
Shortening Feedback Loops
in a Live Game Development Environment

Tom Beckmann, Eva Krebs, Patrick Rein, Stefan Ramson, Robert Hirschfeld
Hasso Platter Institute, University of Potsdam

Potsdam, Germany
Email: firstname.lastname@hpi.uni-potsdam.de

Abstract—Game development benefits from short iterations, as
it is often concerned with how a game will feel like; something
that is hard to anticipate. Live programming aims at reducing
the length of iterations during software development to allow for
faster exploration and improve program comprehension.

We propose a live game development environment providing a
more general live programming workflow in game prototyping.
The environment supports developers in two aspects: how will
a code change affect the look and feel of the game and how
does the behavior of the game relate to its code? The proof-
of-concept environment ensures short feedback cycles by always
keeping the game running while it is being developed. We propose
several mechanisms to work with the running game, for example,
programmers can automatically replay situations in the game by
using an explicit notion of snapshots. We tentatively demonstrate
the effectiveness of the live programming features in the context
of the development of game prototypes of different genres.

Index Terms—game development, game tools, live program-
ming, exploratory programming

I. INTRODUCTION

When creating a game, design decisions are driven by the
resulting “experience” of playing the game [1]. Depending
on the environment, changing an aspect of the game and
inspecting its results may require recompilation, starting the
game, navigating to the state where the change is relevant,
and finally checking the result against the intention. In game
design, a high number of iterations is said to benefit the game’s
overall quality: “The more times you test and improve your
design, the better your game will be” [2, p. 94]. Concerns for
the developer are to maximize relevant insights within each
iteration and to keep each iteration as short as possible.

To get feedback on changes to the gameplay, developers
have to experience the consequences of their changes in the
running game [3]. When changing the code of the game, de-
velopers inevitably face a gap between the static representation
of behavior in which they applied a change and the running
version of the game [4], [5]. Developers have to bridge this
gap in two directions. When they applied a change and want
to get feedback, they have to bring the running game into a
state in which they can observe the changed behavior. In turn,
developers may observe interesting behavior in the running
game and may want to debug or understand it, for example
when a non-player character exhibits behavior they should not

have or an event is not triggered. In this situation, developers
have to determine how the observed behavior relates back to
the static representation.

To keep the gap between the static code and the running
game small, live programming offers mechanisms that provide
the impression of changing a program while it is running
and getting feedback from that running instance [6], [7]. The
goal of live programming is to minimize the delay between
changing a program and inspecting the consequences of the
change [5], [8]. In this way, dynamic behavior becomes
tangible, allowing developers to assess more quickly whether
their changes have the desired effects [9].

In this paper, we present a proof-of-concept game develop-
ment environment supporting live programming workflows by
integrating a running instance of the game to be developed1.
We tentatively illustrate how an always running instance of
a game can shorten iterations through the implementation of
three game prototypes. The demos and the workflows focus on
the development and refinement of specific game mechanics,
rather than full games.

II. CHARACTERISTICS OF GAME DEVELOPMENT

Game development is a specialized software development
field that differs in some regard from general software devel-
opment [3], [10]. Game development involves many different
activities: texture creation, 3D modeling, scripting materials,
writing gameplay interactions, dialog trees, or graphics code.
The line defining “programming” is blurred, as many activities
involve defining dynamic behavior, for example the configu-
ration of the behavior of a platform in a jump-and-run game.

Source code in games can be classified into script, game-
play, and engine code [10]. We focus on live programming
mechanisms for gameplay code. Further, we distinguish be-
tween code and game editors [3], [11]. Code editors work on
specifications of behavior, in our case gameplay code. Game
editors work on the initial state of a game (for example a level)
and allow developers to change the properties of elements
in the game. While this separation roughly corresponds to a
separation of behavior and state, the lines are again blurred,
as, for example, the configuration of properties of elements in
the game can entail changes to behavior. In many engines, the
code and the game editor are separate tools.

1For more detailed, illustrated descriptions of the approach, and a more de-
tailed walkthrough and discussion see https://doi.org/10.5281/zenodo.5082421978-1-6654-4592-4/21/$31.00 ©2021 IEEE

https://doi.org/10.5281/zenodo.5082421
Robert Hirschfeld
In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) 2021,
St. Louis, Missouri, USA, October 10-13, 2021, IEEE.

III. A LIVE PROGRAMMING ENVIRONMENT FOR GAME
DEVELOPMENT

Our approach to enabling a live programming workflow
for gameplay code involves two principles. First, the game
is running at all times to be able to relate changes to the
game directly. Second, the programming tools are aware of
the continuously running game. As a result, our tools can both
leverage the potential of run-time information and deal with
challenges that arise from viewing the game while it is live.
In this section, we describe the design of our proof-of-concept
game environment2, covering the underlying architecture and
the implementation of the principles.

A. Architecture and ECS

The environment is built around the Entity-Component-
System (ECS) architectural pattern, frequently used in
games [12], [13]. It separates identity, data, and code: en-
tities are identifiers that may contain a set of components;
components include all data of the game and are descriptors
of the traits and state of an entity; systems query the game
for all entities with a specific combination of components
and then read or write the data of those components. As an
example, the entity representing a game character may have a
sprite component containing the image file path and a position
component. A render system would then query the world for
all entities that have a position and a sprite component and
then draw each sprite’s image at the respective positions.

The environment is built in Squeak/Smalltalk [14], [15],
which provides hot code reloading infrastructure. Our envi-
ronment provides several tools that users can recombine to
form workspaces, similar to other software in the domain,
for example Unity [16] or Blender [17]. Our environment is
composed of a number of tools (see Figure 1), including tools
to define the data layout of components (2©), running queries
against the game state also enabling the user to edit the results
(1©), editing the code of systems (6©), viewing a rendered
version of the game (9©), controlling the active game state
snapshot and game time (4©), or profiling (5©).

B. Editing in a Running Game

Our first principle is to keep the game running at all
times, even when editing the game state. To achieve this, we
formalize the idea of state snapshots. A state snapshot is a copy
of the game state at a given moment in time. The game begins
with an initial state snapshot ∆0 which represents the game
state that the developers prepared and will later be shipped as
the game. While running, the game will be in the current state
snapshot ∆i at the time i. The environment provides several
controls to advance the game state (4©). If a user presses the
restart button, the game’s current state ∆i will be reset to ∆0.
Further, users have fine-grained control over how the state
advances via the step button, that advances the state to ∆i+1.
In terms of the ECS pattern, a state snapshot is a deep copy
of the state of all components.

2The source code of the environment is publicly available on GitHub at
https://github.com/hpi-swa-lab/tools-interactive-simulations/

When editing a running game, the challenge is to identify
the snapshot a change to the state should be applied to. Only
applying the change to ∆i would mean that the change is
not persisted and the effects only exist temporarily in the
running game. In contrast, changes to ∆0 are persisted and
will exist in future runs. Applying a change to both ∆i

and ∆0 is straightforward for state modifications that are
constant between snapshots. This is, for example, the case
when changing the position of a wall in a level. As its position
is constant, moving it in both states is a consistent change. For
derived state, however, such as a patrolling enemy’s position,
persisting a change becomes ambiguous. If the user moves a
patrolling enemy in ∆i with i > 0 and we apply that change to
both ∆i and ∆0, the current state ∆i will likely have become
inconsistent, as restarting the game and advancing it to the
same point in time i as before will likely result in the enemy
being placed elsewhere, as its starting position is now different.

For changing derived state we offer users to explicitly opt-in
to a persisting mode. By activating a checkbox, any change to
an entity or component that exists in both ∆0 and ∆i will be
applied to both state snapshots. Users can toggle this behavior
by holding a modifier just before doing a change, enabling a
quick workflow of experimentation and persisting changes.

Another problem arises with entities or components that do
not exist in ∆0, as they will only be created during gameplay.
For these, a change can only be applied in ∆i, as the correct
place to persist a change would be in the entity’s production
rules in the system code. While more sophisticated solutions
are possible [18], we approach this problem by showing the
user clearly where changes to data can be persisted, and where
a change would only occur in ∆i, by coloring any fields where
persisting is not possible. As such, users are made aware of
the temporary nature of their changes during experimenting.

To support persistent changes to entities that are spawned
at run-time, we added “entity templates”. A template (3©)
contains a definition of an entity with its components and can
be spawned at run-time. When the user changes a value in the
template’s definition, we apply the same change to all instance
of that template in the ∆i state. While this allows for consistent
edits in ∆i to entities that did not exist in ∆0, it has the same
draw-back described for other derived state.

Tweaking both derived and constant values during the game
is a frequent process in game balancing. To support this
process, users can save a snapshot ∆r of the current game
state ∆i and use it as a point of replay (4©). To enable replay,
users can start recording from time r. We record all external
events to the game, such as pressing keys, moving the mouse,
or manually spawning an entity via the editor. When the user
starts the replay, ∆i is reset to ∆r and as the game time
advances, we trigger all recorded external events. Changes in
persisting mode will be applied to all three states ∆i, ∆r, and
∆0. Non-persisted changes will only be applied to ∆i.

To get continuous feedback on their changes, users can
let the editor automatically replay the recording. For exam-
ple, users can modify the system code to tweak a one-off
interaction, such as entering a trigger zone and see how

https://github.com/hpi-swa-lab/tools-interactive-simulations/

1

8

6

7

2

9

5

4

3

Fig. 1. A screenshot of our environment. We list the elements that will later be mentioned here for reference: 1© entity filter, 2© component structure
definitions, 3© template definitions, 4© pause/play/step, auto-persist, and replay controls, 5© profiling and frame breakdown, 6© system code editors, 7© a
code watch, 8© query connection bubbles, 9© a game view

the recorded situation evolves given this new system code.
While the repeated execution of the recording makes feedback
available quickly, it may result in inconsistent game state as
changes to the code are directly reflected in the game behavior,
rather than from ∆0 or ∆r. To specifically support continuous
and consistent feedback on code that triggers an effect once
users can configure the editor to auto-restart. After each save,
the game will then reset to ∆r if it exists, or ∆0 otherwise.

C. Integrating with the Editor
Our second principle for a live programming experience

with a game development environment is a tight integration
of the running game with the game and the code editors. In
our prototype, the code is directly integrated within the game
development environment in the form of ECS systems that
appear in a separate panel (6©).

The editor visualizes some of the underlying semantics
directly. The arrangement of ECS system editors (6©) corre-
sponds to the execution order of the ECS systems. Similarly,
dataflow can be visualized by filtering for usage of a specific
component. Systems that use the selected component will be
colored to allow for faster navigation. Further, users can enable
drawing connections from panels (8©), which act as source
of specific components, to the code systems that use them.
For example, using the entity filter tool (1©) to search for
entities that have a Transform component and then enabling
the connections, will draw a line to all systems that query for
Transform components. To help users to find usage patterns
of components, bubbles sized to the number of entities that
matched each query travel along the connections. For example,
spawning particles will likely cause a high increase in bubble
sizes for certain components.

The entity filter tool (1©) is well suited to quickly create ad-
hoc editors for various use cases. The data inside the query tool
is fully live and editable. To ensure convenient editing even
when the values change continuously, such as the acceleration
of a falling body, we freeze the value when an edit interaction
is started. The updating in-game value is then shown next to
the editing field.

D. Integrating with the Game

To foster aspects of direct manipulation and reduce the
distance between the tools and the game, the environment
supports users in integrating custom tooling directly within
their game. The working hypothesis is that the line between
tooling and game needs to blur to allow writing tools with
as little cognitive overhead as possible. As such, while users
could change values through the entity filter directly, they can
instead create or use specialized tooling systems to accommo-
date a certain use case more adequately.

For example, we can create the typical gizmo user interface
(UI) element for changing an object’s transformation through
the use of a custom system. This system runs after the main
rendering system to draw on top of the game’s entities and
waits for mouse events to transform objects accordingly. To
separate tooling from game code, we allow grouping systems
into sets and toggling them in their entirety.

Further, we allow users to open multiple views (9©) on the
game and configure which systems run to render that view.
This allows users to realize various common tools, such as
the typical four-split view in 3d game editors, where one view
displays the perspective view on the game and the other three
are locked to the x, y, and z-axes respectively.

Fig. 2. Demonstration of the pathfinding debug overlay. This optional system
will draw the next steps of each enemy actor as blue circles and draw a
number over each tile with a movement cost of more than zero, such as the
greyish boulders that have a movement cost of four.

IV. DISCUSSION

In this section, we describe our experience of working
with the proposed environment and discuss how our imple-
mentations of the two principles to provide faster iterations
worked out in practice. Overall, we implemented three simple
games of different genres: an “Anno 1602”-like isometric
map renderer to benchmark the drawing debug capabilities
of the environment, a top-down tower defense game on a 2D
grid, and a real-time side-scrolling platformer. We will briefly
describe notable tool usage for the latter two.

The tower defense game explores complex interactions be-
tween various types of actors: towers can have effects, terrain
elements can be placed by the player and need to be taken
into account by the pathfinding of walking and flying enemies,
and menus for buying upgrades and placing towers. The game
makes heavy use of templates (3©). Towers and enemies were
balanced by tweaking template definitions and automatically
replaying (4©) a scenario that should be balanced. A custom
debug drawing overlay was used to debug the A* pathfinding
(see figure 2). By also placing watches in the code, and then
stepping the pathfinding forward using the time controls (4©),
we could investigate the implementation, both in terms of run-
time values and through visualizing the path and the fields’
traversal costs visualized on top of the game.

The platformer game demonstrates the use of a simple
physics system. Live values are changing constantly as actors
are subjected to gravity and other forces. Again, the replay
feature (4©) was of help. For example, for level design, we
did a jump of maximum distance, then replayed that jump,
paused, and placed level tiles accordingly. Additionally, the
framework allowed us to implement a level builder directly
within the game using ECS systems.

Overall, the UI supported us in various ways to quickly
assemble tooling for game-specific debugging and testing.
Especially the ability to define custom sets of systems to
run in a view proved helpful for a variety of use cases. The
custom views encouraged a mindset of creating small systems
for game-specific purposes that made the development and

debugging workflow easier. An observed challenge is how
tools may be shared between games, as the data layout of
components differs. To tackle this, we experimented with
higher-order systems that allow for projections of components
to an expected form.

We believe that the environment enabled us to find suitable,
working designs faster than in traditional game engines. To en-
able larger changes such as refactorings, while maintaining live
programming benefits, a concept such as edit transactions [19]
may be worth exploring.

V. RELATED WORK

Live feedback in game development has seen little explicit
coverage up to 2017 [7]. In later work, live programming for
game development has been considered, but only hypotheti-
cally [20]. This paper in turn presents a first prototype of a fea-
sible game development environment. In general, mechanisms
for live and exploratory programming, such as probes [21],
[22], can also be applied in game development whenever code
is involved. However, many of them focus on general-purpose
software development and are not tailored to a specific domain.
The application of replay in the context of games has been
shown in a demo by Victor [23], where he manipulates the
jump height of a character to match a specific jump distance
in a level. The general method of replay takes inspiration from
the ideas of omniscient debuggers [24]. Further, a variety of
mechanisms have been proposed for deterministic replay [25]–
[27]. The Godot Game Engine [28] supports some form of a
live programming approach by synchronizing changes while
the game is running, although requiring switching between
tools. Currently, changes to initial state override any existing
run-time state. Changes to game state can not be persisted.
In the Unreal Engine [29], the running game needs to be
interrupted and a separate edit mode entered. A notable game
programming tool set that provides live feedback is the tooling
at Guerrilla Games [30]. The tool set features profiling and
debugging overlays that run within the game’s context, as
well as tools that paint directly within the running game, both
features similar to our proposed environment. However, users
have to interrupt the running game to enter an edit mode.

VI. CONCLUSION

We presented the prototype of a live programming environ-
ment for game development. By keeping the game running
at all times, adapting the tools to be aware of a running
game, and offering affordances to integrate custom tooling
directly within the game, we hope to enable users to answer
what a change will look and feel like in the game, and relate
the effects of a change back to code faster. By allowing for
shorter, and therefore more, iterations, the overall quality of
developed features should increase. We evaluated the prototype
by developing three proof-of-concept games. We found the
new mindset around keeping the game running to be beneficial
during development and hope that our prototype can help to
better assess how live programming approaches can shorten
iterations in game development.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of HPI’s
Research School3 and the Hasso Plattner Design Thinking
Research Program4.

REFERENCES

[1] J. Kasurinen, J.-P. Strandén, and K. Smolander, “What do game
developers expect from development and design tools?” in Proceedings
of the 17th International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 36–41. [Online].
Available: https://doi.org/10.1145/2460999.2461004

[2] J. Schell, The Art of Game Design: A Book of Lenses, 2nd ed. Natick,
MA, USA: A. K. Peters, Ltd., 2014.

[3] E. R. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys,
ankle sprains, and keepers of quality: How is video game development
different from software development?” in 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31
- June 07, 2014, 2014, pp. 1–11. [Online]. Available: https:
//doi.org/10.1145/2568225.2568226

[4] D. Norman and S. Draper, User Centered System Design. Lawrence
Erlbaum Associates, Inc., Publishers, 1986.

[5] D. Ungar, H. Lieberman, and C. Fry, “Debugging and the experience of
immediacy,” Commun. ACM, vol. 40, pp. 38–43, 04 1997.

[6] S. L. Tanimoto, “A perspective on the evolution of live programming,”
in Proceedings of the 1st International Workshop on Live Programming,
LIVE 2013, San Francisco, California, USA, May 19, 2013, B. Burg,
A. Kuhn, and C. Parnin, Eds. IEEE Computer Society, 2013, pp. 31–34.

[7] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape, “Exploratory
and live, programming and coding - A literature study comparing
perspectives on liveness,” Programming Journal, vol. 3, no. 1, p. 1, 2019.
[Online]. Available: https://doi.org/10.22152/programming-journal.org/
2019/3/1

[8] P. Rein, S. Lehmann, T. Mattis, and R. Hirschfeld, “How live are
live programming systems? benchmarking the response times of live
programming environments,” in Proceedings of the Programming Expe-
rience 2016 (PX/16) Workshop. ACM, 2016, pp. 1–8.

[9] C. M. Hancock, “Real-time programming and the big ideas of compu-
tational literacy,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2003.

[10] J. Blow, “Game development: Harder than you think,” Queue,
vol. 1, no. 10, p. 28–37, Feb. 2004. [Online]. Available: https:
//doi.org/10.1145/971564.971590

[11] S. Broadley. (2016) Empowering content creators. Presentation
at 2016 Game Developer Conf. (GDC 16). [Online]. Available:
https://www.gdcvault.com/play/1023274/Empowering-Content

[12] S. Bilas. (2002) A data-driven game object system. Presentation
at 2002 Game Developer Conf. (GDC 02). [Online]. Available:
gamedevs.org/uploads/data-driven-game-object-system.pdf

[13] T. Johansson. (2018) Job system & entity component system. Presen-
tation at 2018 Game Developer Conf. (GDC 18). [Online]. Available:
gdcvault.com/play/1024839/Job-System-Entity-Component-System

[14] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its
Implementation. USA: Addison-Wesley Longman Publishing Co., Inc.,
1983.

[15] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to
the future: the story of squeak, a practical smalltalk written in itself,” in
ACM SIGPLAN Notices, vol. 32, no. 10. ACM, 1997, pp. 318–326.

[16] U. Technologies. Unity engine. [Online]. Available: https://unity.com
[17] B. Foundation. Blender. [Online]. Available: https://www.blender.org/
[18] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal,

N. Tillmann, and J. Kato, “It’s alive! continuous feedback in ui
programming,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
95–104. [Online]. Available: https://doi.org/10.1145/2491956.2462170

3www.hpi.uni-potsdam.de/research school
4www.hpi.de/en/research/design-thinking-research-program

[19] T. Mattis, P. Rein, and R. Hirschfeld, “Edit transactions: Dynamically
scoped change sets for controlled updates in live programming,” Art
Sci. Eng. Program., vol. 1, no. 2, p. 13, 2017. [Online]. Available:
https://doi.org/10.22152/programming-journal.org/2017/1/13

[20] A. R. Martin and S. Colton, “Towards liveness in game development,”
in IEEE Conference on Games, CoG 2019, London, United Kingdom,
August 20-23, 2019. IEEE, 2019, pp. 1–4. [Online]. Available:
https://doi.org/10.1109/CIG.2019.8848092

[21] S. McDirmid, “Usable live programming,” in 78e50801-b344-5b44-
ad68-fff3a6b3b16a, ser. Onward! 2013. New York, NY, USA:
ACM, 2013, pp. 53–62. [Online]. Available: http://doi.acm.org/10.1145/
2509578.2509585

[22] D. Rauch, P. Rein, S. Ramson, J. Lincke, and R. Hirschfeld,
“Babylonian-style programming - design and implementation of an
integration of live examples into general-purpose source code,” Pro-
gramming Journal, vol. 3, no. 3, p. 9, 2019.

[23] B. Victor. (2012) Inventing on principle. [Online]. Available:
http://vimeo.com/36579366

[24] B. Lewis, “Debugging backwards in time,” 2003.
[25] H. Thane and H. Hansson, “Using deterministic replay for debugging

of distributed real-time systems,” in Proceedings 12th Euromicro
Conference on Real-Time Systems. Euromicro RTS 2000. IEEE
Comput. Soc, 01 2000. [Online]. Available: https://doi.org/10.1109/
emrts.2000.854015

[26] D. Aumayr, S. Marr, S. Kaleba, E. G. Boix, and H. Mössenböck,
“Capturing high-level nondeterminism in concurrent programs for
practical concurrency model agnostic record & replay,” Art Sci.
Eng. Program., vol. 5, no. 3, p. 14, 2021. [Online]. Available:
https://doi.org/10.22152/programming-journal.org/2021/5/14

[27] Y. Chen, S. Zhang, Q. Guo, L. Li, R. Wu, and T. Chen, “Deterministic
replay: A survey,” ACM Comput. Surv., vol. 48, no. 2, pp. 17:1–17:47,
2015. [Online]. Available: https://doi.org/10.1145/2790077

[28] A. M. Juan Linietsky and contributors. Godot engine. [Online].
Available: https://godotengine.org/

[29] J. Wilson. (2019) Unreal engine 4.22 released. [Online]. Available:
https://www.unrealengine.com/en-US/blog/unreal-engine-4-22-released

[30] D. Sumaili and S. van der Steen. (2017) Creating a tools
pipeline for ’horizon: Zero dawn’. [Online]. Available: https:
//www.gdcvault.com/play/1024124/Creating-a-Tools-Pipeline-for

https://doi.org/10.1145/2460999.2461004
https://doi.org/10.1145/2568225.2568226
https://doi.org/10.1145/2568225.2568226
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/971564.971590
https://doi.org/10.1145/971564.971590
https://www.gdcvault.com/play/1023274/Empowering-Content
gamedevs.org/uploads/data-driven-game-object-system.pdf
gdcvault.com/play/1024839/Job-System-Entity-Component-System
https://unity.com
https://www.blender.org/
https://doi.org/10.1145/2491956.2462170
www.hpi.uni-potsdam.de/research_school
www.hpi.de/en/research/design-thinking-research-program
https://doi.org/10.22152/programming-journal.org/2017/1/13
https://doi.org/10.1109/CIG.2019.8848092
http://doi.acm.org/10.1145/2509578.2509585
http://doi.acm.org/10.1145/2509578.2509585
http://vimeo.com/36579366
https://doi.org/10.1109/emrts.2000.854015
https://doi.org/10.1109/emrts.2000.854015
https://doi.org/10.22152/programming-journal.org/2021/5/14
https://doi.org/10.1145/2790077
https://godotengine.org/
https://www.unrealengine.com/en-US/blog/unreal-engine-4-22-released
https://www.gdcvault.com/play/1024124/Creating-a-Tools-Pipeline-for
https://www.gdcvault.com/play/1024124/Creating-a-Tools-Pipeline-for

	Introduction
	Characteristics of Game Development
	A Live Programming Environment for Game Development
	Architecture and ECS
	Editing in a Running Game
	Integrating with the Editor
	Integrating with the Game

	Discussion
	Related Work
	Conclusion
	References

