
Improving the Development of Context-dependent
Java Applications with ContextJ

Malte Appeltauer Robert Hirschfeld
Hasso-Plattner-Institute

University of Potsdam, Germany
{first.last}@hpi.uni-potsdam.de

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo, Japan
masuhara@acm.org

ABSTRACT
Context-oriented programming languages ease the design
and implementation of context-dependent applications.
ContextJ is a context-oriented extension to the Java pro-
gramming language. In this paper, we assess the applicabil-
ity of ContextJ language abstractions for the development
of a graphical user interface-based application. We present a
text editor that has been implemented with ContextJ based
on the Qt Jambi framework and discuss possible extensions
to ContextJ to improve its applicability.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

Keywords
Context-oriented programming, behavioral variations, layer
activation, dynamic scoping

1. INTRODUCTION
Context-oriented programming [8] (COP) addresses the

development of systems, whose behavior varies depending on
their context of use. In most cases, a behavioral variation is
not implemented by a single object; instead, it is distributed
over a team of collaborating objects. Such distributed
functionality is denoted as crosscutting concern [10]. The
modularization and composition of crosscutting concerns
requires additional language abstractions beyond object-
oriented programming. COP introduces layers, an encapsu-
lation mechanism for crosscutting behavioral variations. A
layer can be dynamically activated and composed with other
layers, allowing fine-grained control of an application’s run-
time behavior. COP has been implemented as extension to
several programming languages [5,7,13–15] to support vari-
ous problem domains.

ContextJ [1] is our compiler-based COP extension to the
Java programming language. In this paper, we present a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP ’09 July 7, 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-538-3/09/07 ...$10.00.

ContextJ case study to assess its applicability for the de-
velopment of graphical user interface (GUI)-based applica-
tions. Such applications typically consist of multiple threads
handling user interaction. We present a prototypical imple-
mentation of a development environment for ContextJ that
supports rich text comments in Java/ContextJ compilation
units. Depending on the current activity, i.e., programming
or documentation, the GUI provides different UI elements
that are modularized with layers and that can be activated
at run-time.

The rest of this paper is structured as follows. Section 2
introduces ContextJ. Section 3 presents our ContextJ-based
GUI application. Section 4 discusses the benefits and draw-
backs of the implementation. Previous and related work is
considered in Section 5. Section 6 summarizes the paper and
presents future work.

2. CONTEXT-ORIENTED
PROGRAMMING WITH CONTEXTJ

2.1 Overview
COP allows for the convenient expression of behavioral

variations that cut across a system’s dominant decompo-
sition. Context-dependent functionality is explicitly repre-
sented and can be dynamically composed at run-time. Con-
text that requires a composition of behavioral variations can
be everything that is computationally accessible [8], such as
state, control flow, or properties of the system’s environ-
ment.

Layers. Behavioral variations are implemented by layered
methods. A layered method consists of a base method def-
inition and at least one partial method definition, which is
defined in a layer. A base method denotes the Java method
definition that is executed when no active layer provides a
corresponding partial method. A partial method definition
implements the functionality of a behavioral variation that
extends or overrides a base method definition for the time
the layer is active.

Dynamic composition. Layers can be composed at run-
time. Invocations of layered methods are first send to their
active partial method definitions. During its execution, a
behavioral variation can proceed to a corresponding partial
method in another active layer or, if such method does not
exist, to the base method definition. If more than one active
layer provides a partial definition for a layered method, the
order of layer activation defines the proceed chain, in which

Figure 1: Screenshots of CJEdit. left: Richt-text editing is supported by format toolbars and menus. right:
Program development is supported by an outline and focus on source code blocks.

the layer activated last is accessed first. Per default, layer
activation is scoped per thread and to the dynamic extent
of a block of statements.

2.2 ContextJ
The ContextJ1 programming language features the layers-

in-class style [8]: each class affected by a layer L contains a
declaration of L that contains partial methods for its class.
Thus, classes carry their own context-specific variations.

A layer definition consists of an identifier and a list of
method definitions. These definitions specify either new
methods that are visible in the scope of their layer, or par-
tial method definitions, whose signature must correspond to
a base method in the hierarchy of the enclosing class. During
layer activation, invocations of this method are dispatched
to the definition provided by this layer.

The built-in pseudo method proceed can be used to ex-
plicitly invoke the next partial method definition (or the base
method). Both the return type and the expected arguments
of proceed conform to the method’s signature.

In addition to method definitions, layers can also contain
fields that are visible within the layer’s scope. The state of
these fields persists after layer deactivation until the next
activation.

To control scoped layer activation, ContextJ provides
the with block statement that can be used in method
bodies. It consists of list of expressions of type Layer,
Iterable<Layer>, or Layer[] that specify the layer
identifiers to be activated for the dynamic extent of its
block. If the with arguments are evaluated to an empty
list (or null), no additional layer will be activated. The
without block construct, as counterpart to with, is used for
explicitly disabling layer execution for a certain control flow.

1ContextJ is available for download at
http://www.hpi.uni-potsdam.de/swa/cop

3. DEVELOPING GUI APPLICATIONS
WITH CONTEXTJ

For our ContextJ case study, we developed a program-
ming environment that supports rich text comments within
ContextJ programs.

Context-dependent GUI functionality. Modern rich text
editing environments, such as Microsoft Word, provide ex-
tensive functionality to edit, format, and manage text and
other elements, for example, pictures and data tables. Such
large feature sets cause an additional complexity that also
end-users have to cope with. To ease the use of complex
work-flows, Word-like applications support context-specific
menus and toolbars that emphasize important and hide irrel-
evant functionality. For instance, Microsoft Word provides
an environment that partly integrates Microsoft Excel fea-
tures to deal with tables; Excel-specific functionality (such
as toolbars and menu entries) and behavior (such as cell
calculation and formatting) is provided whenever a table is
selected by the user. The ContextJ-based application pre-
sented in Section 3.1, provides similar behavior for the tasks
programming and code commenting.

Rich text-based source-code comments. The documen-
tation of applications is an important task in the software
development process. In addition to architectural and in-
frastructural descriptions, the documentation of source-code
artifacts is vital for understanding and evolving software
systems. Therefore, most programming languages support
source-code comments. However, most languages and pro-
gramming environments restrict comments to plain text;
text formating is not possible. To overcome this issue, tools
like JavaDoc allow for the generation of HTML documents
from source-code. This leads to a separation of source code
from its formatted documentation, which is unintended in
most cases since it requires additional effort to synchronize
source code and comments.

3.1 CJEdit
In the following, we give an overview of CJEdit, a sim-

ple programming environment for ContextJ. The editor is
equipped with syntax highlighting, an outline view, and a
compilation/execution toolbar. Additionally, CJEdit allows
to format ContextJ compilation units with rich text com-
ments. For this task, the editor provides rich text formatting
features, such as font family, size, style, and color modifica-
tions. Through the combination of rich text and source code,
CJEdit documents are single-source, executable representa-
tions of code and documentation.

Both activities require different functionality, therefore
our application supports focusing on the actual task at hand
by offering only relevant tools, menus, and widgets. A con-
text switch between text editing and programming features
is either directly triggered by the user, or on text cursor
change: While writing new text, the user can enter the pro-
gramming mode by pushing a toolbar button. Whenever
the text cursor is moved through the document from text to
code and vice versa, the GUI elements are changed accord-
ingly. Figure 1 shows two screenshots of CJEdit. The left
screenshot presents the application’s rich text formatting
mode. The toolbar offers various text formatting actions.
The right image depicts the programming mode, where the
editor comes with an outline and a different toolbar. To
support focusing on the source code, any rich text within
the document is faded gray.

3.2 Implementation
CJEdit is implemented using ContextJ and the Qt Jambi

GUI Framework [12]. The editor consists of approximately
1400 lines of code, where most parts are written with plain
Java constructs and the help of the Qt GUI Designer. The
overlay of task-specific user interfaces and behavior is imple-
mented in ContextJ. The system contains layers that encap-
sulate rich text and programming widgets such as toolbars
and their corresponding behavior.

Encapsulation of GUI elements into layers. Figure 2
shows the implementation of the layers that encapsulate
the creation of the task-specific user interfaces. Both layers
provide partial methods of showToolBars and showMenus

resp. showWidgets (Lines 10-21, 31-42) that are exe-
cuted after the execution of their base methods. On
a task switch, the system hides specific GUI elements
by calling hideWidgets (Lines 22-25, 46-50) and invokes
the showWidgets, showMenus, and showToolBars methods.
Thus, the layers extend hideWidgets with a partial method
that removes the layer-specific widgets.

Text blocks carry their composition. The editor’s under-
lying document tree represents each text line as a text block
node. Each block holds a list of layers that should be ac-
tivated when it is focused. By default, blocks refer to the
layers responsible for rich text behavior. If the user switches
to the programming activity (by pressing the code button
in the toolbar), the following text blocks are linked with
programming environment-specific layers.

Task-depended behavioral variations. Layers are recom-
posed whenever the type of the focused block changes from
rich text to code block, and vice versa. This change is ex-

1 import layer RTFWidgets;
2 import layer CodeWidgets;
3

4 public class CJEditWindow extends QMainWindow {
5 ...
6 layer RTFWidgets {
7 private QMenu formatMenu;
8 private FormatToolBar formatToolBar;
9

10 after private void showMenus (...) {
11 if (formatMenu == null)
12 formatMenu = new FormatMenu (...);
13 menuBar (). addMenu(formatMenu);
14 }
15 after private void showToolBars (...) {
16 if (formatToolBar == null) {
17 formatToolBar = new FormatToolBar (...);
18 addToolBar(formatToolBar);
19 }
20 formatToolBar.show ();
21 }
22 after private void hideWidgets () {
23 formatMenu.hide ();
24 formatToolBar.hide ();
25 }
26 }
27 layer CodeWidgets {
28 private QWidget outline;
29 private CodeToolBar codeToolBar;
30

31 after private void showWidgets () {
32 if (outline == null)
33 outline = createOutlineWidget ();
34 outline.show ();
35 }
36 after private void showToolBars (...) {
37 if (codeToolBar == null) {
38 codeToolBar = new CodeToolBar (...);
39 addToolBar(codeToolBar);
40 }
41 codeToolBar.show ();
42 }
43 private QWidget createOutlineWidget () {
44 ...
45 }
46 after private void hideWidgets () {
47 outline.hide ();
48 codeToolBar.hide ();
49 }
50 }
51 }

Figure 2: Layered specification of task-dependent
GUI Widgets.

plicitly activated by entering or leaving the programming
activity (by pressing the code button) or on moving the text
cursor between blocks of different types.

For the dynamic extent of the recomposition, the layer list
of the current block is activated. The composition is trig-
gerd by the onCursorPositionChanged event, as depicted
in Figure 3. First, hideWidgets is invoked in the context
of layers of the previous block to remove their specific wid-
gets. The GUI elements are then recomposed with the layer
composition of the current block.

4. LESSONS LEARNED
The two main behavioral variations implemented in our

example, namely rich text editing and program development
have been implemented using layers. The layers contain par-
tial method definitions that implement the variations of the
default behavior of certain methods. The user-based be-

1 import layer RTFWidgets;
2 import layer CodeWidgets;
3

4 public class CJEditWindow extends QMainWindow {
5 ...
6

7 void onCursorPositionChanged () {
8 with (getLayersOfPreviousBlock ()) {
9 hideWidgets ();

10 }
11 with (getLayersOfCurrentBlock ()) {
12 showWidgets ();
13 showMenus ();
14 showToolBars ();
15 }
16 }
17 }

Figure 3: Layer recomposition on cursor position
change.

havioral switch can be mapped directly to dynamic layer
composition.

Besides these benefits, we had to consider some charac-
teristics of GUI-based programming that led to additional
challenges for the ContextJ-based implementation. The two
most important findings are explained in the following.

First, user interaction with GUI behavior is less control
flow-centric but rather event-driven. This complicates dy-
namic extent-based layer composition as proposed originally
by COP. Figure 4 depicts a control flow in CJEdit. On user
interaction, the onCodeModeSelected event is triggered that
computes the layers to be activated for the programming
environment mode. Subsequent user interactions – such as
printing the document, writing new text, or moving the text
cursor through the document – activate this composition in
their respective control flows. In the source code, this is-
sue is manifested as repeated with statements in the event
callback methods, which itself is a crosscutting concern.

Another issue is the intrinsic difference between declar-
ative GUI specifications and dynamic behavioral varia-
tions. Figure 2 shows the CJEdit implementation of task-
dependent GUI elements. The exclusive specification of
layer-specific widgets is not sufficient, we also need auxil-
iary methods such as showWidgets and hideWidgets, and
explicitly trigger their execution after layer activation. In
an better solution, we would only need to declare the GUI
variations and add them to the internal structure. With the
activation of a layer, the layered state of this structure would
be activated, too.

5. PREVIOUS AND RELATED WORK
Several COP extensions have been developed for dy-

namic programming languages such as Lisp [5], Smalltalk [7],
Python [14,15], and Ruby [13]. They have been implemented
using the respective language’s meta-level facilities; none of
them utilizes bytecode transformation as done in ContextJ.

First ideas about a COP language extension to Java have
been presented in [6], but neither provide a language spec-
ification, nor an implementation. The first Java-based pro-
totype is ContextJ* [8], a Java library that implements the
core concepts of COP. The convenient use of ContextJ* is
hindered by the lack of a declarative syntax, leading to com-
plex implementations in ContextJ* programs.

Figure 4: Layer composition computation and acti-
vation times. Layer activations are scattered over
the system.

Java-based aspect-oriented programming languages, such
as AspectJ [9] or CaesarJ [2], also provide abstractions to
modularize crosscutting concerns but focus on functionality
that is repeatedly used at different points in a program. This
view differs from ContextJ, where crosscutting behavioral
variations are considered as parts of the classes themselves.

The CaesarJ [2] language unifies classes, aspects, and
packages. CaesarJ aspects can be deployed at run-time us-
ing different kinds of dynamic scope, much like ContextJ
layers. CaesarJ supports virtual classes [11], a concept that
enables dynamic class extension, depending on the caller’s
scope. The ability of virtual classes to extend modules is
similar to layers. However, class extension with layers is not
bound on the caller’s module but differs depending on the
current layer composition.

The maintenance and development of software product-
lines is addressed by feature-oriented programming [4]. The
Java-based AHEAD Tool Suite [3] provides a Java language
extension supporting constructs such as class refinements
for static feature-oriented composition. Layers are distinct
rules describing static class refinements. Some foundations
of AHEAD and ContextJ are the same: Both introduce new
or alternative program behavior through layers. However,
AHEAD applies compile-time composition of feature varia-
tions, whereas ContextJ allows for run-time composition.

6. SUMMARY AND FUTURE WORK
In this paper, we introduced to the ContextJ program-

ming language and considered it as basis for the develop-
ment of GUI-based applications. We presented a case study,
in which we implemented CJEdit, a ContextJ development

environment with the ability to comment source-code with
rich text. In our example, ContextJ language features sup-
port the separation of activity-specific concerns. In addition,
we identified issues for future improvement to provide better
support for the development of event-based systems.

One result of our investigation is that the language ab-
stractions provided by ContextJ, though they already ease
the development of context-aware systems, need further im-
provement. We are currently working on alternative layer
composition mechanisms to overcome this issue. We will
adapt some abstractions of aspect-oriented programming for
layer activation specifications to provide a more declarative
way of dealing with the composition of behavioral variations,
especially in event-based systems.

Context-dependent applications may require to change a
system’s state for a certain context. A simple approach has
already been implemented in ContextJ, that is, layers can
introduce new state into classes. However, superimposition
of state for the time of a layer activation is not supported,
yet. The development of appropriate semantics for stateful
layers will be considered in future work.

To evaluate COP for distributed applications such as
service-based systems, we will set up such a system based
on ContextJ and our new layer composition techniques. We
will investigate how COP provides suitable abstractions for
application requirements in this domain.

Acknowledgements
We thank Pascal Costanza for helpful discussions and sug-
gestions during the development of ContextJ and Marvin
Killing for his initial work on CJEdit. We also thank Michael
Perscheid, Jens Lincke, Robert Krahn, Michael Haupt, and
the anonymous reviewers for valuable feedback on drafts of
this paper.

7. REFERENCES
[1] M. Appeltauer. ContextJ – Context-oriented

Programming for Java. In Proceedings of the 3rd
Ph.D. Retreat of the HPI Research School on
Service-oriented Systems Engineering, number 27.
Hasso-Plattner-Institut, Potsdam, Germany, 2009.

[2] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
Overview of CaesarJ. Lecture Notes in Computer
Science : Transactions on Aspect-Oriented Software
Development I, 3880:135–173, 2006.

[3] D. Batory. Feature-Oriented Programming and the
AHEAD Tool Suite. In ICSE ’04: Proceedings of the
26th International Conference on Software
Engineering, pages 702–703, Washington, DC, USA,
2004. IEEE Computer Society.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software
Engineering, 30(6):355–371, 2003.

[5] P. Costanza and R. Hirschfeld. Language Constructs
for Context-oriented Programming: An Overview of
ContextL. In DLS ’05: Proceedings of the 2005
symposium on Dynamic languages, pages 1–10, New
York, NY, USA, 2005. ACM Press.

[6] P. Costanza, R. Hirschfeld, and W. D. Meuter.
Efficient Layer Activation for Switching
Context-Dependent Behavior. In D. E. Lightfoot and
C. A. Szyperski, editors, Modular Programming

Languages, 7th Joint Modular Languages Conference,
JMLC 2006, volume 4228 of Lecture Notes in
Computer Science, pages 84–103, Berlin, Heidelberg,
Germany, September 19 2006. Springer-Verlag.

[7] R. Hirschfeld, P. Costanza, and M. Haupt. An
Introduction to Context-Oriented Programming with
ContextS. In J. S. Ralf Lämmel, Joost Visser, editor,
Generative and Transformational Techniques in
Software Engineering II, International Summer
School, GTTSE 2007, Braga, Portugal, July 2-7.
2007, Revised Papers, volume 5235 of Lecture Notes in
Computer Science, pages 396–407, Berlin, Heidelberg,
Germany, 2008. Springer-Verlag.

[8] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology, 7(3):125–151, March-April 2008.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. L. Knudsen, editor, 15th European
Conference on Object-Oriented Programming, ECOOP
2001, volume 2072 of Lecture Notes in Computer
Science, pages 327–354, Berlin, Heidelberg, Germany,
January 2001. Spinger-Verlag.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented Programming. In Proceedings 11th
European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, 1997.

[11] O. L. Madsen, B. Mø-Pedersen, and K. Nygaard.
Object-oriented programming in the BETA
programming language. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1993.

[12] Nokia Corporation. Whitepaper: A Technical
Introduction to Qt, 2000. http://www.qtsoftware.com.

[13] G. Schmidt. ContextR & ContextWiki. Master’s
thesis, Hasso-Plattner-Institut, Potsdam, 2008.

[14] C. Schubert. ContextPy & PyDCL - Dynamic
Contract Layers for Python. Master’s thesis,
Hasso-Plattner-Institut, Potsdam, 2008.

[15] M. von Löwis, M. Denker, and O. Nierstrasz.
Context-oriented Programming: Beyond Layers. In
S. Demeyer and J.-F. Perrot, editors, ICDL ’07:
Proceedings of the 2007 international conference on
Dynamic languages, volume 286 of ACM International
Conference Proceeding Series, pages 143–156, New
York, NY, USA, 2007. ACM Press.

