
Declarative Layer Composition
in Framework-based Environments

Malte Appeltauer Robert Hirschfeld
Software Architecture Group

Hasso-Plattner-Institut, Germany
{first.last}@hpi.uni-potsdam.de

ABSTRACT
Context-oriented programming (COP) can improve modu-
larity by dedicated language constructs for crosscutting con-
cerns. Although COP could be used in any application do-
main in general, its current implementations may require
adaptations of source code that is not accessible to the de-
veloper. This, in turn, limits the interaction of adapta-
tion mechanisms provided by COP language extensions with
widely used programming abstractions such as frameworks.
As a result, dynamic control over layers emerges as a cross-
cutting concern that obstructs the separation of concerns.

In this paper, we discuss crosscutting layer composition in
framework-based applications in detail. As a concrete ex-
ample of such a framework-based application, we present a
simple action adventure game that we implemented using
a conventional COP language. Finally, we show, how our
JCop language supports the modularization of these cross-
cutting concerns by language constructs for declarative layer
composition.

Keywords
context-oriented programming, dynamic adaption, Java,
framework

1. INTRODUCTION
The context-oriented programming (COP) [6, 4] approach
supports the modularization of crosscutting concerns [11]
and their control at runtime. In particular, COP focuses on
a specific type of crosscutting concerns, the so called hetero-
geneous crosscutting concerns [1]. Heterogeneous crosscut-
ting concerns require different source code to be executed at
their join points (points in the program’s structure or con-
trol flow [11]), whereas homogeneous crosscutting concerns
require the same source code to be executed at their join
points [1]. COP supports the implementation of such cross-
cutting functionality by partial method declarations that are
able to adapt any common method to their new behavior.

COP’12, June 11, 2012, Beijing, China

Partial method declarations are encapsulated by layer decla-
rations. At runtime, the crosscutting behavior of layers can
be composed with the core behavior of the classes. For this
runtime layer composition, COP offers a block statement
that declares a set of layers (specified by an argument list)
and an execution scope (specified by the statement block) for
which the layers should be composed with the base system.
Hence, this construct scopes the effect of a layer composi-
tion to the dynamic extent of its statement block. Similarly,
a second statement allows excluding layers from the execu-
tion. These two statements are typically denoted as with

and without statements [6]. COP has been applied to sev-
eral application domains where it showed to be a promising
approach for the encapsulation of homogeneous crosscutting
concerns.

However, research so far did not explicitly address the in-
corporation of COP with application domains that employ
frameworks [8]. For such programs, we distinguish between
framework code, which is part of the framework implemen-
tation, and user code, which is part of the concrete appli-
cation implementation. A problem may occur, if a layer
composition must be executed within the framework code,
because one property that distinguishes frameworks from
other libraries is that they prohibit access to their implemen-
tation [8]. Therefore, layer composition statements cannot
be declared at source code locations in the framework (which
would require an adaptation of the framework source code).
But even if the framework source code is accessible and could
be adapted, the identification of the correct adaptation lo-
cation would require deep knowledge about the internals of
the framework. Obtaining this technical knowledge, in turn,
distracts the application programmer from his primary task,
i.e., developing the user code.

As a result, the framework code cannot be adapted by layer
composition statement. The solution is to move the compo-
sition statement instead to a later point during the execution
of the control flow at which user code is executed. This has
two advantages. First, the user code is actually accessible
and adaptable. Second, the developer should be familiar
with this user code and able to implementat the adaptation
straightforwardly. Unfortunately, control flows that are ini-
tiated by framework code often have multiple entry points
into the user code. Therefore, the layer composition state-
ments must be repeated at multiple points. That imposes
a novel crosscutting concern to our application, which is
not driven by the application logic itself but by the layer

Copyright 2012 ACM 978-1-4503-1276-9/12/06 ...$15.00

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Figure 1: Class Diagram of the user code of
RetroAdventure, where the colored circles represent
layer adaptations.

composition logic. This crosscutting layer composition is a
homogeneous crosscutting concern, which requires the same
with statement to be repeated at multiple points.

In this paper, we discuss crosscutting layer composition in
framework-based environments by example of a computer
game that makes use of a graphical user interface (GUI)
framework. For a better modularization, we propose to use
the features of JCop that integrates COP with an aspect-
oriented programming [11] language dedicated to the speci-
fication of declarative layer composition.

Section 2 gives an overview of our computer game example
and explains how the GUI framework imposes a crosscutting
implementation of layer composition. Section 3 shows how
the aforementioned layer compositions in our example could
be concisely expressed by JCop’s language features. Sec-
tion 4 reports on other case studies in which we identified
that the use of frameworks causes crosscutting layer com-
positions. Section 5 discusses related work, and Section 6
concludes the paper.

2. CROSSCUTTING LAYER COMPOSI-
TIONS IN FRAMEWORKS

In this section, we discuss the COP-based implementation of
a simple action adventure game, which we implemented us-
ing our Java-based language JCop [2, 3]. JCop provides ded-
icated language constructs for COP, such as layer and par-
tial method declarations, and layer composition statements.
In addition, JCop integrates COP with a domain-specific
aspect-language, see Section 3.

2.1 A GUI Framework-based Game
In the JCop-based RetroAdventure game, the user controls a
hero character that moves through a world and can interact
with items and computer controlled characters. The appli-
cation employs the Swing [5] GUI framework for its graphics
rendering. The user can move the hero through the world,

Figure 2: Redundant layer compositions in
RetroAdventure(gray: framework thread, white:
main thread).

let him speak to other characters, and collect items that
are distributed in the world. In our object-oriented decom-
position, which is shown in Figure 1, we identified several
heterogeneous crosscutting concerns:

Context-specific character behavior One of the items
the hero can collect is a magic bottle. If the hero col-
lects (i.e., drinks) the bottle, he becomes dizzy and
confused for a period of time until the bottle magically
fills up again. During that time, he cannot walk and
speak properly, and the color of his face turns pink.

Level designer mode Besides the functionality that is di-
rectly concerned with the game play, RetroAdventure
provides a debug mode that reveals useful information
to the level designer, such as the hero’s location co-
ordinates, his movement direction and speed, and a
collision map that specifies where the hero is allowed
to walk.

Graphics zooming The user can zoom in and out on the
world, causing a scaling of the graphics and reloading
of new images with higher level of detail.

We implemented these three crosscutting concerns by the
layers ConfusedHero, Zooming, and LevelDesignerMode. In Fig-
ure 1, the classes that are adapted by a layer are marked
with a circle in the same color as the layer.

2.2 Crosscutting Layer Composition
While the behavior of these three heterogeneous crosscutting
concerns can be implemented by layers straightforwardly, we
encountered an issue concerning the specification of their
dynamic composition.

We explain that issue by the example of the layer
ConfusedHero that implements the alternative hero behavior.
This layer should be activated whenever the magic bottle is

empty (i.e., whenever the hero recently drunk the bottle).
The corresponding layer activation is implemented by the
following with statement:

with(checkAlternativeBehavior()) { ... }

and the following auxiliary method1:

Layer checkAlternativeBehavior() {
if(getBottle().isEmpty())
return new ConfusedHeroLayer();

return null;
}

The with statement is used in the keyPressed method of the
KeyboardListener class, so that any user-triggered control
flow can activate the layer. Figure 2 (white box) presents
a sequence diagram of that interaction. So far, we are able
to concisely express the composition of ConfusedHero at only
one point in our class decomposition.

However, during the execution of this user-triggered control
flow, other threads may asynchronously call methods that
are layered by ConfusedHero but without having this layer
activated. For example, the Swing framework may asyn-
chronously call the paint methods of the classes EntityUI and
WorldUI. Because these framework-triggered control flows do
not pass the keyPressed method (and its with statement),
they only execute the base declarations of the paint meth-
ods and ignore their partial declarations. Therefore, the
control flows of the UI thread must be extended with a
layer composition as well. Figure 2 (gray box) shows this
framework-triggered control flow. Because we cannot access
the source code of the UI loop2 inside the framework, layer
composition is moved to the entry points of the framework-
triggered control flows into the user code. As an effect, the
layer composition statements are redundantly implemented
at several source code locations.

With that, layer composition is now a crosscutting concern
in our implementation. Obviously, this fact contradicts the
initial intention of COP, which is the support of separation of
concerns. The following section describes how crosscutting
layer composition can be modularized using context classes
in JCop.

3. SOLUTION: DECLARATIVE LAYER
COMPOSITION

In this section, we present JCop’s language features for
declarative layer composition in framework-based environ-
ments. In most cases, context class declarations (Subsec-
tion 3.1) are the appropriate means to declaratively specify
the source code locations at which the framework- and user-
controlled threads must be adapted by a layer composition.
In some cases, it is also of use to declare a layer to be globally
active (Subsection 3.2), or let the layers themselves control
their activation (Subsection 3.3).

1We assume, that the method Bottle.isEmpty returns true
for a period of time after being drunk by the hero.
2For simplification, we represent the main UI thread loop
by a class UILoop in the diagram.

1 public contextclass MagicBottleContext {
2 public Bottle bottle;
3 private Layer confusedBehavior = new ConfusedHero();
4

5 public MagicBottleContext(Bottle bottle) {
6 this.bottle = bottle;
7 }
8

9 public boolean heroDrunkTheBottle() {
10 return bottle.isEmpty();
11 }
12

13 when(heroDrunkTheBottle()) : with(confusedBehavior);
14 }

Listing 1: Context class declaration of the context-
specific character behavior.

3.1 Context Classes
JCop’s declarative layer compositions are encapsulated by a
context class declaration, a special type declaration that can
contain pointcuts and advice constructs, known form aspect
languages such as AspectJ [10], and plain class members.

Listing 1 shows the implementation of the context class that
controls the confused hero behavior in RetroAdventure. Its
constructor is parameterized with a Bottle object and stores
it in a class variable (Lines 5–7).

The actual layer composition is expressed in a declarative
construct (Line 13). Syntactically, declarative compositions
consist of two parts, a pointcut part and an advice part.
The pointcut part is a logic expression consisting of built-
in and named pointcuts. JCop’s pointcut language con-
sists of two main built-in pointcuts, on and when. The on

pointcut describes methods whose entire execution should
be adapted by a layer composition. The when pointcut de-
scribes a boolean expression that is evaluated at any point
in the control flow at which a layer composition (described
by the advice) may influence the execution [3]. The advice
contains a sequence of with and/or a without operators.

The context class in Listing 1 uses a when pointcut to eval-
uate if the hero recently drunk the bottle. Therefore, a
boolean method heroDrunkTheBottle checks if the bottle is
empty (Lines 9–11). If true, then the advice activates an
instance of ConfusedHero. The when pointcut evaluates its
expression at the executions of any method that is adapted
by a partial method of ConfusedHero.

A context class is instantiated like any Java class. Its layer
composition can be dynamically deployed for the current
thread by the activate method:

MagicBottleContext ctx = new MagicBottleContext(bottle);
ctx.activate();

Using this context class, we can concisely express the com-
position of ConfusedHero that was previously scattered over
the object-oriented decomposition.

3.2 Static Active Layers
By default, layers in JCop are composed per control-flow.
In addition, the layer declaration modifier staticactive de-

public staticactive layer Zooming {
public BufferedImage gui.RegionUI.getClipForRegion()...
public void gui.EntityUI.paint(Graphics g)...
public Point gui.EntityUI.translate(Point local)...
public Rectangle model.Region.getDimenson()...
public Rectangle model.Region.getBorderBuffer()...

}

Listing 2: Top-level layer implementation of the
graphics zooming concern.

clares that one singleton instance of the layer is implicitly
globally activated on static initialization of the layer decla-
ration. For the initialization of the singleton, the default
constructor of the layer is used. This feature simplifies the
declaration of crosscutting concerns that should be active
during the entire execution of an application. In RetroAd-
venture, we use this modifier for the declaration of the layer
Zooming, because the zooming feature is a static concern of
the application, see Listing 2.

3.3 Layer-based Composition
The constructs presented so far support most common sce-
narios for layer composition. For situations requiring special
reasoning about layers and their composition, JCop provides
a reflection API [2]. It gives access to inspect and manipu-
late layers, their composition and their partial methods at
run-time.

In addition, JCop supports layer-based composition that al-
lows layers themselves to manipulate layer compositions.
This feature is implemented by an event handler mechanism.
The event handler methods onWith, and onWithout are pro-
vided by the interface of jcop.lang.Layer (the implicit super
type of all layers) and can be overwritten by concrete layer
declarations. The handlers are implicitly called right after
the execution of layer activations (with) and right before the
execution of layer deactivations (without). The current com-
position is passed as an argument to the handler methods
so that it can be analyzed and manipulated. The handler
methods return a composition object that is activated in-
stead of the input composition.

Listing 3 sketches the implementation of the layer
LevelDesignerMode of RetroAdventure. Consider, we want
to express that this layer should never be composed with
Zooming. With the declaration of an onWith event han-
dler (Lines 3–5), we can enforce this rule and implic-
itly deactivate any active instance of Zooming (using the
Composition.withoutAllLayers method provided by JCop’s
reflective API).

4. FURTHER CASE STUDIES
We observed the issue of crosscutting layer compositions not
only in the RetroAdventure case study, but also in several
other case studies that we conducted and presented in pre-
vious work. In this section, we give a brief overview of these
projects and describe the results of our refactoring to JCop.

CJEdit [3, 2] is a simple editor that provides two modes of
operation: programming and documenting. The pro-
gramming mode is supported by syntax highlighting,

public layer LevelDesignerMode {
// composition handler
public Composition onWith(Composition current) {
return current.withoutAllLayers(Zooming.class);

}
// partial methods
after public void gui.EntityUI.paint(Graphics g)...
public void gui.RegionUI.paintComponent(Graphics g)...
public BufferedImage gui.RegionUI.getImage()...
public String[] gui.RegionUI.getInfo()...

}

Listing 3: A composition handler expresses
the exclusion of Zooming for the activation of
LevelDesignerMode.

an outline view, and a compilation/execution toolbar.
The documenting mode allows formatting Java compi-
lation units with rich text comments. Both activities,
programming and documenting, require different func-
tionality, which we implemented by layers. The text
editor’s core is implemented using the Qt Jambi GUI
Framework [13].

WhenToDo [16] is a ToDo application that helps to prior-
itize tasks depending on the current working environ-
ment and situation. For example, specific tasks require
Internet access, or can only be accomplished at a spe-
cific location. WhenToDo uses a context query frame-
work [16] that allows for reasoning about Web-based
context information, and incorporates the reaction to
context change with layer activation.

AstroPic [17] is an image gallery application for mobile
devices. It automatically downloads and displays the
current astronomy picture of the day with a short de-
scriptive text. The application is implemented for the
Android platform [14] as a simple graphical user inter-
face that asynchronously downloads the current image
from the Web. Its download strategy depends on the
network availability, for which several layers provide
alternatives.

YourBook is a simple Web service-based book shop, whose
client and services are implemented using COP. It of-
fers a book search that considers user-profile informa-
tion such as age and visual defects. If, for example,
a non-adult customer performs a book search, the re-
sult is filtered and inappropriate books and advertise-
ments (banners) are not listed; if a customer has vi-
sual problems reading the Web page, it is rendered
with larger font size and images. The YourBook Web
shop is implemented using Enterprise Java Beans and
the JBossWS Web service framework [15], which we
extended to attach layer composition information to
remote method calls.

Figure 3 gives an overview of these case studies. We first
implemented the applications using our plain COP language
ContextJ [2] and its with statement. As the table shows,
layer composition is scattered over up to 33% of the user
code classes. We then refactored the applications to JCop
and used its declarative composition features. In all cases,
layer composition could be fully encapsulated by context
classes and other language features.

Figure 3: Overview of the ContextJ/JCop implementations of layer composition in framework-based appli-
cations.

5. RELATED WORK
In this section, we discuss the language design and imple-
mentation of related COP languages with respect to their
layer composition extensions.

Pointcut-based Declaration. The EventCJ [9] language
has been published shortly after JCop [3] and both languages
are closely related. Both languages are based on ContextJ
and extend it with a domain-specific pointcut language for
declarative layer activation. However, EventCJ and JCop
use different built-in pointcuts and advice semantics. Like
JCop, EventCJ uses pointcuts for layer activation. How-
ever, JCop restricts its join point model to method execu-
tions and dynamic conditions, whereas EventCJ inherits the
whole AspectJ join point model [10].

Furthermore, layer composition within the advice is different
in both languages. In EventCJ, it is defined by transition
rules that can express conditional layer activation. JCop
does not provide a dedicated syntax for such conditional
layer activations. However, using JCop’s reflective library
and its ability to manipulate the layer composition, it is pos-
sible to provide the behavior of explicit syntax of EventCJ,
though the EventCJ syntax is more concise and declarative.

Layer Guards and Implicit Layer Activation. In Subsec-
tion 3.3, we explained that in some scenarios layer compo-
sition requires the inclusion or exclusion of other layers, for
which JCop provides layer activation handlers.

EventCJ also provides layer activation handlers that can ex-
ecute additional functionality on layer composition. How-
ever, they cannot influence the layer composition.

The Python extension ContextPy [7] provides the concept of
guards to declare layer relationships. Guards are functions
that are assigned to a partial method. On method execution,
they receive the list of currently active layers and return a
Boolean value indicating whether the partial method the
guard was assigned should be activated.

Similarly, another Python extension, PyContext [18], sup-
ports a kind of implicit layer activation that is designed
to deal with the issue of scattered layer activations. Im-
plicit layer activation factors out layer composition from the
main program logic and, instead, defines a method return-
ing whether the layer is active or not. Each time a layered
method is called and the layer is registered for implicit acti-
vation, the active method is executed and its corresponding
partial method, if necessary, contributes to the final com-
position. Both approaches are similar to layer composition
handlers in JCop. However, composition handlers can con-
trol and modify the entire layer composition list, whereas
guards and implicit activation can only decide about their
own participation.

Object Structure-based Composition Scopes. The
JavaScript extension ContextJS [12] addresses the need for
additional scoping strategies, such as instance-specific and
structural scoping, and proposes an open implementation
for COP layer composition. This open implementation al-
lows developers to define domain-specific scoping strategies.
With JCop, we cannot directly define such new scopes.
ContextJS, in turn, cannot concisely encapsulate scattered
composition statements.

6. CONCLUSIONS
COP language extensions support the modularization of ho-
mogeneous crosscutting concerns. However, current COP
implementations require access to the whole application
source code to adapt it by layer composition statements.
In many application domains, especially in framework-based
environments, this requirement is not given, which leads to
a crosscutting implementation of layer compositions.

We identified this problem in several applications and pro-
pose to address it by an aspect-oriented extension to current
COP implementations that specifically serves for the declar-
ative specification of layer composition. Our JCop program-
ming language provides such an aspect language, in form of
context classes, and integrates that feature with layers and

partial methods. In addition, JCop supports to declare lay-
ers to be globally active, and its rich reflective API allows
layers to reason about their composition. With these fea-
tures, JCop’s language constructs can help to enhance the
separation of crosscutting concerns also in framework-based
environments.

Acknowledgements
We would like to thank Patrick Henning, Daniel Moritz,
Philipp Giese, and Bernhard Rabe for their contribution to
the development of the JCop/SOA library and the Your-
Book application.

7. REFERENCES
[1] Sven Apel, Thomas Leich, and Gunter Saake.

Aspectual feature modules. IEEE Transactions on
Software Engineering, 34(2):162–180, 2008.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt,
and Hidehiko Masuhara. ContextJ - Context-oriented
Programming for Java. Computer Software of The
Japan Society for Software Science and Technology,
28(1):1 272–1 292, 2011.

[3] Malte Appeltauer, Robert Hirschfeld, Hidehiko
Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-based Software Composition in
Context-oriented Programming. In Proceedings of the
9th International Conference on Software
Composition, Lecture Notes in Computer Science,
pages 50–65, Berlin, Heidelberg, Germany, 2010.
Springer-Verlag.

[4] Pascal Costanza and Robert Hirschfeld. Language
Constructs for Context-oriented Programming: An
Overview of ContextL. In Proceedings of the 2005
Symposium on Dynamic Languages, DLS’05, pages
1–10, New York, NY, USA, 2005. ACM Press.

[5] Ben Galbraith. Developing Swing Applications. Sun
Microsystems Technical Articles, 2006.

[6] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented Programming. Journal of
Object Technology, 7(3):125–151, March-April 2008.

[7] Robert Hirschfeld, Michael Perscheid, Christian
Schubert, and Malte Appeltauer. Dynamic contract
layers. In 25th Symposium on Applied Computing,
Lausanne, Switzerland, New York, NY, USA, 2010.
ACM DL.

[8] Ralph E. Johnson and Brian Foote. Designing
reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, 1988.

[9] Tetuso Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. Designing Event-based Context Transition
in Context-oriented Programming. In Proceedings of
The Second International Workshop on
Context-Oriented Programming, COP’10, pages 1–6,
New York, NY, USA, 2010. ACM Press.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
Overview of AspectJ. In The 15th European
Conference on Object-Oriented Programming,
ECOOP’01, volume 2072 of Lecture Notes in
Computer Science, pages 327–354, Berlin, Heidelberg,
Germany, January 2001. Spinger-Verlag.

[11] Gregor Kiczales, John Lamping, Anurag Mendhekar,

Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented Programming. In
Proceedings 11th European Conference on
Object-Oriented Programming, ECOOP’97, volume
1241 of Lecture Notes in Computer Science, pages
220–242, Berlin, Heidelberg, Germany, 1997.
Springer-Verlag.

[12] Jens Lincke, Malte Appeltauer, Bastian Steinert, and
Robert Hirschfeld. An Open Implementation for
Context-oriented Layer Composition in ContextJS.
Science of Computer Programming, 76:1194–1209,
December 2011.

[13] Nokia Corporation. Qt 4.6 Whitepaper, 2009.
http://qt.nokia.com/files/pdf/qt-4.6-whitepaper
(visited: 2011-12-09).

[14] Open Handset Alliance. Android Developers Platform.
http://developer.android.com (visited: 2011-12-09).

[15] RedHat inc. JBoss, 2011. http://www.jboss.com
(visited: 2011-12-19).

[16] Tobias Rho, Malte Appeltauer, Stephan Lerche,
Armin B. Cremers, and Robert Hirschfeld. A Context
Management Infrastructure with Language Integration
Support. In Proceedings of the Third International
Workshop on Context-Oriented Programming.,
COP’11, pages 1–6, New York, NY, USA, 2011. ACM
Press.

[17] Christopher Schuster, Malte Appeltauer, and Robert
Hirschfeld. Context-oriented Programming for Mobile
Devices: JCop on Android. In Proceedings of the Third
International Workshop on Context-Oriented
Programming, COP’11, pages 1–6, New York, NY,
USA, 2011. ACM Press.

[18] Martin von Löwis, Marcus Denker, and Oscar
Nierstrasz. Context-oriented Programming: Beyond
Layers. In Proceedings of the 2007 International
Conference on Dynamic Languages, ICDL’07, volume
286 of ACM International Conference Proceeding
Series, pages 143–156, New York, NY, USA, 2007.
ACM Press.

