards to unintentionally assigning values of wrong types to instance
variables of objects. Small semantic errors can lead to objects of the same class with substan-
tially different inner-object structures. A persistence framework for such an environment has to
take this possibilities into account and accordingly provide means to inform developers about
ambiguous object structures that could lead to serious loss of data.

2.2 Persistence Strategies

The most simplistic way of persisting objects within dynamically-typed object-oriented envi-
ronments is to use the language-integrated means to serialize them into a string representation
and store those strings within the file system. In order to import this serialized objects into other
environments, standardized serialization languages such as YAML! can be used if the corre-
sponding parsers and writers are available in both languages. Image-based solutions such as
most Smalltalk environments, additionally offer the possibility to create simple collections of
objects, which will remain within the image itself, for as long as the collection is being refer-
enced.

While those approaches might be quite viable for the initial phase of a project, they lack
important features, that will be of essence when projects advance or multiple developers become
involved. Amongst others, this includes the ability to execute queries on the existing data in a
scalable manner and perform persistence operations within transactions [4].

2.2.1 Relational Persistence

Relational Database Management Systems (RDBMS) allow for creating, reading, updating and
administering relational databases. Due to the proven mathematical foundation of their under-
lying relation model [13] and the availability of the technique for more than 30 years, various
differing implementation flavors arose. Amongst closed-source projects, Oracle databases are
the most popular solution®. In the field of open-source databases MySQL is the market leader
followed by PostgreSQL according to a global survey>.

The most important asset of RDBMS is their support for transactional behavior [5]. This
allows for altering data according to the ACID paradigm, that requires database operations to
be atomic, consistent, isolated and durable. By adhering to this principle, data integrity can be
guaranteed, since multi-step operations will either completely succeed, or the database is rolled
back to the state it has been in before the beginning of the transaction. Additionally, checks will
be carried out to determine that referential integrity is maintained; thus, no reference is pointing
to non-existing or unsuitable data.

Querying the data repository is possible by using the structured query language (SQL) [28].
Since it is standardized by the International Organization for Standardization (ISO), queries
developed for one particular RDBMS can be transferred to another RDBMS, if both systems
adhere to the standard specification. However, most vendors introduced proprietary extensions
to their respective implementations [24], a fact that leads to decreased portability, if the users
are unaware of the standard violations. The queries itself are subject to mathematics-based
optimizations carried out by the DBMS. While each system might utilize its own optimization
engine, the general principles of query-optimization have been subject to research since SQL
has been introduced [29].

"http://www.yaml.org
*http://www.gartner.com/it/page.jsp?id=507466 (03/03/2009)
Shttp://www.alfresco.com/community/barometer/files/wp-osb-III.pdf (03/23/2009)

2.2.2 Object-Relational Persistence

Features like optimized queries, transaction support, or portability of schemas and queries qual-
ify relational database systems as reasonable choices for data persistence [5]. However, their ap-
plicability for the task of persisting objects, created in object-oriented applications, is degraded
by the so-called impedance mismatch [4].

The relational and the object-oriented paradigm differ in various aspects. Most obviously,
the data types used within the chosen object-oriented programming language do not necessarily
comply with the data types available in the respective RDBMS. While this can be solved in a
very straight-forward manner for simple data types such as strings or integers [4], collections
have no direct and unique representation in a relational database. A possible solution is to
add a foreign key column to the table representing the objects within the collection. This key
references the object that owns the collection. Another valid approach would be to use a join
table that establishes an association between the unique id of the collection owner and each id
of the collection objects.

Inheritance is another aspect that can be mapped to relational models in an ambiguous manner.
Three techniques have been proposed to map inheritance structures to relation table structures -
class, single and concrete table inheritance [20]. However, in addition to those techniques, other
approaches are also possible, such as providing an extra table that only stores the type of an
object within a single column.

Object-Relational Database Management Systems In order to overcome these ambigu-
ities, relational database systems have been enriched with constructs that allow for a straight-
forward mapping of most object-oriented techniques to relational constructs [50]. Those object-
relational database management systems (ORDBMS) offer means like table inheritance or user-
defined data types and collections, that enable developers to facilitate them as a direct repre-
sentation of the structures existing within their application. By utilizing table inheritance, for
example, each table can directly represent a class and the super and sub-class relationships will
be depicted by defining super and sub-tables respectively.

However, while those features can provide a simple representation of object-oriented struc-
tures within enriched relational databases, their usage still remains SQL-based. This requires
developers to incorporate SQL statements into their application code and accordingly will com-
plicate refactoring processes. Since the queries are mostly represented by strings, each of those
has to be evaluated for references to actual object properties and their database representations,
e.g. column names. While this could be carried out automatically by integrated development
environments (IDEs), most of them do not introspect embedded strings for semantic or syntactic
errors and also do not include them in refactoring measures [19]. Therefore it is always advis-
able to incorporate a persistence abstraction layer into the application, that encapsulates all SQL
related operations in a single point of access [55].

Object-Relational Mappers In addition to the mere encapsulation of SQL statements within
a separate architecture layer, object-relational mappers (O/R Mappers) provide means to de-
scribe the relationship between object-oriented constructs and relational database schemas [4].

This meta-descriptions of the objectmodel can be either explicitly manifested in description ob-
jects, XML documents, or source-code annotations, or be implicitly inferred through naming
conventions [49]. Thus, the foundation of the description does not necessarily has to be the
object model itself, but can also be an existing legacy database schema [55].

By utilizing this meta-data, it is possible for object-relational mapping frameworks to provide
basic CRUD (Create, Read, Update, Delete) functionality for objects that are persisted within a
relational database. The mapping thereby defines which columns and tables have to be queried
or altered, when the respective attribute values of objects within the application change.

While this approach is today widely acknowledged as a valid technique to diminish the efforts
required in order to overcome the previously mentioned impedance-mismatch, its implementa-
tions greatly differ in terms of performance and maintainability [23]. Especially frameworks
that, in addition to the already process-inherent data modeling techniques, require the mainte-
nance of user-generated mapping descriptions enforce a new modeling level, that has to remain
synchronized with the object model of the application [38]. Thus, a high degree of flexibility
regarding the creation of meta-data is essential for an O/R Mapper in order to not only solve the
object-relation impedance mismatch, but also to aid the development process of applications.

Another aspect that has to be covered by O/R mapping frameworks is the creation of a generic,
general-purpose query API. Since the mapping description between objects and relation con-
structs is already present, the query processing engine has to take advantage of this prior knowl-
edge, and should not lead to an implicit duplication of mapping aspects. This might happen
if the query engine incorporates strings that only depict the database representation of an at-
tribute instead of utilizing the attribute directly [15]. Therefore, the query engine should be built
upon language constructs of the chosen application environment instead of forcing developers
to utilize another indirection layer with a different syntactical structure.

The huge variety of available O/R mapping approaches leads to the problem of interoperabil-
ity. While, generally, full-fledged O/R mappers should be capable of mapping arbitrary database
schemas to object structures and vice versa, an important issue is the development effort required
to port an application from the usage of one mapper to another. Generic schemas as described in
[20] should therefore always be the standard target of O/R Mappers, and should only be altered
by user request. If, however, multiple applications are supposed to share the same database, then
each of the mappers, if not capable of producing a compliant schema, should be configurable in
a merely trivial way to adopt to the specific peculiarities of different frameworks. This, amongst
other fields, includes the possibility to swiftly change from one inheritance mapping to another
or to specify a standard pattern for the mapping of one-to-many associations to the respective
database tables.

2.2.3 Object Databases

The most natural way to persist objects created within an object-oriented programming environ-
ment is to utilize object-oriented database management systems (ODBMS) [31]. Data is stored
in a manner that is close to the internal representation of objects within the respective environ-
ment but is enriched with means to index data attributes in a way that allows for fast querying. A
study [56] has shown that for most common use-cases the performance of object databases is far
beyond the capabilities of relational database systems coupled to an object-oriented application

through an object-relational mapping framework.

Despite this advantage in query, storage, and adoption times, object databases suffer from
some major drawbacks that diminish their relevance in application development. The most im-
portant aspect is the lack of adoption of the standard for object databases [34]. While the ODMG
3.0 standard has been published in 2001 [6], and also proposed the object query language (OQL)
[2] as a standard for performing queries within object databases, neither have been completely
adopted by a vast majority of object database vendors [34]. This reduces the interoperability
between different ODBMS solutions and thus complicates the joint usage and migration of per-
sistent data between multiple heterogenous applications.

2.3 Requirements for Automatic Object-Relational Support

Since the success of ODBMS seems not to be circumvented by the lack of a technological advan-
tage, but due to economic considerations, object-relational technology will supposedly remain
to be of importance within application development. Therefore means have to be established
that simplify their usage, flexibility and interoperability with other solutions.

As stated in section 2.2.2 the synchronization between an application’s object model and
the mapping descriptions required to persist the created objects within relational databases is
an issue that needs to be solved in a user-friendly manner. Various O/R mapping frameworks
have been developed with the intention to minimize the effort of this maintenance process by
either simplifying the description API, relying on naming conventions for object and database
attributes, or developing tools for static source code analysis. Based on an examination of ex-
isting approaches like ActiveRecord for Ruby on Rails [18], the generic lightweight object-
relational persistence framework (GLORP) for Squeak [33], or the Grails Object-Relational
Mapper (GORM)* for Groovy, the following requirements have been deduced for an O/R map-
per implementation:

o Simple and optimally automatic maintenance of object-relational mapping descriptions,

o Compatibility with other O/R mapping solutions with regards to created database schemas
and mapping descriptions,

e Minimal interference with existing object models by rejecting the necessity to add inheri-
tance relationships and instance variables that are only required for persistence purposes,

o A language-native query interface that is not based on string values, but on real method
invocation, and thus allows for simplified refactoring of applications,

e Support for multi-developer collaboration in terms of consistent data repositories, database
schemas and object-relational mapping descriptions,

e An implementation that in addition to flexibility, ease-of-use, and compatibility remains
competitive with regards to performance of data manipulation and querying.

“http://www.grails.org/GORM

Especially the automatic maintenance of O/R mapping descriptions and the according database
schemas is a feature that is still subject to research [38, 40] and is mostly implemented by the
utilization of external tools instead of language integrated mechanisms.

This thesis therefore proposes an approach to object-relational mapping that makes capacious
use of meta-programming and reflection features in order to automatically create and maintain
O/R mapping descriptions during the runtime of an application. The solution implements the
aforementioned requirements by using only the capabilities of its programming environment
and renounces the need to utilize external tools, alter object and inheritance structures, or create
new modeling layers for application developers.

Development Environment Squeak?, an open-source Smalltalk dialect, has been chosen as
the development environment for the implementation of the proposed object-relational mapping
framework. It has been developed with a focus on educational purposes [27] and is available
on a variety of platforms. The strong adherence to object-oriented principles and the resulting
powerful meta-programming and reflective capabilities provide a supportive platform for the
development of a system that is intended to rely heavily on those techniques. Additionally,
available tools, such as a debugger featuring code replacement during application run time, a
powerful refactoring engine, and a unit testing framework, provide a solid foundation for the
implementation.

While the meta-programming facilities aid the development of the framework, another feature
of Squeak imposes some challenges to the implementation. The image-based nature of the en-
vironment has to be regarded with respect to the possibilities it provides for the implementation
of a shared object space between all processes running within that image. This could improve
the memory footprint of the proposed O/R mapping solution, but close attention has to be paid
to synchronization and thread-safety issues.

Shttp://www.squeak.org

10

3 SqueakSave

The following chapter will provide an introduction into the usage patterns of the SqueakSave
O/R mapper. A guiding example is used in order to simplify understanding of the basic concepts
of the framework, as well as the more advanced features presented in section 3.3. While those
descriptions show the intended usage, technical details of the inner workings will be presented
in chapter 4.

3.1 Introduction

The example that accompanies this chapter has been chosen with regards to simplicity as well as
recognizability. A weblog is an example that complies with both criterions. It is often utilized in
introduction demonstrations of web frameworks and their respective standard persistence mech-
anisms', and also rather simple, and thus easily comprehensible, in its class structure.

The class structure of the sample application, which is depicted in the UML [42] class dia-
gram in figure 3.1, includes the most common scenarios that object-relational mappers have to
handle within applications [20]. The User class and its subclasses require the mapping of class
inheritance to database structures. Additionally, in order to persist the accountData attribute,
one-to-one (1:1) relations have to be implemented. The blogs property depicts a many-to-many
(m:n) relation, since each blog can be maintained by multiple users. Finally, a one-to-many (1:n)
relation has to be modeled in order to connect a blog object to its respective blog entries. In ad-
dition to the mapping of those relations, the chapter also depicts means provided by SqueakSave
to customize the standard, auto-generated mappings, declare transient attributes, that should not
be stored within the database and to improve compatibility with other object-relational mapping
solutions, such as ActiveRecord for Ruby on Rails.

3.2 Basic Persistence Mechanisms

A main requirement for SqueakSave is to provide straightforward persistence mechanisms in
a very simple manner. The following subsections will present the steps that are required in
order to set-up and use the framework for most basic purposes. This includes means to store
objects within the chosen RDBMS, query for objects based on certain attributes, and support the
collaboration between multiple developers.

1e.g. http://rubyonrails.org/screencasts or http://onsmalltalk.com/

11

+administeredBlogs 0..%

User Blog
J -title : string
-lastUpdate : dateTime
+blogs 0..*
1 0..* | +followers
1..% 1
Admin
1 +accountData
0..* +blogPosts
AccountData BlogPost
-email : string -title : string
-username .: str.mg Auihor -text : string
-password : string 1..*
9
1
0..* +comments
Comment
-author : string
-title : string
-text : string

Figure 3.1: Class Structure of the Example Application.

SqsMySQLConnectionSpecification user: ’'admin’ password: ‘password’ database: ’blog_example_db’

Listing 3.1: Connection Specification.

3.2.1 Initial Setup and Configuration

For each class of objects that need to be persisted, developers have to set-up an instance of
SgsConfiguration. As figure 3.2 shows, a configuration object has numerous properties that
determine the behavior of the framework for the classes it applies to. Within the straightforward
case, however, only the connectionSpecification attribute is important. The remaining
properties will be discussed in section 3.3.

The connection specification determines which RDBMS is used as the target storage for the
respective objects. For each supported system, the framework includes a specialized subclass of
SqsConnectionSpecification. It provides standard values for port and hostname of com-
mon RDMBS server implementations such as MySQL or PostgreSQL. The only mandatory
information are username, password and the name of the target database. Listing 3.1 depicts
a minimalist connection specification for the example application. It is important that the user
account specified for accessing the database has the privileges to create, alter, and drop tables,
since SqueakSave is constantly reorganizing the table structure according to changes within the
application classes.

All other properties of the created SqsConfiguration instance will be prefilled with stan-
dard values and, accordingly, only specifying the connection specification will always create
valid configurations.

In order to register a configuration for the application classes, it is necessary to create a sub-

12

SqgsConfiguration

-descriptionHandlerClass : class
-enironment : string
-uselnstVarAccessors : boolean
-warnOnAlteration : true

1

SqgsConnectionSpecification

>

+connectionSpecification

-username : string
-password : string
-database : string
-hostname : string
-driverClass : string
-maxConnections : string

1 +tableConfiguration

SgsTableConfiguration

-inheritanceMode : string
-typeField : string
-idField : string

1 +collectionConfiguration

SgsCollectionConfiguration

-orderField : string
-valueField : string
-forcedoinTables : boolean

Figure 3.2: Configuration Class Structure.

SqsConfig subclass: #BlogExampleSqgsConfig

instanceVariableNames:
classVariableNames: ”
poolDictionaries: ”

category: 'BlogExample’

”»

BlogExampleSgsConfig class>>#connectionSpecification
T SgsMySQLConnectionSpecification

user: ‘admin’
password: ’'password’

database: ’blog-example_db’

Listing 3.2: Configuration Set-Up.

13

class of SqsConfig. The name of this subclass has to follow certain naming conventions to be
recognized by the framework as being valid for classes of objects that ought to be subject to per-
sistence operations. To create a configuration for the entire application, the first part of the class
category, which is normally subdivided by ‘-’ characters [9], has to be the first part of the class
name followed by the suffix SgsConfig. The class-side method connectionSpecification
has to be implemented to return valid server access credentials, according to the previously de-
scribed constraints. The configuration class for the example configuration is depicted in listing
3.2.

Following those naming conventions, it is possible to create differing configurations for sub-
categories of the application by extending the category specific part of the class name prefix.

If the configuration itself has to be altered (see section 3.3), it is possible to reimplement
the configuration method on the class side of the configuration or application class, respec-
tively. Additionally, the configuration method can be implemented on the class side of each
application class, thereby providing the most fine-grained way of setting up configurations.

While it would be more compliant with object-oriented, and especially Smalltalk, principles
[32] to directly connect the class category with its configuration, this is not possible within
Squeak, since the category is only identified as a string and not accessible as a first class object.

3.2.2 Persisting Objects

Convention-based setup of configuration classes is essential to enable simple storing of objects.
By patching the Object class, methods have been introduced that implement the data-modifying
CRUD [55] operations: creating, updating, and deleting objects. As a consequence of this so-
called ‘monkey-patching’? each object within the application can be stored and updated by send-
ing it the save message. Since no database session or connection specification is passed as a
parameter, this method relies on the previously set-up configuration objects and will trigger an
exception if no configuration is available for the corresponding class. Due to this implementa-
tion technique the framework does not force its users to alter the inheritance structure of their
application to persist objects with SqueakSave. The drawbacks of renouncing the need to use an
abstract base class will be discussed in section 4.1.

Listing 3.3 presents the creation of a user object with the according account data attribute.
The save method will store the author object itself and the account data within the database and
also create the one-to-one relationship between them.

Removing objects from persistent storage is possible by using the destroy method. It will
remove the database rows that correspond to an object and additionally remove all references
from other database tables as well. Accordingly, removing a user object from the sample ap-
plication will also lead to a removal of the user from each followers collection it has been
part of. While the database entries will be removed by the framework, the object itself remains
unchanged.

’http://en.wikipedia.org/wiki/Monkey_patch

14

accountData := AccountData new
password: ’password’;
username: ’testuser’;
email: 'user@example.org’.

author := Author new
accountData: accountData.

author save.

Listing 3.3: Basic Object Storage.

(SgsSearch for: User) detect: [:aUser | aUser accountData username = ’testuser’]

(SgsSearch for: Author) select: [:anAuthor |
anAuthor blogs anySatisfy: [:aBlog | blog blogPosts size > 10]]

(SgsSearch for: Blog) anySatisfy: [:aBlog |
aBlog blogPosts noneSatisfy: [:aBlogPost | aBlogPost comments isEmpty]]

Listing 3.4: Query Examples - Emulated Collection Protocol.

3.2.3 Object Query Interface

In addition to the modifying CRUD-operations, a persistence framework has to offer means to
perform queries on the persistent space. Since SqueakSave is build upon a relational database
foundation, those queries have to be carried out as SQL statements. As mentioned in chapter
2.2.1, integrating queries in such a way, that standard language constructs can be used, is an
important feature with regards to the usability of an object-relational mapper [15]. Due to that
fact, SqueakSave provides a query interface that does not rely on string-based query encoding,
but instead emulates the Smalltalk collection protocol [14].

The standard target for object queries are instances of SqsSearch. They have to be instanti-
ated with the class of objects, the search is supposed to return. While queries can be performed
on each class residing within an image, a prerequisite is the availability of a valid configuration
for at least the category, the class belongs to. The query will return instances of the query class
itself, as well as of all its subclasses. Within the sample application, this behavior can be utilized
to distinguish between authors and administrators. If searches are performed on the User class,
they will return instances of Admin as well as Author. Performing searches on either of those
classes individually, however, will only return their particular instances.

Listing 3.4 presents example queries that could be used within the blog example application.
The first query performs a search for the user with the username ‘festuser’. According to the
Smalltalk collection protocol the detect method will only return the first user that is found
within the database and trigger an exception if no such entry exists.

Query number two uses the aforementioned mechanism to narrow the set of possible search

15

results down to special subclasses. The presented select method will find all authors that have
at least one blog with more than 10 blog posts. It has to be noted that this query would not work
on the general User class, since the blogs attribute is only defined for instances of Author.

The last query is useful to determine whether any object within a collection fulfills a given
constraint. In this particular case the query will only return true if at least one blog exists where
all blog posts have been commented at least once.

The message-sends to the query objects, such as aBlogPost or aUser are limited to accessor
methods that are named exactly like the corresponding instance variables. Subsequent method
invocations on the return values, such as collections, integers, or strings have to be implemented
within the SqueakSave framework. In chapter 4.3 we will present the implementation details of
the query processing and depict means to extend the available protocols.

In addition to the collection protocol emulation, SqueakSave offers convention-based dynamic
query methods similar to those in other dynamic-language object-relational mappers such as
GORM [49] for Grails® or ActiveRecord for Ruby on Rails.

(SgsSearch for: Blog) findByTitle: ’testblog’

(SgsSearch for: Comment) findByAuthor: ’author’ andTitle: 'comment’.

Listing 3.5: Query Examples - Convention-Based Dynamic Finders.

The first query presented in listing 3.5 depicts a simple use-case where instances of the Blog
class have to be found by an exact match between the given argument and the current value of the
title instance variable. The second search is an example for the concatenation of constraints.
The keyword ‘and’ implies that the author and the title attribute have to match the specified
arguments. Keywords adhere to SQL terminology, thus ‘or’ can be used as well within dynamic
finders.

The aforementioned object-relational mappers allow for calling the dynamic finder methods
directly on a class. In order to achieve the same behavior in Squeak, it would be necessary to
either overwrite the doesNotUnderstand method within Class, or provide a means for appli-
cation developers to integrate this implementation only within their model classes. This can be
achieved by providing an abstract base class that application classes have to inherit from. How-
ever, this kind of intrusion into the inheritance structure would not comply with the requirement
to provide persistence as an aspect added to the application instead of being an integral part of
it. A less intrusive technique is the usage of traits [16]. They have been introduced in the Self
programming language, [53] and later been applied to Squeak, to provide a more fine-grained
mechanism for reusing existing implementation details.

By adding the TSgsSearch trait to any class of an application’s object model, queries can be
performed like depicted in listing 3.6.

3.2.4 Multi-Developer Collaboration

An important aspect of application development is the collaboration between multiple develop-
ers [39]. Especially when the object model is constantly altered by more than one developer, the

Shttp://www.grails.org/

16

Blog findByTitle: 'testblog’

Comment findByAuthor: ’author’ andTitle: 'comment’.

Listing 3.6: Query Examples - Convention-Based Dynamic Finders on Classes.

resulting changes of the underlying database schema have to be made persistent and thus subject
to version control.

SqueakSave relies on class meta-descriptions in order to be able to create according table
structures or perform search queries on the data. Those meta-data are continuously updated by
the framework and thus reflect the changes that have to be carried out within the database. While
only changes to the object model will be sufficient to keep the descriptions synchronized between
multiple developers, as they will eventually lead to updates of the meta-data, it is not guaranteed
that execution paths leading to an update of the table structure will be executed. Therefore, the
framework is storing each newly created or updated description in the format specified by the
chosen description handler (see section 3.3.4).

Those artifacts, which can be methods, XML files or code annotations, can be subject to
version control systems, such as Monticello [37] or Subversion [45]. Upon each repository
checkout the local versions will be replaced with the descriptions that other developers have
recently created. Hence, they will remain consistent between all development environments.

Another aspect covered by SqueakSave is the creation of a common data foundation for all
developers. This aspect is important for the development process, as it allows to have a well-
defined set of data for testing changes to the application. Additionally, viable records, like shared
geo databases, can be declared and altered by this means in order to make them available to the
entire development team.

The class SqsMigration provides a mechanism that is quite similar to the migration tech-
nique introduced in Ruby on Rails [18].

Listing 3.7 presents the required steps to create migrations for the sample application. The
migration class, which has to inherit from SqsMigration, can be used to automatically generate
migration methods. This step will also inject a version pragma into each method, which defines
an internal order for all migration methods. Accordingly, the methods will be performed in
that particular order upon the invocation of run on the BlogExampleMigration class. The
pragmas also guarantee that no migration is called for a second time after it has been successfully
executed.

Within the migration methods, developers are free to create, load and alter objects as needed
for their application development process. Each migration will be executed within a transac-
tion. Accordingly, errors within the method code will not lead to inconsistent database states.
Therefore, migrations provide a means to create a common and consistent database schema
and content for all involved developers. A reasonable application would be the creation of a
BlogExampleTestMigration that creates the aforementioned test data set and is performed
before each run of unit tests.

To revert the changes to the database schema or content, the method runDown can be triggered.

17

SqsMigration subclass: #BlogExampleMigration
instanceVariableNames: ”
classVariableNames: ”
poolDictionaries: ”
category: 'BlogExample’.

BlogExampleMigration generate: #createTestUser.

BlogExampleMigration>>#createTestUserUp
<version: '20090321142023’>

testUser := User new.
user accountData: (AccountData new username: ’'testuser’; password: ’'password’).
user save.

BlogExampleMigration>>#createTestUserDown
<version: '20090321142023’>
testUser := User detect: [:aUser | aUser accountData username = ’testuser’].
testUser destroy.

BlogExampleMigration run.

Listing 3.7: Migration Usage.

It will perform all methods with the suffix ‘Down’ and, for example, destroy the previously
created test user.

3.3 Customization

Utilization of the presented techniques to store and query for objects as well as to aid multi-
developer collaboration, is sufficient to perform basic CRUD operations on application data.
However, as depicted during the requirements analysis in chapter 2, those basic features have to
be extended with means to customize the behavior of the object-relational mapping framework
and optimize aspects of performance and robustness.

3.3.1 Custom Configuration

The configuration object depicted in figure 3.2 includes properties, that define standard values
for certain fields of the resulting database schema, as well as architecture patterns that are used
for the mapping of object-oriented structures to relational constructs. By altering those values,
it is possible to achieve a higher degree of interoperability with other ORM solutions.

Listing 3.8 presents the custom configuration method, which is required to customize the
framework’s behavior and standard values for the entire application category (depicted here)
or for single classes and sub categories (see section 3.2.1). The attributes that refer to field
names can be altered not only to adhere to naming conventions of other O/R mappers, but also
to solve naming conflicts. An instance variable named type, for example, would be mapped by

18

BlogExampleSgsConfig class>>#configuration
config := super configuration.

config
warnOnAlteration: false;
useInstVarAccessor: false;
environemnt: #production;
descriptionHandlerClass: SgsPragmaDescriptionHandler.

config tableConfiguration
inheritanceMode: #classTableInheritance;
idField: ’oid’;
typeField: ’class_name’.
config collectionConfiguration
orderField: ’index_value’;

valueField: ’collection_element’.

T config

Listing 3.8: Extended Configuration.

the framework to a column of the same name. However, since the default value of the column,
that stores the class name of an object, is also type, the standard value should be altered.

In addition to those interoperability issues, altering the configuration can be used to define the
behavior of the framework during runtime. Therefore it is possible to define whether instance
variable accessor methods should be used or if access to the variables should be implemented
by directly accessing their values. This can be especially important if developers do not want to
implement those methods, or if they implement lazy initialization of objects [8].

While the framework by default alters table structures and association types only after devel-
opers confirmed those changes, the warnOnAlteration attribute can be set-up to disable those
warning dialogs.

At some point during the development process, the object models might be complete, and
changes are no longer likely to happen. When this degree of completeness has been reached, the
introspection and mapping update functionality are no longer required, and should be disabled
in order to improve the overall performance of basic persistence operations. The environment
attribute of the configuration can therefore be set to the value ‘#production’ instead of its default
value ‘#development’.

3.3.2 Session Usage

While the implementation of SqueakSave frees users from the need to utilize an explicit session
object to store, retrieve and delete persisted objects, some more advanced functionality is avail-
able only by using instances of SgsSession. Session objects can be retrieved from the singleton
instance of the SqsConnectionManager, that caches the sessions on a per-thread basis. Thus,
requesting a session for a certain configuration, class, or category will always return the same

19

session := SgsConnectionManager getInstance sessionForClass: Blog.

session := SqgsConnectionManager getInstance sessionForCategory: 'BlogExample’.

session := SgsConnectionManager getInstance sessionForConfiguration: aCustomConfiguration|
Listing 3.9: Alternative Ways to Retrieve Session Objects.

transactionalBlock := [

testuser accountData email: 'newmail@example.org’.
testuser save: session.

testuser accountData password: ’‘newPassword’.
testuser save: session.

1.
session inTransactionDo: transactionalBlock ifError: [testuser rollback].

"alternatively"

session startTransaction.

transactionalBlock value.

session commitTransactionIfError: [testuser rollback].

Listing 3.10: Transactions within Sessions.

object within a single thread of control. The different possibilities to get the current session for
the sample application are depicted in listing 3.9. The first two methods will deliver the same
thread-specific session object, that contains the previously set-up standard configuration. The
last possibility will create a new session, because of the custom configuration.

With the retrieved session object it is possible to perform transactions and define the intended
behavior upon transaction failures. If the SqueakSave session is, for example, stored within a
Seaside* session object, and all data manipulation operations are performed by passing the ses-
sion as an explicit parameter, transactions can even span the entire life cycle of web application
usage by a single user. Therefore, the transaction does not have to be performed by defining a
block-closure for the transactional behavior and one for the rollback-case, but it is possible to
explicitly start and commit it via offered functionality of the session protocol. However, this
utilization can be error-prone, since viable control-paths, whose execution is guaranteed, have
to be determined.

Listing 3.10 depicts the two possibilities by using an explicit session object, that has been
retrieved like shown in listing 3.9. The rollback method, that is available for all objects just
like the methods mentioned in section 3.2.2, will set the instance variables of the user object
back to the pre-transaction state.

Since a session object also contains a copy of the respective configuration, the behavior of the
framework can be explicitly defined for each session. A field of application of this technique
are administrator tasks that, in contrast to the common behavior of a web page, rely on the pos-

“http://www.seaside.st

20

newBlog := Blog new;
title: 'New Blog’.

newPost := BlogPost new;
title: 'New BlogPost'.
newComment := Comment new

title: 'New Comment’.

newPost comments add: newComment.
newBlog comments add: newPost.
testuser blogs add: newBlog.

testuser flatSave.
testuser save.

testuser saveTolLevel: 2.
testuser deepSave.

Listing 3.11: Different Save Levels of SqueakSave.

sibilities to alter data structures or inspect the generated SQL statements for certain operations.
So basically, by overriding the configuration of the database session after an administrator has
logged in to the application, it is possible to define a role-based behavior of the SqueakSave
framework.

3.3.3 Performance Optimization

The database schemas created by SqueakSave follow the basic patterns described by Fowler et.
al [20]. However, not all of those patterns may be suitable for each object model. Especially
deep inheritance hierarchies can create performance problems, if they are mapped to a single
table. Additionally, an abstract base class for all application classes should be ignored for per-
sistence purposes, since each subclass instance has to be saved within the base class table, as
well (class table inheritance), or all application objects will reside within the same table (single
table inheritance).

SqueakSave provides simple means to alter the generated table structure in a way that is more
suitable for the requirements of individual applications. Abstract base classes can be declared by
implementing the sqsAbstractBaseClass class method in the respective model class. Subse-
quently the class will be ignored with regards to table creation, and all attributes defined within
this class will be mapped to the tables created for each of its direct subclasses. While the inner-
workings of this behavior should not be of interest to framework users, it provides a simple
starting point to overcome performance problems.

The table structure can be altered by setting the inheritanceMode value like depicted in
listing 3.8. Since those configurations can be set for each class individually, it is possible to use
different inheritance models for each application class. However, it is not possible to alter the
table structure within one inheritance chain.

Another important aspect regarding the performance of the framework is the declaration of
transient, i.e., not persisted, instance variables. If, for example, the user objects within the sam-

21

ple application would include instance variables that are only set during a visit of the web site as
temporary storages, it would not be necessary to store them within the database. Those variables
can be defined by implementing a class-side method named sqsUnpersistedInstVars on the
respective class, which returns a collection of their names.

In addition to simple alterations of the created table structures, SqueakSave offers means
to control the object graph traversal depth required to store or update objects. In addition to
the already mentioned save method, developers are able to utilize flatSave, deepSave, and
saveToLevel:alLevel. Within the example, that is presented in listing 3.11, the consecutive
usage of those methods will gradually store more associated objects of the user.

After the flatSave command, only the user itself will be stored, and all newly created object
are ignored. Save, as insinuated earlier, stores the new blog object in the database, but will not
store the according blog posts or comment. The method that allows for the highest degree of
control is saveToLevel :aLevel. With the specified level of two, the framework will follow a
maximum of two references from the user object to find objects that need to be persisted. Hence,
the new comment will not be stored. In order to persist the entire object graph, deepSave should
be utilized. However, while this method guarantees that all reachable objects will be stored,
it can have a considerable impact on the performance. Developers should therefore carefully
decide which method to use, when certain storage operations exceed the expected runtimes.

3.3.4 Custom Object-Relational Mapping Descriptions

The customization of auto-generated mapping descriptions can become an important feature,
when naming conventions of the O/R mapper collide with the expectations of developers, or
whenever legacy data has to be mapped to an object model.

As stated in section 3.2.4, the mapping descriptions are not only kept in memory, but are also
persisted. The format of this persistence is defined by the chosen description handler class. This
can be altered within the configuration object itself (see listing 3.8). The standard description
handlers utilize the internal format of the meta-descriptions. However, custom mapping de-
scriptions, such as pragmas or XML documents can be generated, as well, if the corresponding
description handler class has been implemented. Due to this fact, the techniques to mark de-
scriptions, or parts of it, as being manually maintained, differ between the description handler
implementations.

As far as the standard description handler is concerned, each of the description objects in-
cludes a manuallyMaintained-flag that indicates whether it is maintained by users or not. If
this flag is set to true, the automatic updates will not alter the particular description. However, if
the custom description requires changes to the database schema, those will be carried out by the
framework.

A variety of options can be altered within the mapping description for particular instance
variables. This includes trivial values, such as the column name or the SQL type of the column,
but also more advanced features like foreign-key constraints. Additionally, it is possible to alter
the name of the table, that is created for each class. This alteration does not require the alteration
of the mapping description, but the creation of a class side method named sqsTableName. This
method can be implemented within each class of an inheritance chain, without affecting the name
mappings for super- or subclasses. Listing 3.12 depicts a custom configuration for the username

22

AccountData class>>#sgsDescrUsername
T SgsColumn new
manuallyMaintained: true;
columnName: ’'name’;
sqlType: #varchar:20;
linkedAttribute: #username.

Listing 3.12: Custom Mapping Description.

field of the account data. The name of the column is changed to name and, additionally, the
SQL type of the column is manually set to VARCHAR(20) to disable the automatic string size
retrieval of SqueakSave (see chapter 4.1.1).

3.4 Summary

The preceding presentation of the usage workflow of SqueakSave has demonstrated, that the
requirements regarding simplicity of usage as well as customizability as a means to increase
interoperability, have been fulfilled. It becomes apparent that only minimal configuration is
necessary, in order to add persistence in a very transparent manner to an existing application.
While the API of SqueakSave may not comply with every other available solution, and thus
changes to the source code might have to be carried out, this does not necessarily decrease
the ease-of-integration. It is generally advised to encapsulate database access functionality in a
separate layer between the application and the persistence framework [26] and within this layer
the presented CRUD-functionality can be implemented in a very intuitive manner.

A more detailed evaluation regarding the interoperability between SqueakSave and other
object-relation mapping frameworks, will be presented in chapter 5.2.

23

4 SqueakSave Framework Architecture

In order to fulfill the requirements of flexibility and ease-of-use, SqueakSave’s architecture has
to incorporate means to free users from manually creating meta descriptions but still enable
them to alter aspects of its inner workings. This requires to not rely on hard coded values, but
to allow for dynamic configuration during application runtime. The following sections depict
the implementation architecture of the basic classes that are required to provide simple CRUD
functionality, as well as aspects concerning the extensibility of the framework.

4.1 Basics

The usage workflow described in chapter 3.2 is realized by the core classes of the SqueakSave
framework. They are depicted in a simplified manner in figure 4.1, i.e., without the inclusion
of concrete subclass implementations. In addition to handling the automatic description updates
and CRUD operations those classes also have been implemented with a focus on object caching
and thread safety.

The Petri net [44] depicted in figure 4.5 presents the basic workflow of persisting an object,
either by inserting it into the database or updating the corresponding database rows. It becomes
apparent that multiple actors of the framework are involved in this process, and accordingly the
customization aspects have to be reflected within all those classes.

4.1.1 Object-Relational Mappings - Creation and Update

The mapping of class hierarchies and object attributes to relational constructs is performed by an
introspection mechanism. Each object that is subject to persistence operations is examined and
the according relational constructs are described according to a set of general mapping rules. As
presented in chapter 3.3 the general rules can be overwritten with custom values.

General Mapping Rules For most basic data types, such as strings or integers, the mapping
to relational constructs is straightforward. For each of the attributes that only holds a value of
such a type, a single column within the class’ database table will be created. The name of the
column corresponds to the name of the instance variable. However, the standard preset dissects
the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user_name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).
The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and

25

Object 0..* class Class currentClass
storedObject 1 1
1 1
JA
| instVarValue —l
SgsBase 0..* SgsConnection
SgsStorage SgsProxy
SgsConnectionManager
1
0.* +classlnfo SgsClassinfo 1 .
1
1 1
1 1 0.. - !
+session SgsSession 1 | <<use>>
il 1
A dbAdapter\)/ 1 .
! SgsDatabaseAdapter
descriptionHandler SgsDescriptionHandler :
1 : <<use>>

, 0.*

. 0..1 connection

tableStructureHandler SgsTableStructureHandler SgsDatabaseConnection
1

Figure 4.1: Overview of SqueakSave System Classes.

returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

Collections of objects are always created as join tables, and not like in other O/R mappers in
case of one-to-many relations as foreign keys within the table of the referenced objects. This is
a direct consequence of two problems. The first one is the distinction between one-to-many and
may-to-many relations through reflection. While it would be possible to detect those relations,
implementing this feature has proven itself to be too time consuming during program execution.
Not only would the framework supposed to be following all references pointing to objects within
a collection, until one is found that has more than one reference to it. But, additionally, database
queries would be required to check if references exist that are not currently present within the
applications object memory.

The second problem is the inversion of the logical association direction from the object model

26

to the relational structure [38]. Instead of the collection owner pointing to the values of the
collection, the elements within that collection would reference their owner. This fact is also
problematic with regards to the usage of objects within many collections in different classes of
objects. It would be required to add a new table column for every reference to those objects.

The created join tables contain a field that references the table entry of the collection owner
and another column pointing to the respective object within the collection. Additionally, an
order field is introduced if the application uses collections with a strict internal order. This field
is created with the type of the index value of the collection. To map an Array, for example,
the index field would be of type INTEGER, while a string indexed dictionary would require
a VARCHAR type. If the collection only includes simple values, the reference field to the
collection elements will be replaced with a field of the respective value, that directly stores them
within the join table.

All of the aforementioned mapping rules are manifested within the mapping descriptions.
They include the derived column names and types, as well as the descriptions for more complex
structures like join tables.

Description Updates In order to reflect changes within the object model in the database
structure, SqueakSave uses Squeak’s meta-programming and reflective capabilities to update
the previously created descriptions. The Petri net depicted in figure 4.2 presents the workflow
of the update procedure. Shortly summarized, each instance variable value is checked against
previously created descriptions and they are persisted in terms of a newly created mapping de-
scription only if changes to the relational structure would be necessary.

Alterations can become unavoidable in a variety of scenarios. Most obviously that is the case
if the class of an assigned value has changed. However, not every object class change requires a
database structure change. Certain types comply with each other with regards to their database
representation. Within the example application (see chapter 3), this behavior could be observed
if an Admin object is the current value of an attribute that was previously pointing to general
User objects.

With regards to collections the behavior slightly differs. Not only the type of collection is
of importance here, but also the base type of objects within that collection. Thus, a description
alteration will be performed if, for example, an OrderedCollection has been transformed into
a Set or if it contains values of a different base class than its predecessor.

The SQL type inspection is necessary to detect values of the same class, that require a dif-
ferent encoding within the database. While, for example, strings with a length shorter than 255
characters can be stored in columns of the type VARCHAR, longer ones require the database
field to be of type TEXT. This is an important feature with regards to the optimization of the
created database schema. Since accessing TEXT elements is vastly slower than querying VAR-
CHAR fields [51], SqueakSave strives to only use this fields if the application indeed requires
them to store its data.

The final check for the addition or removal of foreign key constraints is especially important
for associated complex attributes and owned collections. If, for example, the class of a direct
associated object changes, or collections include different values, the foreign keys have to be
altered, as well. They need to point to different tables or have to be removed completely, if a

27

[1

Get Current Value Class

Get next Instance Variable

Incompatible
Value Classes

Get Value of Instance Variable

Determine SQL-Type

Incompatible

Types
Value = nil
Computize Required
Get previous Column Constraints
Mapping Description

Manually Maintained
Description

Automtically Generated
Description

Column constraints
removed or added

No D ti
o Description Ask for
Confirmation

Change Approved?

Keep previous
Mapping Description

Create and Persist new Description|

Not all Instance
Variables Scrutinized

Continue Object Save/Update

Figure 4.2: Workflow of Automatic OR-mapping description updates.

parent

SgsTable SgsColumn
0..1 -tableName : String > columns _ |.columnName : String
-oidColumn : SgqsColumn -sqlType : String
-typeColumn : SgsColumn 1 1..* [-objectClass : Class
! +allParentTables() : Collection GRS 2 Eoaleam
0.." _|+aliChildTable() : Collection BIPMERINGY § IS0elREn
children +baseTable() : SqsTable -autolncrement : Boolean

-linkedVariable : String

0..1]
currentTable 1 1 previousTable
foreignKe
1 1 1 g y
SgsTableChanges SgsForeignKeyDescription

-alteredColumns : OrderedCollection -referencedColumns : OrderedCollection
-renamedColumns : OrderedCollection -referencedTable : String
-removedColumns : OrderedCollection -updateActions : Collection
-addedConstraints : OrderedCollection -deleteActions : Collection
-removedConstraints : OrderedCollection -referencingColumns : OrderedCollection
+calculateTableChanges()
+tableNameChanged() : Boolean

Figure 4.3: Table Description Classes.

complex association is now referencing simple objects.

4.1.2 Table Structure Adaption

As previously described, SqueakSave incorporates means to support different standard patterns
to map object structures to relational schemas. This behavior is achieved by an abstraction
from the actual table structure, that can be traversed in a generic manner. As depicted in figure
4.3 each table can have a number of columns, foreign key constraints and and child tables. In
addition, each child table also includes a references to its parent table.

Utilizing this behavior, it is possible to represent table structures, whereas the actual values
of object attributes are distributed within an arbitrary number of sub tables. In conjunction
with the foreign key constraints, that manifest those relations on a database level and ensure
referential integrity between the corresponding table rows, it is possible to create normalized
database schemas. However, in order to achieve this behavior, custom table structure handlers
have to be implemented (ref. chapter 4.4.2).

The SqsTableChanges class is capable of comparing two tables and extract all columns,
whose names or types have been altered. Additionally, it detects added and removed columns
and foreign key constraints. It therefore provides the foundation for the table structure updates
that are carried out during the execution of the save method. The previously present table mod-
els are stored in a cache within the SqsTableStructureHandler class and compared against
the versions represented by the currently available mapping descriptions.

If tables differ within their structure, the updates are carried out in an order that guarantees

29

Object

+save()

+save(session : SgsSession)
+flatSave()

+flatSave(session : SqsSession)
+deepSave()

+deepSave(session : SqsSession)
+saveTolevel(level : Integer)
+saveToLevel(level : Integer, session : SqsSession)
+rollback()

+rollback(session : SqsSession)
+destroy()

+0id() : Integer

Figure 4.4: Additions to the Object Protocol.

the avoidance of query errors due to inconsistent table alterations:

1. Removal of superfluous constraints,

2. Renaming of the according class table,

3. Renaming of columns, whose names have been altered by framework users,
4. Alteration of column types,

5. Addition of new columns,

6. Removal of unnecessary columns,

7. Addition of newly created constraints.

Since this process is highly sensitive to the interference by similar operations carried out
within other processes, a semaphore guards the entire table structure update and creation work-
flow. While this might diminish the overall system performance, it is necessary in order to keep
the cached table structures and, accordingly, the database schema in a consistent state.

4.1.3 Storage Wrapper Class

Enriching objects with capabilities that have not been implemented within their respective class
definitions can be realized by utilizing a number of standard patterns. Due to the requirement
of not altering existing class definitions, the SqueakSave framework relies on the SqsStorage
class as a decorator [21] that handles persistence-related operations. As mentioned in section
3.2.2, the protocol of the Object class has been extended with methods that support basic CRUD
functionality. Figure 4.4 presents those custom additions.

All of the aforementioned calls will be internally delegated to an instance of SqsStorage.
For each object that is present within the image, a unique SqsStorage instance is created. Due
to a caching mechanism that is utilizing weak references [25], the respective instances are only
available as long as the base object is not subject to garbage collection.

30

Storage Wrapper Description Handler Table Structure Handler

All Associated Objects are saved OR
Maximum Depth Level Reached

Create/Update Create/Update Insert/ Update
~ ; _— F—>0O—> —0O
anObject save Dgﬂsiﬁglt?gns —O Table Structure Database records

anObject :=
nextAssociatedObject|

Figure 4.5: Internal Workflow of the Save-Operation.

In addition to the decorator, the framework will also create a unique object id for each per-
sisted object. Those unique identifiers are required to couple an object with its database repre-
sentation and, accordingly, enable references between objects on the database level [3].

By tightly coupling the decorator instances to the decorated objects, it is also possible to
handle recursive calls of the save method. As presented in figure 4.5, the decorator instances
will only try to store associated objects, if the object itself has not already been processed within
the current operation. An internal flag is set at the first traversal, and if cyclic references lead to
an object again, only changes to instance variables and owned collections will be examined.

The example of two cyclicly coupled objects, that are stored within the same save call for the
first time, will clarify this behavior: The algorithm first writes all attributes of the main object
into the database. However, since the referenced object has not been subject to persistence oper-
ations before, it does not have a unique object id assigned at this point. Hence, the corresponding
entry within the database will be a NULL value. Afterwards, the referenced object will be saved,
and because the root object has a valid object id, the database record will, accordingly, point to
this value. As the framework now tries to store the root object again, because it is referenced
by the second object, it will not call the save method again on all referenced objects, but only
update the corresponding database entry of the root object with the now present object id of the
second object.

Object Proxies For performance and framework internal reasons, instances of SqsProxy are
inserted into the decorated objects. Proxy objects are distinguished between proxies for directly
associated objects and those representing collections.

The proxies for directly associated objects, like the account data of a user in the example ap-
plication (see chapter 3), are necessary to avoid an eager loading of the entire object graph upon
the creation of query results. If, for example, a user object is returned for a search, the corre-
sponding account data would have to be loaded, as well. In order to improve the performance
of queries, the proxy objects are inserted instead of the concrete associated objects. The proxies
are initialized with all required information to trigger the loading of the depicted object if the
applications accesses them. All calls to the proxy objects, except for those that are defined on
ProtoObject, are delegated to the loaded instances. Thereby the insertion of the proxies re-

31

mains transparent to framework users and the proxies could also be removed, once the depicted
object is present within the image.

Collection handling requires a different approach to the insertion of proxies. While the afore-
mentioned objects only serve as placeholders, collection proxies are essential to detect changes
within collections. Therefore, before each save call and after loading an object as the result of
the search query, an instance of SqsCollectionProxy will be inserted instead of the original
collection. In addition to the loading of all objects that are part of the original collection, those
proxies also create and maintain an internal map of the collection objects. This map allows to
detect added, displaced, and removed objects within a collection. Hence, after each successful
save call, the collection map will be updated, and if the object that references the collection is
saved again, all changes that happened up to this point will also be reflected within the database.

4.2 Utility Classes

To realize the previously described behavior of the framework, the core classes have to utilize a
number of utility classes that give them the ability to cache objects, obtain database connection,
or adapt their behavior to custom configurations. The following sections describe the most
important utility classes of SqueakSave.

4.2.1 Object Caches

Object caches are not only necessary to enhance the performance of the framework, but also
an integral asset for the realization of adding persistence merely transparently to objects. Since
the object structure shall not be altered, their internally assigned unique object identifiers cannot
be stored within the objects itself. As depicted in section 4.1.3, a unique decorator is assigned
to each object during its lifetime. Therefore the obvious choice for implementing the object id
storage is the introduction of an instance variable to the SqsStorage objects.

The straightforward solution to this caching issue would be the creation of a dictionary,
whereas the objects are used as indexes that point to their respective decorators. Unfortunately,
the inefficient handling of large collections within Squeak would lead to a decreased degree of
scalability of the framework for an increasing amount of stored objects. Therefore, the imple-
mentation builds up the cache in a staggered manner. Firstly, the class of the respective objects
is used for a preselection of the corresponding sub caches. Secondly, within the sub caches
the decorators are stored within a B-Tree structure [7] that utilizes their Squeak-internal object
hashes to calculate the exact position of the decorator reference within the cache.

In addition to the usage of caches to store object ids without object model or inheritance
structure alteration, performance optimization also requires this feature. To avoid the rebuilding
of objects that have been already the result of a query, or have been instantiated within the
application just recently, it is necessary to maintain an additional cache. It has to return pre-built
instances identified by their class name and object id.

While caching all available objects could improve the performance of query result creation,
a trade-off between the memory footprint of the framework and the performance gain induced
by result caching has to be made. Therefore, the cache size is limited on a per class basis to a

32

configurable number of entries and makes it possible to implement different cache sizes for each
application.

4.2.2 Database Connection Handling

The database adapters encapsulate the SQL query generation according to the specifications
of the respective RDBMS. In order to execute those queries, the adapters rely on instances
of SgsDatabaseConnection. SqueakSave database connection objects conceal differences
between the connection objects supplied by the different database access drivers (see section
4.4.3).

The physical connection to the database is obtained by the database adapters only when re-
quired, and dropped whenever queries have been executed successfully. While connecting and
disconnecting to the server upon each request would have been an option that had highly sim-
plified the implementation, it is not a viable approach with regards to performance. Login
procedures on database servers are rather costly in comparison to execution times of, espe-
cially, smaller queries. Therefore, SqueakSave implements a centralized connection pool. This
pool is maintained by the singleton instance of the SgsConnectionManager, and due to a
SharedQueue implementation also thread safe. Each adapter that requires a database connec-
tion has to utilize the connection manager and either get it instantly, or whenever a connection
is returned to the queue by another adapter. The shared queue is guarding the insertion and re-
trieval processes with a semaphore. Hence, it is guaranteed that each connection is only assigned
to one adapter at a time. All adapters that have to wait for a connection are also waiting for the
semaphore to become available and, accordingly, race conditions are prevented in this scenario,
too. The detailed workflow of the connection retrieval and return is depicted in figure 4.6

While this standard behavior is suitable for most basic operations, it obviously cannot be used
during transactions. Therefore, each database adapter is aware of its current transaction state
and does not return connections to the queue while a transaction is in progress.

4.2.3 Configuration and Customization

Customization of the framework is possible by the means presented in chapter 3.3.1. In order to
integrate the custom settings into the workflows that are performed by the framework, it is neces-
sary to implement each aspect with close attention to session utilization, as they include the cur-
rently active configuration. Session objects are available to each framework actor by two means:
Indirect access through a reference to the decorator of the currently investigated object and an
explicit request to the SqsSessionManager, that will return the session used within the current
thread of control. The former method is available for classes such as SgsDescriptionHandler
and SqsTableStructureHandler, while the latter is reserved for queries, since they are not
coupled to a specific decorator instance.

With the session, and accordingly the configuration, at hand, the actors can adopt certain
behavior to the values specified by the developers. This most obviously manifests itself within
the aforementioned description and table structure handlers, as they are created in a factory
pattern [21] fashion based on the chosen table inheritance model and the respective description
handler class. Additionally, the configuration influences their workflow for table creation and

33

34

Database Adapter Connection Manager

Prepare SQL
Statement

Get Connection From
Queue

No Connection Present No Connection Available & Connection
Free Connection Available Limit Reached
Connection Present No Free Connection Available | & Connection Limit Not Reached l

Create And Return

New Connection Connection

o

Return Valid
Connection

Wait for Free |

Execute Query

Not in Transaction
rI Return Connection to Queue |—>O—>| Notify Next Waiting Adapter

In Transaction

Return Query
Result

Figure 4.6: Retrieval of Database Connections.

description updates by stipulating values for certain table fields or rules about developer approval
for description alteration.

4.3 Query Generation

The following section provides a detailed explanation of the SQL query generation from method
invocations on the language-native query APL

4.3.1 Collection Protocol Emulation

The implementation of the collection protocol emulation for object queries is based on the work
of W. Harford and E. Hochmeister, who have implemented a quite similar system for the ReServe
project'. While the basic implementation allowed for simple queries on directly associated
attributes of objects, it has been enriched with the capabilities to define query conditions on
associated collections and directly associated objects to a much deeper level within the object
graph structure.

In order to analyze the block-closures that are passed as arguments to the respective collection
methods, SqueakSave utilizes the SqsQueryValue classes depicted in figure 4.7. Each of those
classes imitates the protocol of basic system classes such as Integer or String. But instead of
of delivering the result for each operation, the methods gradually fill the whereBuffer attribute
with the SQL equivalents of the respective operations. Listing 4.2 presents the SQL WHERE
statement that is generated for a sample query (listing 4.1).

query := (SgsQuery on: BlogPost) analyze: [:aBlogPost | aBlogPost text size > 100].

Listing 4.1: Language-Native Query Before Translation to SQL.

‘WHERE CHAR_LENGTH(blog_posts.text) > 100°

Listing 4.2: SQL WHERE Statement Generated from Language-Native Query.

Complex objects, that cannot be directly mapped to an SQL type are depicted by instances of
SqsQueryObject. Each method sent to those objects is analyzed with regards to the database
columns representing the corresponding attribute. If such a column exists, the where buffer
is enriched with a unique identifier consisting of the according table and column name. If
columns refer to rows in different tables (i.e. foreign key relations), this scoping is performed by
SqsQueryObjects, too. Upon each scoping to another table, the table names are being aliased
with a unique suffix, that allows for self-referencing foreign key handling.

In addition to the WHERE statement creation, the system also conglomerates the tables that
are important to the query within SqsQueryTable objects. They include a unique suffix and a
reference to the SqsTable object, that serves as a meta description of the database table struc-
ture. Additionally, a number of links to other tables can be added to a query table, in order

Thttp://www.squeaksource. com/REServe.html

35

SgsQuery SgsQueryTable originalTable SgsTable
-queryClass : Class queryTables _ |-aliasSuffix : string 0~ p
-whereBuffer : String 1 1..* -field : string ;
-orderBy : String -queryClass : Class

-ignoreTypeField : Boolean valueTables

-distinct : Boolean 1

1.7

1 1

1

toTable
<<use>>

currentQueryValue |1 0..1 | previousQueryValue tableLinks| 0..* :
ProtoObject SgsQueryValue SgsTableLink
-whereBuffer : String -joinDirection : string
q—-depictedclass : Class -fromFields : Collection
-referencedColumn : SqsPersistenceDescription -toFields : Collection
SgsQueryBoolean SgsQueryCollection SgsQueryDate SgsQueryNumber SgsQueryObject SgsQueryString

SgsQueryDateTime

Figure 4.7: Collection Protocol Emulation Classes.

to represent joins that have to be performed for queries. During the final steps of query gen-
eration, those query tables are connected to form the FROM part of the SQL query. Tables,
whose values have to be returned from a query, are stored in the valueTables collection of an
SgsQueryObject.

This generic analysis of block-closures allows to handle table structures for class and single
table inheritance and the nesting of constraints, e.g. for sub queries on collections that are owned
by query objects, without any explicit distinctions between the different table models.

4.3.2 Convention Based Query Methods

The dynamic convention-based finder methods, presented in chapter 3.2.3, could be imple-
mented separated from the collection protocol emulation. However, considering the require-
ment for extensibility of the framework, their implementation is based on the collection pro-
tocol emulation, as well. Therefore, the finder methods are analyzed for the occurrence of
attribute names and the respective values. This is performed within a re-implementation of the
doesNotUnderstand method that handles calls of undefined methods on objects. The method
checks whether the first part of the selector either matches find or findAll. If either of those
strings matches the beginning of the given method selector, the remaining parts are scrutinized
for their compliance with instance variable names of the respective search class. Finally, the
algorithm determines the logical operators that are implied by the method name.

Afterwards the framework creates block-closures depicting those constraints and concatenates
them with the chosen logical operators. The block-closures are generated by utilizing the previ-
ously extracted strings from the method selector name and the arguments passed to the dynamic
finder method. The values are especially important in this case, since they have to be translated
into a string. Complex objects, for example, require the inclusion of their object id into the query

36

string, while simple types such as dates or strings need to be escaped to be properly parsed by
the Squeak compiler. Therefore, the SqsSearch class maintains a dictionary with the respective
methods, it has to call for certain types of objects. If the string representation has been success-
fully generated, it is passed to the Compiler that generates executable bytecode for the required
block-closure.

This block-closures will be then forwarded to an instance of the SqsQuery class, that analyzes
them as described previously. Listing 4.4 depicts the block-closures created from a dynamic
finder method (listing 4.3).

Comment findByAuthor: ’author’ andTitle: 'comment’.

Listing 4.3: Dynamic-Finder Method Before Conversion into Block-Closure.

[:aComment | (aComment author = ’author’) & (aComment title = ‘comment’)].

Listing 4.4: Block-Closure Generated from Dynamic-Finder Method.

4.4 Framework Extension

A central requirement for the development has been the extensibility of the framework with
regards to the adoption of newly available database management systems and the implementation
of custom object-relational mapping flavors. Therefore, the classes that are responsible for the
realization of the corresponding behavior have been implemented in ways that ought to simplify
the development of custom framework extensions.

4.4.1 Custom Object-Relational Mapping Descriptions

The SgsDescriptionHandler serves as an abstract base-class, that defines the methods, which
are crucial to the implementation of custom description handlers.

As presented in figure 4.8, only two methods have to be implemented in order to create new
mapping description handlers. The sqsDescriptionFor:instVarName method returns the
meta description of the O/R mapping for an instance variable of the object that is subject of
currently performed persistence operations. While this description can be stored in arbitrary
formats, the method always has to deliver instances of SqsPersistenceDescriptor. This
translation might be costly with regards to time consumption, but developers could avoid per-
formance problems by caching the SqueakSave-internal format or persisting it by utilizing the
standard description handlers.

The second method that needs to be implemented is createDescriptions. It is called
during the storing process and, since the description handlers have full access to the decora-
tor of the persisted object, requires no additional parameter. While it would compromise the
self-configuring nature of SqueakSave, to not create or update mapping descriptions, custom
description handlers that should only supply reading abilities can waive this implementation.

37

SqgsDescriptionHandler
+sqgsDescriptionFor(instVarName : string) : SqsPersitenceDescription
+createDescriptions()

JAY

SgsXmlDescriptionHandler SgsStandardDescriptionHandler SgsPragmaDescriptionHandler
+targetClass() : Class

I

SqgsStandardinternDescriptionHandler SqsStandardExternDescriptionHandler

Figure 4.8: Description Handler Inheritance.

4.4.2 Table Structures

In order to provide the means to create new table structures that do not follow the standard
patterns of class, single or concrete table inheritance, it is necessary to implement a subclass of
SqsTableStructureHandler. The only method that has to be implemented regardless of the
chosen mapping model is classTable. It has to deliver an SqsTable object that includes all
columns belonging to that table and additionally all its sub tables and super tables.

The implementation of this method, however, is free to re-order table columns according
to any criteria of choice. Therefore, it could be possible to create a table structure handler
that distinctively utilizes in-depth knowledge about the internal storage mechanisms of a given
RDBMS. This could lead to optimized, but less comprehensible database schemas, that might
not directly represent the object model, but adhere to relational database normalization rules.

4.4.3 Database Adapters

The most obvious extension point for any given O/R mapper are adapters for different RDBMS.
They implement the generation of the SQL queries depicting certain database operations. In
order to provide a custom adapter, two steps are mandatory for alleged extension developers.

The first one is to create a subclass of SgsConnection that implements some basic operations
to control the state of the actual database connection and execute queries on them. The connec-
tion control methods are required in order to automatically create new connections within the
connection-pool. Therefore the init, close and isAlive operations have to be implemented.
In addition to the query execution, the framework also requires a means to convert the query
results from the client-internal format into a general one, that can be handled by SqueakSave
adapters.

While it is necessary to re-implement those methods for each adapter facilitating a native
client implementation, it would be possible to utilize an open standard interface that provides
the same access methods, regardless of the underlying database. This includes connectors like

38

ODBC? or OpenDBX?3. However, the setup of those two solutions requires not only the instal-
lation of respective clients for Squeak, but additionally the installation or even compilation of
platform-dependent libraries within the operating system.

The localization of methods within the protocol of SqgsDatabaseAdapter, that have to be
overridden in order to provide a working adapter implementation for a certain RDBMS is rather
difficult. This is mainly a consequence of the custom extensions to the SQL-standard imple-
mented by different RDBMS vendors. The basic implementation within SqueakSave, however,
strives to implement almost all operations according to the SQL standard, and thereby tries to
minimize number of methods that have to be overwritten.

4.5 Summary

The main requirements for the implementation have been the realization of automatic updates,
language-native queries, and extensibility of the framework. Throughout this chapter necessary
design decisions for the implementation of this behavior have been presented. Automatic up-
dates are implemented by a copious algorithm that supposedly covers all possible changes to the
object models and therefore dependably and only in unavoidable scenarios updates the existing
mapping descriptions.

Language-native queries have been implemented by a block-closure analysis system, that can
handle deep object graph structures and numerous standard operations on simple data types, as
well as all accessor methods on complex objects. While it could be extended with means to
fully analyze all available method calls in order to provide fully transparent persistence [54], the
current implementation suffices for the most common usage patterns.

Extension points are also available for all designated components of the framework and pro-
vide meaningful presets for the implementation of custom description and table structure han-
dlers, as well as database adapters

*http://support.microsoft.com/kb/110093
Shttp://www.linuxnetworks.de/opendbx

39

5 Evaluation

The main focus of the implementation of SqueakSave was the support of fast-evolving object
models and a generic architecture that allows for extension of the available description systems,
table structure handlers and database adapters. However, performance is an important aspect
of each persistence management system [4], and thus the implemented framework has to be
evaluated with regards to both aspects. The following chapter provides benchmark results for
SqueakSave and three other O/R mapping frameworks. Additionally, the production and de-
velopment modes are compared and conclusions are drawn regarding performance bottlenecks
and possible optimizations. The chapter concludes with an example-based evaluation of the
interoperability between SqueakSave and ActiveRecord for Ruby on Rails.

5.1 Performance

Numerous benchmarks exists to measure the performance of object persistence technologies.
The BUCKY [12] or the BORD benchmark [35], for example, are especially designed to ana-
lyze the performance of object-relational systems. Other approaches, like the OO7 Benchmark
[11], have been developed to provide objective measurements for any kind of object persistence,
without any special focus.

One of the requirements for the implementation of SqueakSave is to provide persistence in a
transparent manner and merely add it as an aspect to the application that requires no additional
adaption of the existing object model. Therefore, the OO7 Benchmark is utilized for perfor-
mance measurements.

The implementation used for this comparison is based on the Java version! of the original
benchmark, which was written in C. Porting this benchmark to Java has been carried out by
Zyl et al. in order to compare the performance of object-relational mappers and object-oriented
databases [56]. Since neither the original benchmark presentation, nor the aforementioned com-
parison depicts the class structure used within the benchmark, figure 5.1 presents it to visualize
the complexity of the model.

All benchmarks have been carried out on a 2.4 GHz Intel Core 2 Duo Macbook with 4GB
RAM and Mac OS X 10.5.6. PostgreSql version 8.3 has been used as the underlying RDBMS. To
minimize the impact of temporary changes within the execution environment, each benchmark
was run 100 times. The measurement results represent the median of all retrieved timings.

'http://sourceforge.net/projects/oo7/

41

DesignObject
-type : string
-buidlDate : integer

Document
-title : string
-text : string

1 document
0..*

CompositePart AtomicPart Assembly Module
-rootPart : AtomicPart atomicParts |y : integer superAssembly module

-y : integer assemblies
0..* 0..1 0..7 |-docld : integer 0.1

1 1
to from

1. 1.7 1 manual

unsharedParts

o

Manual
-title : string
-text : string
-textLength : integer

connections

Connection
-length : integer
1 |-type : string 1

designRoot

[BaseAssembly | [[ComplexAssembly |
I

baseAssemblies l

1

Figure 5.1: OO7 Benchmark Class Model.

5.1.1 Comparison with other Object-Relational Mappers

To evaluate the overall query and object graph traversal performance of SqueakSave, the bench-
mark has been additionally performed with two other object-relational mapping frameworks for
dynamic programming environments and an implementation for a statically-typed programming
language.

Since platform specific limitations and performance bottlenecks, such as overall inferior ex-
ecution speed or subpar implementations of viable system classes, impede objective measure-
ments, the comparison has to include a comparable system implemented within Squeak: The
generic lightweight object-relational persistence framework (GLORP) [33].

The other O/R mappers used for this comparison are ActiveRecord for Ruby on Rails and
Hibernate [17] for Java. As previously mentioned, the benchmark results for those frameworks
cannot be objectively compared to the results for SqueakSave and GLORP because of the major
differences between the respective execution environments. Elaborated implementation details
such as the Just-In-Time compiler of the Java HotSpot VM or natively compiled libraries for
RDBMS access provide considerable advantages which, of course, have an impact on the mea-
surement results.

While those comparisons provide no direct indicator for the performance of SqueakSave, they
will allow to deduce fields of application where the combination of SqueakSave and Squeak
might be advantageous for developers. Additionally, the implementation paradigms of Ac-
tiveRecord and Hibernate correlate with the ones underlying SqueakSave and GLORP. Ac-
tiveRecord and SqueakSave require explicit save operations to store or update objects, while
Hibernate and GLORP are transaction based. Accordingly, the transaction based frameworks
are able to accumulate all operations on the data and perform them, if possible, in bulk SQL
statements. The benchmarks will identify scenarios where this behavior is beneficial with re-

42

gards to performance.
Following versions of the frameworks and their corresponding PostgreSQL client implemen-
tations have been used:

e SqueakSave: Revision 107, PostgreSql Client 1.0 (Smalltalk implementation), Squeak
3.10 image, VM version 3.8.18.

e Hibernate: Version 3.2, JDBC3 for PostgreSql 8.3 (Java implementation), Java HotSpot
VM build 1.5.0_16-133.

e ActiveRecord: Version 2.2.2, PostgreSql Gem 0.7.9 (natively compiled library), Ruby
VM version 1.8.7 (patch level 72).

e GLORP: Version 0.4.169 , PostgreSql Client 1.0 (Smalltalk implementation), Squeak 3.10
image, VM version 3.8.18.

To further avoid influences on the measured timings, each system was set-up to its respective
production environment, i.e., SQL statement logging and other debugging features have been
disabled.

The benchmark consists of two parts. The first one performs a number of plain search queries
on the created object space and measures the timings for each of them. The second part traverses
object hierarchies from distinctive starting points and performs some alterations of the respective
objects. In addition to those standard parts, database creation times have been examined, as
well. While the insertion of such an highly intertwined and large object graph might not reflect
everyday usage patterns of object-relational mappers within applications, it is an indicator for
alleged performance bottlenecks and optimization potentials.

The overall database size of the benchmark can be configured in four magnitudes. Each of
them highly increases the amount of stored objects and also the connections between them. The
third-largest version of the benchmark was used, since it reflects the intended application area for
the SquakSave framework in terms of database usage. It includes approximately 10.000 atomic
parts and 30.000 connections between them and thus reflects the database payload of small to
mid-sized applications.

Figure 5.2 presents the overall creation time for the database schema that is required to per-
form the OO7 Benchmark. It is evident that Hibernate and GLORP outperform the other frame-
works. This is mostly a consequence of the ability to delay the insertion of objects into the
database and perform them at a later point in a bulk operation. Thereby, instead of numerous
single queries, only a few large ones are carried out and, accordingly, the overall execution time
decreases. While this technique obviously could improve the performance of SqueakSave within
such insertions, the decision to only provide direct save methods has been made with regards to
API simplicity (ref. chapter 3) and not execution speed.

Query Performance Comparison The queries performed during the OO7 benchmark con-
tinuously increase in terms of complexity and result count:

e Query 1 sequentially retrieves 10 arbitrarily chosen atomic parts, thus each single query
only returns one result and operates on the indexed id field.

43

300s

225s

150s

75s

Os
SqueakSave GLORP ActiveRecord Hibernate

Figure 5.2: OO7 Benchmark - Database Creation Times for Different O/R-Mappers.

e Query 2 calculates a very strict date threshold which is used to find all atomic parts whose
build date exceeds the selected boundary. It returns approximately 100 results.

e Query 3 is identical to query two, however, the date threshold is slightly lower and leads
to about 1000 atomic parts fulfilling the search criteria.

e Query 4 selects 100 random documents from the database and consecutively finds base
assemblies, which have at least one unshared part that points to the particular document.
The query is the first one to require an explicit join between two database tables. For each
of the 100 sub queries the search delivers an average of two results

e Query 5 finds all base assemblies that reference unshared parts with a build date that
exceeds their own. It delivers approximately 250 results, depending on the randomly
assigned build dates

e Query 6 has been omitted by the developers of the Java OO7 version because it was
not assumed to deliver any meaningful results. Hence, it has been omitted within this
comparison, too.

e Query 7 creates the highest result count (10000), as it queries for all atomic parts without
any further restrictions.

e Query 8 detects all pairs of documents and atomic parts where the randomly assigned
docld property of atomic parts actually points to a valid document database entry

The original implementation of the benchmark had to be slightly altered in order to provide
meaningful results for the eighth query. Since the docld attribute of atomic parts is not a direct
association to an actual document, but filled with random numbers between one and ten during
the database creation, it had to be ensured that matching document objects are found during this
query. In the original version, however, the internal object id assignment of Hibernate has been

44

40ms 80ms 400ms
30ms 60ms 300ms
20ms 40ms 200ms

10ms 20ms 100ms

oms —S===_m==—= == =
SqueakSave GLORP ActiveRecord Hibernate GLORP i Hibernate SqueakSave GLORP ActiveRecord Hibernate

(a) Query 1 (b) Query 2 (c) Query 3
1,000ms 90ms
750ms 68ms
500ms 45ms
250ms I . 23ms
[]
O™ SqueakSave GLORP ActiveRecord Hibernate O SqueakSave GLORP ActiveRecord Hiberate
(d) Query 4 (e) Query 5
5,000ms 5,000ms
3,750ms 3,750ms
2,500ms 2,500ms
1,250ms 1,250ms
ml _HEml
oms SqueakSave GLORP ActiveRecord Hibernate OMS SqueakSave GLORP ActiveRecord Hibernate
(f) Query 7 (2) Query 8

Figure 5.3: OO7 Benchmark - Query Times.

used, which not utilizes the database specific ids, but sequentially assigned integer values for
all benchmark objects. This led to only one document within and id range of one to ten, and,
accordingly, lowered the result-count for the search.

The query times presented in figure 5.3 show that with regards to query performance, the
combination of ActiveRecord and Ruby is generally faster than the other tested framework-
environment pairings. Only in query one, GLORP was able to have a slight edge over Ac-
tiveRecord. However, this is not a result of superior query performance, but a consequence of
optimistic caching. Instead of performing the query on the database, the results are delivered
directly from the cache. While this obviously increases the query performance, it is also prone
to errors. If the respective object had been removed from the database within another session,
the query would return an object that no longer exists in persisted space.

In all queries, except for the aforementioned one, the difference between SqueakSave and
GLORP are in a range of about 10-20%. The slight advantage in query four might be a con-
sequence of more efficient join table handling, since the generated SQL statements are almost
equal, except for some minor differences in the created alias names for tables and columns.

Unfortunately, the benchmarks reveal the tendency of an increasing distance between the two
frameworks for expanding result sets. In query seven and eight, the previous gap becomes vastly

45

150s 50s

113s 38s
75s 25s
38s 13s
Os X : Os — -
SqueakSave GLORP ActiveRecord Hibernate SqueakSave GLORP ActiveRecord Hibernate
(a) Traversal 1 (b) Traversal 2a
110s 50s
83s 38s
55s 25s
28s 13s
0Os 0Os
SqueakSave GLORP ActiveRecord Hibernate SqueakSave GLORP ActiveRecord Hibernate
(c) Traversal 2b (d) Traversal 2c

Figure 5.4: OO7 Benchmark - Traversal Times.

larger. Section 5.1.3 will provide some reasons for this behavior.

To conclude the query performance review, it can be stated that SqueakSave still has potential
for query optimization. While the difference for small result sets is quite minor and might be
improved by smarter caching mechanisms or other detail optimizations, the handling of large
result sets still remains an issue.

Traversal Performance Comparison The chosen traversal measurements of the OO7 bench-
mark all follow the same pattern. They start at the generated modules and navigate from the
design root down to the atomic parts. With each traversal the depth of navigation through the
object graph increases and, additionally, the last two also alter some data within the atomic parts.
Traversal 2c not only changes those values once, but three times.

The other available traversals have been omitted, since they iterate through all characters of
document texts and accordingly do not provide any insights into traversal speed, but only string
operation performance.

To obtain objective measurements, traversal benchmarks have been run independently from
previous database creation and query tests. Those would have lead to extensive caching of
the object graph and, therefore, could not reveal deficiencies within the loading of associated
objects. For subsequent traversals, however, object caches have not been cleared in order to
analyze the overall traversal performance and the caching of previously obtained results within
one benchmark run.

46

17s 700s

13s 525s

9s 350s

4s 175s

Os Os

production development production development

(a) Scale 1 Database Setup (b) Scale 2 Database Setup

Figure 5.5: OO7 Benchmark - Database Creation Times for SqueakSave Modes.

The results depicted in figure 5.4 unveil that only on first time object graph traversal, Squeak-
Save suffers from the currently missing support for eager loading of associations. Hence, the
associated objects for each of the sub parts have to be obtained within multiple queries and
can not be loaded in advance by a single one. The subsequent traversals, on the other hand,
show that the huge disadvantage of SqueakSave turns around completely. This is a consequence
of SqueakSave’s caching mechanism, that gradually fills the central object cache during the first
traversal. Hence, the entire object graph resides in memory for the second run. While the perfor-
mance obviously improves because of that mechanism, the same coherence problem mentioned
with regards to GLORP’s first query result apply here.

The traversal times in the following tests obviously increase since the atomic parts are not only
being traversed, but also updated. Therefore, it was expected that the advantage of SqueakSave
slightly diminishes. However, the traversal times in those tests still show, that for the traversal of
previously loaded object graphs SqueakSave seems to be a more efficient solution than GLORP.

The results have shown that SqueakSave, despite its automated mapping features can compete
with existing O/R mapping solutions in terms of query and traversal performance. Especially, the
caching mechanism makes SqueakSave a viable solution for sequential object graph traversals.
The slow insertion times within large data-sets could be diminished by implementing a technique
similar to the one introduced by Hibernate and GLORP. Special attention in future versions of
the implementation has to be paid to the handling of large result sets, since they obviously impact
the performance in a more than linear manner.

5.1.2 Development vs. Production Environment

The automatic creation of object-relational mapping descriptions is the main feature of Squeak-
Save. Due to the reflection mechanisms used to create this behavior, performance is obviously an
issue that has to be examined closely. Therefore, the OO7 benchmark suite has been performed
in development and production mode. The following results will reveal fields of usage where the
automatic mapping behavior has a negative impact on the overall system performance, but also
identify scenarios that are not affected by it. Additionally, insights into potential optimization
points will be gained from those considerations.

Image 5.5 depicts the creation times for the small and tiny database layout. It can be clearly

47

34ms 48ms 390ms
26ms 36ms 293ms
17ms 24ms 195ms

9ms 12ms 98ms

Oms Oms Oms .
Development Production Development Production Development Production

(a) Query 1 (b) Query 2 (c) Query 3

570ms 75ms
428ms 56ms
285ms 38ms
143ms. 19ms

Ooms Ooms
Development Production Development Production

(d) Query 4 (e) Query 5
4,500ms 4,800ms
3,375ms 3,600ms
2,250ms 2,400ms
1,125ms 1,200ms

Oms Oms.
Development Production Development Production

(f) Query 7 (g) Query 8

Figure 5.6: OO7 Benchmark - Query Times for SqueakSave Modes.

apprehended that the inspection of every object that has to be stored within the database slows
down the overall performance. This is not a very surprising fact, since not only does the frame-
work inspect each object, but also occasionally writes new descriptors to the image. Addi-
tionally, it has to check for and, if necessary, execute changes to the database schema. The
performance degradation also seems to remain constant between the different benchmark scales,
which implies that the table and description creation and updates have a much smaller impact on
the performance, than the constant introspection measures. Obviously, after a very short period
of time, no more alterations of the two models are necessary, and thus the difference between
the two modes grows in a linear manner.

While this slow-down might seem too high to be tolerated, developers should have to take into
consideration that creating the scale 1 data model suffices to generate a valid database schema,
that can be consecutively used to create the data-structures for the small or even bigger bench-
marks. This, and the fact that the object-model can be developed incrementally without the
necessity to alter database structures explicitly, relativizes the obvious performance impact.

The query performance does not differ between development and production modes, since
the synchronization between object model and database representation only takes places during
object saving and, accordingly, does not affect the search queries (ref. figure 5.6).

48

140s

105s

70s

35s

Os

28s

21s

14s

Os

Development Production

(a) Traversal 1

Development Production

(c) Traversal 2b

2s

2s

1s

1s

Os

Os

Development Production

(b) Traversal 2a

Development Production

(d) Traversal 2c

Figure 5.7: OO7 Benchmark - Traversal Times for SqueakSave Modes.

During the traversal measurements, however, the previously observed differences still apply
(ref. figure 5.7). While the first traversal is barely affected by the current execution mode,
changes to the object model (ref. 5.7c, 5.7d) are performed much faster within production
mode. It is therefore necessary for developers to thoughtfully utilize this feature if performance
is important. Especially the role-based choice of the framework mode can provide a viable
means for the balance between execution time and object model flexibility.

5.1.3 Framework Profiling

The benchmark implementation and execution provided a solid foundation for profiling the
framework under a non-trivial workload. A couple of conclusions could be drawn, that can

be incorporated into future framework upgrades.

e Much time of storing and query execution has been spent during the automatic retrieval
of configuration objects from the respective configuration classes. This is a direct conse-
quence of the fact that Squeak does not incorporate categories as first class objects, and
thus a time-consuming lookup for the respective classes has to be performed

e The storing of object ids within a distinctive caches does not vastly affect the execu-
tion speed. However, upon large scale operations, such as the creation of the benchmark

49

database, the impact becomes no longer diminishable, since the according caches also
grow with the number of in-memory objects.

e SqueakSave’s current handling of large result sets suffers from the creation of ineffective
sized collections. While they provide a simple approach to the generation of objects from
query results, their traversals are not optimized if the size exceeds certain values. There-
fore, smarter algorithms have to be developed, that utilize the Squeak-internal limits for
efficient collection handling, by splitting large result sets into smaller portions.

e The fine-grained save operations provide a viable means to control the execution of
database inserts and updates. However, to accommodate larger object models or col-
lections of objects that have to be inserted, they perform too many small queries to remain
applicable. It is therefore necessary to implement techniques, which allow for calling
the save method on the root object of an object graph and combine the insert and update
operations to as few SQL queries, as possible

o Eager loading of objects is an important aspect with regards to the traversal of object
graphs. Therefore, future versions of the framework should include this feature to mini-
mize the number of SQL statements required to obtain the entire object graph

e During the execution of the benchmark in development mode, it became apparent that pre-
conditions for description and table update checks provide a vast performance improve-
ment. Therefore, after the completion of the benchmark suite means have been integrated
into the framework that not only prevent updates of descriptions and table structures, but
also the examination of their predecessors if it is not utterly necessary

5.2 Interoperability

Adding persistence functionality to existing applications by integrating SqueakSave has been
shown to be rather effortless in chapter 3. In order to also provide a brief evaluation of the
interoperability capabilities of the framework, the sample application has been implemented as
well in SqueakSave, as in ActiveRecord.

The first use case for interoperability is the application database creation by SqueakSave and
a subsequent usage by ActiveRecord applications. The general schema adheres to ActiveRecord
naming conventions, and, accordingly, creating the respective model classes is sufficient in terms
of simple value representation. In order to add one-to-one associations, the belongs_to macro
has to be added to the model, that holds the reference to another class. Within the sample
application this would, for example, be necessary within the User class.

In order to depict the created table structure within its object model, one-to-many relations
impose some problems to current versions of ActiveRecord. The has_and_belongs_to_many
macro would have adequately modeled the fact, that all to-many relations are materialized by
means of join tables. Unfortunately, it has been marked deprecated [18]. Therefore it is nec-
essary to create an explicit join model for each of the one-to-many relations within the object
model (e.g. Blog-BlogPost or BlogPost-Comment).

50

+administeredBlogs 0..%

User Blog

< -title : string
-lastUpdate : dateTime
+blogs 0..*
1 0..* | +followers
1.7 1
Admin BlogsBlogPosts
1 +accountData -blog : Blog
-blogPost : BlogPost
AccountData
-email : string 0.* +blogPosts
-username : Sl Author BlogPost
-password : string 1..% - "
- -title : string
-text : string

1

BlogPostsComments
777777777777 -blogPost : BlogPost

-author : Author -comment : Comment
-follower : User

!
AuthorsFollowers

0.." +comments
Comment
-author : string
-title : string
-text : string

Figure 5.8: Class Structure of the Example Application with ActiveRecord.

This leads to a slight discrepancy between the class structure of the SqueakSave application
(figure 3.1) and the required classes for the Ruby solution (figure 5.8).

If the database model has been created by ActiveRecord developers and with explicitly de-
fined one-to-many relations, the mappings within the SqueakSave application have to be slightly
altered. It is necessary to change the SqsCollectionDescription for the corresponding at-
tributes in a way that the name of the referenced table is not the one of the join table, but of the
table of the respective referenced objects. The descriptions for other attributes can be inferred,
since SqueakSave by default utilizes the same naming conventions as ActiveRecord.

So, basically, in order to overcome the mismatch between SqueakSave and ActiveRecord,
it would only be necessary to model all to-many associations by using join models, instead of
maintaining back references that, in addition to not being faster than join tables, also inverse the
object model associations within the database.

5.3 Summary

The presented benchmark results have shown that SqueakSave still has to be optimized for cer-
tain fields of application. Especially the query performance for large result sets is an issue that
deserves closer attention in the future. However, object graph traversals are implemented in a
viable manner and the results demonstrate that the minimalist intrusion into object models has a
positive impact on such operations. Additionally, the declarative nature of the query interface, as
well as the simple set-up and integration of the framework are advantages that make SqueakSave
a suitable persistence solution for application development in Squeak.

51

6 Related Work

In this chapter related work is presented distinguished by the environment, solutions for object
persistence have to deal with. As for object-relational mappers, this requires a distinction be-
tween dynamic and static object relational mappers. While the former require means to handle
systems that do not support compile-time type checking and thus need to adopt to the possibil-
ity of dynamically evolving data schemas, the latter might utilize static source code analysis in
order to create mappings between object models and their relational representation.

Additionally, object databases will be presented, that not only adhere to the principles out-
lined in section 2.2.3. but additionally strive to provide a degree of interoperability with object-
relational solutions.

6.1 Static Object-Relational Mappers

Lodhi et. al [38] propose a simple means to keep object models consistent with database schemas
by utilizing a Rational Rose plug-in, in order to compile standard mappings from previously
modeled application classes. While this solution automates the task of O/R mapping creation,
the type system remains static, even when compiled to dynamically-typed object-oriented lan-
guages. Additionally, the up-front modeling approach does not cover classes created or altered
during application run-time.

A, to some degree, similar approach has been presented by Melnik et. al [40]. It uses declar-
ative mappings between objects and relational database structures and compiles them into bi-
directional views, that not only provide means to operate on persisted data but additionally
implement consistency between database entries and application objects upon direct changes to
the database. The presented system is implemented within the ADO.net framework [1].

Providing persistence as an aspect, and, thus, transparently and interchangeably to applica-
tions, has been proposed by Rashid et. al [47]. While they conclude that it is possible do design
systems in such a way, it is also stated, that persistence to some degree always influences archi-
tectural decisions, especially regarding data-consumer components and the query support of the
underlying database model.

Hibernate' is the most popular open source O/R mapping framework for Java [17]. It of-
fers comprehensive and exchangeable mapping descriptions in different formats and a unique
query language (HQL). Additionally, it is possible to automatically create mappings for existing
applications by using an extensive tool set.

Hibernate also provides the foundation for other O/R mapping solutions such as NHibernate?,

'http://www.hibernate.org
’http://www.nhibernate.org

53

a direct port to the .Net framework, and Castle ActiveRecord>. The latter is an adoption of the
Active Record pattern [20] and accordingly provides an additional layer on top of Hibernate for
a more convenient access.

6.2 Dynamic Object-Relational Mappers

Not only does Hibernate provide the foundation for O/R mappers within statically-typed lan-
guages, but also for the Grails Object-Relational Mapper (GORM)*, which is executed in a
dynamically-typed object oriented environment - Groovy[30]. GORM provides a minimalist
API do describe the mappings between objects and relational constructs on top of the extensive
description capabilities of Hibernate. In addition to the possibility of using HQL for queries,
GORM introduces a language-native query API that utilizes dynamic methods to generate the
SQL statements for each method call.

ActiveRecord for Ruby on Rails [18] is a database schema-driven O/R mapping solution that
adheres to the convention over configuration (CoC) principle [49] . While it provides almost
effortless configuration, database schemas and object models are not automatically kept syn-
chronized. Especially alterations of the application object structure have to be manifested in
the database schema before they are available within the respective object-model and subject to
persistence mechanisms. ActiveRecord also introduced dynamic finder methods as a language-
native query interface for relational databases.

DataMapper>, another object-relation mapping framework written in Ruby, relies on map-
pings defined by a very minimalist API, that only requires the definition of an SQL type for a
certain attribute in order to create a valid database schema. After each mapping change, a re-run
of the database creation method has to be performed, but will consecutively erase the database
completely and remove all data. However, the framework also offers migrations, that can gradu-
ally add, alter, or remove columns in existing database tables. The query API is quite similar to
the one present in ActiveRecord.

GLORP [33] provides object-relational persistence by heavy utilization of meta descriptions.
The descriptions have to follow certain naming conventions and have to be declared for the
model, the database tables, and the relation between model attributes and database constructs.
While it allows for comprehensive reverse mapping of legacy database structures, its addition to
existing applications is impeded by the mandatory introduction of an id instance variable to each
persisted model class, and the need to provide a complete mapping description even for trivial
cases.

IOSPersistent® was following an approach similar to SqueakSave. It provided fully-automatic
persistence for all subclasses of an abstract base class of the framework and automatically cre-
ated the according table models. Due to its monolithic architecture, it was not extensible by
simple means and additionally did not allow for custom object-relational mapping descriptions.
It has been superseded by the ReServe’ project, that removed the automatic table creation, but

*http://www.castleproject.org/ActiveRecord/
“http://www.grails.org/GORM
Shttp://www.datamapper.org
®http://www.squeaksource.com/I0OSPersistent.html
"http://www.squeaksource.com/ReServe.html

54

in contrast simplified the creation of custom mapping descriptions and introduced a query API,
that has been the foundation for SqueakSave’s language-native queries.

6.3 Object Databases

The Gemstone-project [10] provides persistence in an almost transparent manner to applications.
However, it requires an extensive environment in order to be applied as a persistence solution. It
generally relies on object-oriented database technology in order to persist application data, but
additionally provides the means to integrate relational database management systems into the
storage process.

Another object-oriented database that provides compatibility with relational systems is db4o
[43]. The db4o Replication System (dRS) utilizes Hibernate to replicate application data to spec-
ified RDBMS and is additionally able to read data from relational databases. Thereby users are
able to perform ad-hoc SQL queries on the data without having to utilize an environment capable
of handling the db4o-internal data structures. Additionally, this feature allows the integration of
legacy data from relational database into object-oriented environments.

55

7 Summary and Outlook

SqueakSave is a reflective object-relational mapper, that implements means to free developers
of the task to manually maintain mappings between object models and relational database struc-
tures. Additionally, the framework is implemented in a way that does not interfere with existing
object models and thus can be added almost transparently to existing solutions. While those
features provide an increased degree of flexibility, query and storage performance are slightly
diminished. However, since the main goal of the implementation has been to aid the develop-
ment process of applications, the decreased performance is a trade-off that is worthwhile with
regards to the gain in developer productivity.

Extensibility and configurability of the solution are viable factors for interoperability with
other object-relational mapping solutions. We have presented an example application that can
be utilized by two persistence frameworks with only slight adoptions. Additionally the depicted
extension points of the framework ought to support the development of new and innovative
ways to create specialized table structures and mapping description formats that can be easily
integrated into the existing solution.

While the current state of implementation to some degree is able to compete with long-
established solutions, future work will especially involve the optimization of queries that deliver
large data sets and the simultaneous insertion of multiple application objects within a decreased
amount of SQL statements.

Another important aspect for improvement is the provision of custom mapping description
handlers. Thereby, the seamless integration of SqueakSave into existing applications can be
vastly simplified by enabling the framework to utilize descriptions that have already been cre-
ated for other O/R mappers such as GLORP. Additionally, general purpose meta description
frameworks, such as Magritte [48] could be integrated to not only map objects to relational
constructs, but also generate validation methods that are performed before the storing of objects.

Despite the obvious optimization and extension points identified during the course of this
thesis, other research projects could be adopted to further minimize the intrusiveness of the
framework into the application or further optimize the generation of SQL queries. The former
could be reached by utilizing aspect-oriented constructs to provide the persistence functionality
as an easily attachable aspect to existing applications [47]. The latter is possible by an in-depth
analysis of inner-application workflows, that determine the queries most suitable within certain
execution states [46].

Despite of the remaining potential for optimizations regarding the performance of the frame-
work, SqueakSave provides a solid foundation for further research and has shown that meta-
programming and reflection are viable means to simplify the integration of object-relational
persistence mechanisms into applications that are developed within dynamically-typed object-
oriented programming environments.

57

Bibliography

[1] A. Apya AND J.A. BLAKELEY AND S. MELNIK AND S. MURALIDHAR. Anatomy of the ADO.NET
entity framework. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data (New York, NY, USA, 2007), ACM, pp. 877-888.

[2] ALAsHQUR, A., Su, S., anp Lam, H. OQL: a query language for manipulating object-oriented
databases. In VLDB ’89: Proceedings of the 15th international conference on Very large
data bases (San Francisco, CA, USA, 1989), Morgan Kaufmann Publishers Inc., pp. 433—
442,

[3] AmBLER, S. Designing a Robust Persistence Layer. Softw. Dev. 6, 2 (1998), 73-75.
[4] AMBLER, S. Agile Database Techniques. John Wiley & Sons, 2003.

[5] Barcia, R., Hamsrick, G., K.BRowN, R.PETERSON, AND K.S.BHOGAL. Persistence in the
Enterprise. IBM Press, 2008.

[6] Barry, D., BErLER, M., EAsTMAN, J., JOrRDAN, D., ScHapow, O., AND VELEZ, F. The Object
Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[7] BAYER, R., AND MccreiGHT, E. Organization and maintenance of large ordered indexes. Acta
Znformatica 1, 3 (1972), 173-189.

[8] Beck, K. Smalltalk Best Practice Patterns. Prentice Hall PTR, 1996.

[9] Brack, A., Ducassk, S., NIERSTRASZ, O., PoLLET, D., Cassou, D., aND DENKER, M. Squeak
by Example. Institute of Computer Science and Applied Mathematics of the University of
Bern, Switzerland, 2008.

[10] BurterwortH, P., Ortis, A., aND STEN, J. The GemStone object database management
system. Commun. ACM 34, 10 (1991), 64-77.

[11] Carey, M., DEWIrT, D., AND NaUuGHTON, J. The 007 Benchmark. In SIGMOD ’93: Pro-
ceedings of the 1993 ACM SIGMOD international conference on Management of data
(New York, NY, USA, 1993), ACM, pp. 12-21.

[12] Carey, M., DEWITT, D., NAUGHTON, J., ASGARIAN, M., BRowN, P., GEHRKE, J., AND SHAH,
D. The BUCKY object-relational benchmark. In SIGMOD ’97: Proceedings of the 1997
ACM SIGMOD international conference on Management of data (New York, NY, USA,
1997), ACM, pp. 135-146.

[13] Copp, E. A relational model of data for large shared data banks. Commun. ACM 13, 6
(1970), 377-387.

59

[14] Cooxk, W. Interfaces and specifications for the Smalltalk-80 collection classes. SIGPLAN
Not. 27,10 (1992), 1-15.

[15] Cook, W., aND ROSENBERGER, C. Native Queries for Persistent Objects. Computer Lan-
guages, Systems & Structures 31 (2005), 127-141.

[16] Ducassg, S., NIERSTRASZ, O., ScHARLI, N., WuyTs, R., AND BLAck, A. Traits: A mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28, 2 (2006), 331-388.

[17] Eiuiorrt, J. Hibernate: A Developer’s Notebook. O’Reilly Media, Inc., 2004.
[18] Fernanpez, O. The Rails Way. Addison-Wesley, 2007.

[19] Fowrer, M. Refactoring: Improving the Design of Existing Code. Addison-Wesley Pro-
fessional, 1999.

[20] Fowrer, M., Ricg, D., FoemmEL, M., HiearT, E., MEE, R., AND STAFFORD, R. Patterns of
Enterprise Application Architecture. Addison-Wesley, 2002.

[21] Gamma, E., HELm, R., aND VLIssIDES, J. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[22] GoLpBERG, A., AND RoBsoN, D. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[23] Gorpscumipt, T., REUSSNER, R., AND WINZEN, J. A case study evaluation of maintainabil-
ity and performance of persistency techniques. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering (New York, NY, USA, 2008), ACM,
pp. 401-410.

[24] Grorr, J., AND WEINBERG, P. SQL: The Complete Reference. Osborne/McGraw-Hill, 1999.

[25] Haviert, J. J., anp Kroury, A. J. A formal semantics for weak references. Tech. rep.,
Department of Computer Science, Boston University, 2005.

[26] HirscHrELD, R., Haupt, M., BERGER, M. B. S., EAsT™MAN, J., OsBURG, P., PERSCHEID, M., AND
TiBBE, D. An Introduction to Seaside, vol. 1. Software Architecture Group, Hasso-Plattner-
Institute, 2008.

[27] INcALLs, D., KAEHLER, T., MALONEY, J., WALLACE, S., AND KAy, A. Back to the future: the
story of Squeak, a practical Smalltalk written in itself. SIGPLAN Not. 32, 10 (1997), 318—
326.

[28] ISO/IEC. SQL 9075-2008 standard. ISO/IEC, 2008.

[29] JarkE, M., aND KocH, J. Query Optimization in Database Systems. ACM Comput. Surv.
16,2 (1984), 111-152.

[30] K. BarcrLAY AND J. SavaGe. Groovy Programming: An Introduction for Java Developers.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

60

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

K, W. Research directions in object-oriented database systems. In PODS ’90: Proceed-
ings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems (New York, NY, USA, 1990), ACM, pp. 1-15.

Kimas, E., THomas, D., aNp SkuBLics, S. Smalltalk with style. Prentice Hall, Englewood
Cliffs, NJ, 1996.

Knigat, A. GLORP: generic lightweight object-relational persistence. In OOPSLA ’00:
Addendum to the 2000 proceedings of the conference on Object-oriented programming,
systems, languages, and applications (Addendum) (New York, NY, USA, 2000), ACM,
pp. 173-174.

Leavitt, N. Whatever Happened to Object-Oriented Databases? Computer 33, 8 (2000),
16-19.

LEg, S., Kmm, S., ano Kim, W. The BORD Benchmark for Object-Relational Databases.
In DEXA ’00: Proceedings of the 11th International Conference on Database and Expert
Systems Applications (London, UK, 2000), Springer-Verlag, pp. 6-20.

Leser, U., aND NauManN, F. Informationsintegration: Architekturen und Methoden zur
Integration verteilter und heterogener Datenquellen. Dpunkt Verlag, 2007.

LENHARD, A., AND RENGGLI, L. SqueakSource - Smart Monticello Repository. Tech. rep.,
Software Composition Group, University of Bern, Switzerland, June 2005.

LobHi, F., aNp GHazALL, M. Design of a simple and effective object-to-relational mapping
technique. In SAC '07: Proceedings of the 2007 ACM symposium on Applied computing
(New York, NY, USA, 2007), ACM, pp. 1445-1449.

MartiN, R. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2003.

MELNIK, S., ADYA, A., AND BErNsTEIN, P. Compiling mappings to bridge applications and
databases. ACM Trans. Database Syst. 33, 4 (2008), 1-50.

MULLER, J., ENDERLEIN, S., HELMICH, M., KRUGER, J., AND ZEIER, A. Customizing Enterprise
Software as a Service Applications: Back-end Extension in a multi-tenancy Environment.
In Proceedings of the 11th International Conference on Enterprise Information Systems,
Milan, Italy (2009).

OMG. UML 2.0 Specification, 2005.

Paterson, J., EpricH, S., HorNING, H., anD HORNING, R. The Definitive Guide to db4o.
Apress, Berkely, CA, USA, 2006.

PetrI, C. A. Kommunikation mit Automaten. PhD thesis, Institut fiir instrumentelle Math-
ematik, Bonn, 1962.

61

[45]

[46]

[47]

[48]

[49]
[50]

[51]
[52]

[53]

[54]

[55]

[56]

62

Prato, M. Version Control With Subversion. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2004.

PonsaLaneN, P., aND TaNa, J. Self-configuring object-to-relational mapping queries. In
PPPJ °08: Proceedings of the 6th international symposium on Principles and practice of
programming in Java (New York, NY, USA, 2008), ACM, pp. 53-59.

RasHID, A., ANp CHITCHYAN, R. Persistence as an aspect. In AOSD ’03: Proceedings of the
2nd international conference on Aspect-oriented software development (New York, NY,
USA, 2003), ACM, pp. 120-129.

RenGaLr, L. Magritte - Meta-Described Web Application Development. Master’s thesis,
Software Composition Group, University of Berne, 2006.

RicaarDsoN, C. ORM in Dynamic Languages. Queue 6, 3 (2008), 28-37.

STONEBRAKER, M., AND MOORE, D. Object Relational DBMSs: The Next Great Wave. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

SuNMicrosyYsTEMS. MySQL 5.1 Reference Manual. Sun Microsystems, Inc., 2009.

TaoMmas, D. Ubiquitous applications: embedded systems to mainframe. Commun. ACM
38, 10 (1995), 112-114.

UNGAR, D., anp SmitH, R. Self: The power of simplicity. SIGPLAN Not. 22, 12 (1987),
227-242.

WIEDERMANN, B., IBRAHIM, A., AND Cook, W. Interprocedural query extraction for transpar-
ent persistence. In OOPSLA "08: Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications (New York, NY, USA,
2008), ACM, pp. 19-36.

YODER, J., Jounson, R., anp WiLsoN, Q. Connecting business objects to relational databases.
In Conference on the Pattern Languages of Programs (St.Louis, Missouri, EUA, 1998).

Zyi, P. V., Kourig, D., ANp Boakg, A. Comparing the performance of object databases and
ORM tools. In SAICSIT *06: Proceedings of the 2006 annual research conference of the
South African institute of computer scientists and information technologists on IT research
in developing countries (Pretoria, Republic of South Africa, 2006), South African Institute
for Computer Scientists and Information Technologists, pp. 1-11.

