
Structured Editing for All: 
Deriving Usable Structured Editors from Grammars 
Tom Beckmann Patrick Rein Stefan Ramson 

Hasso Plattner Institute Hasso Plattner Institute Hasso Plattner Institute 
University of Potsdam University of Potsdam University of Potsdam 
Potsdam, Germany Potsdam, Germany Potsdam, Germany 

tom.beckmann@hpi.uni-potsdam.de patrick.rein@hpi.uni-potsdam.de stefan.ramson@hpi.uni-potsdam.de 

Joana Bergsiek 
Hasso Plattner Institute 
University of Potsdam 
Potsdam, Germany 

joana.bergsiek@student.hpi.uni-
potsdam.de 

ABSTRACT 
Structured editing can show benefts in learnability, tool building, 
and editing efciency in programming. However, creating a usable 
structured editor is laborious and demanding, typically requiring 
tool builders to manually create or adjust editing interactions. 

We present Sandblocks, a system that allows users to automati-
cally generate structured editors for every language with a formal 
grammar available. Our system’s input reconciliation process acts on 
arbitrary syntax trees to provides consistent interactions across our 
generated editors. Our editors’ editing experience is designed to 
be familiar to users from textual editing but, compared to previous 
work, requires no manual annotation in the grammars. 

We demonstrate our editors’ usability across languages through 
a user study (N=18). Compared to conventional text editors, even 
with minimal training, participants only took on average 21% (JS), 
34% (Clojure), and 95% (RegExp) longer and reported that editing 
felt natural with a score of 6/7. 

CCS CONCEPTS 
• Software and its engineering → Formal language defnitions; 
Visual languages; Integrated and visual development environ-
ments. 

KEYWORDS 
structured editing, grammars, text-like editing 

ACM Reference Format: 
Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and Robert 
Hirschfeld. 2023. Structured Editing for All: Deriving Usable Structured Edi-
tors from Grammars. In Proceedings of the 2023 CHI Conference on Human 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 

Robert Hirschfeld 
Hasso Plattner Institute 
University of Potsdam 
Potsdam, Germany 

robert.hirschfeld@uni-potsdam.de 

Factors in Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Ger-
many. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3544548. 
3580785 

Figure 1: Sandblocks takes any grammars expressed using 
Tree-sitter and automatically generates usable structured 
editors. Shown are snippets from some languages we tested. 

1 INTRODUCTION 
For programming tools, structured editors ofer unique advantages 
over text editors, as they maintain a valid tree of the program at 
all times and model editing operations explicitly as transforma-
tions over that tree. As a result, structured editors can ofer users 
syntactic guidance while editing [14, 29], simplify the composition 
of languages [37], or enable novel tools to provide features that 
rely on structural guarantees and would thus be considerably more 

CHI ’23, April 23–28, 2023, Hamburg, Germany difcult to realize in text editors [7, 8, 20, 21, 28]. 
© 2023 Copyright held by the owner/author(s). However, structured editors in prior work are caught in a confict ACM ISBN 978-1-4503-9421-5/23/04. 
https://doi.org/10.1145/3544548.3580785 between their usability and their availability across languages, 

https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0002-0913-1264
https://orcid.org/0000-0003-4744-0874
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/3544548.3580785
mailto:robert.hirschfeld@uni-potsdam.de
https://potsdam.de
mailto:joana.bergsiek@student.hpi.uni
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580785&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

which we believe hindered their widespread adoption. In contrast, 
text editing provides a single, sufciently usable editing metaphor 
with consistent interactions across all (textual) languages. 

Structured editors with great usability have not been as widely 
available. Structured editors with a familiar and efcient editing 
interface have been presented and are in active use [20, 38, 39]. 
However, prior work relies on manual annotations for each new 
language to get the structured editor to behave consistently and pre-
dictably. As a consequence, structured editors tend to be available 
only for domain-specifc languages [9, 32], subsets of languages [30], 
or for languages that are particularly suitable for structured editing, 
such as Lisp-like languages. 

On the fip side, structured editors that have been widely avail-
able did not have great usability. Generating structured editors 
starting from a grammar is possible, thus making in principle all 
textual languages available for use with a structured editor at no 
additional cost [23, 36]. However, the generated editors sufer from 
high viscosity [4] for common editing interactions [35] thus impact-
ing usability in terms of their efciency. Interactions in generated 
editors commonly include generic, menu-based tree manipulation 
operations or drag-and-drop interfaces, such as in block-based edi-
tors [14, 29]. While block-based editors are great in an educational 
context, their reliance on drag-and-drop means that interactions 
are considerably slower than with a keyboard. 

However, this confict between usability and availability is not a 
fundamental issue: In this paper, we present a practical approach 
to resolve the confict by defning a set of heuristics for editing that 
act on the level of the grammar operators, rather than any specifc 
language. As a result, our generated editors in our environment, 
Sandblocks, are available across languages and provide a single, 
consistent, and usable editing metaphor for all languages, similar 
to text editors. Because of the unifed, familiar editing interface, 
users were able to edit not only domain-specifc languages, but 
also complex general-purpose languages in our user study. More 
concretely, similar to prior work, we generate structured editors 
from grammars of textual programming languages. But, in addition, 
we propose the concept of an input reconciliation process that, con-
tinuously on every edit, consults the grammar to reconcile input in 
a manner that users would expect from a text editor. 

In our evaluation, we demonstrate four properties of editors 
running our input reconciliation process: (1) interactions appear 
familiar to users, (2) learned interactions transfer between editors 
for diferent languages, (3) interactions are efcient, and (4) users 
are able to enter any desired language constructs. We fnd that 
editing feels natural to users coming from textual editing; that 
performing editing tasks in various languages was possible for our 
users with no additional instructions; and that editing efciency 
decreases only slightly compared to our baseline of textual editing. 

With this new possibility of generating usable structured editors 
for even complex languages such as Rust, TypeScript, or Regular 
Expressions (see Figure 1) at no additional cost, we hope to enable 
a wider audience to enjoy the benefts of structured editing. 

Our reference implementation for the described concepts, Sand-
blocks, is available open-source on Github1. 

1https://github.com/hpi-swa-lab/sb-tree-sitter/ 

2 RELATED WORK 
In this section, we give an overview of works that investigated the 
usability of structured editors, as well as frameworks designed for 
the (automatic) generation of structured editors. 

2.1 Usability in Structured Editors 
In early structured editors such as the Cornell Program Synthe-
sizer [33] interactions tended to be menu-based, requiring users 
to select language constructs they wanted to enter via dedicated 
user interfaces. Of these, Gandalf [27] is one of the earliest projects 
to automatically generate structured editors. It defned its own 
language for specifying interactions and views within the editor. 

The GNOME [11] and MacGnome [24] projects took inspira-
tion from these early projects to design a structured editor for 
programming education. Where GNOME was menu-based, MacG-
nome extended interactions with mouse navigation and temporary 
conversion of edited nodes to text to support code transformations. 
MacGnome utilizes a parser for editing but awaits complete inputs 
before committing intermediary text to structures, unlike our sys-
tem which continuously gives users feedback. For both GNOME 
and MacGnome the authors described that they manually added 
numerous special cases over the lifetime of the project to try and 
address usability concerns [24]. 

A number of structured editors, such as Lamdu [21] or Hazel [28], 
employ a set of hand-written heuristics to provide users with a text-
like editing experience for their editor’s language. More generally, 
authors have studied the constraints that infuence usability con-
cerns in structured editing [18, 39], identifying that users tend to 
expect or beneft from a text-like editing experience. 

More closely related, GrammarCells for MPS [38] aims to ad-
dress the issue of inconsistencies and implementation efort when 
integrating text-like editing with MPS languages, by providing 
high-level constructs that ease and unify this integration. The re-
sulting editing experience allows users to perform most editing 
operations as if working in a text editor. In a user study, Gram-
marCells demonstrated that it allows experienced users to surpass 
efciency of text editing in MPS [3]. For example, changing an op-
eration from addition to assignment is made possible by linearizing 
and reparsing subtrees; or deleting a qualifer from a declaration 
by hitting backspace is possible where otherwise a menu action 
may have been used. As such, the resulting interactions are resem-
bling those of textual editing while syntax errors are contained in 
subtrees, similar to our proposed system. Unlike our system where 
editing interactions are derived from the language defnition, lan-
guage authors manually specify editor hints to inform the system 
of the editing behavior thus requiring considerations for both the 
language defnition and the editing defnitions. 

Barista [20] supports an editing experience similar to textual 
editing for languages expressed in a custom grammar; the example 
implementation demonstrates this for Java. When the user performs 
a change, Barista frst tries to apply the change inside the selected 
node, similar to our input reconciliation process as described in 
detail in subsection 3.2. If the change cannot be applied it performs 
what we call stringifcation in our process: the subtree is linearized, 
the change inserted, and the linear stream of tokens attempted to 
be reparsed. If reparsing is not possible, the now invalid tokens are 

https://github.com/hpi-swa-lab/sb-tree-sitter/


Structured Editing for All: Deriving Usable Structured Editors from Grammars CHI ’23, April 23–28, 2023, Hamburg, Germany 

contained in an error production. As a result, the editing experience 
in Barista as we experienced it, places the user frequently in an 
intermediate error state, whereas our input reconciliation process 
typically brings users to a valid state earlier since it attempts difer-
ent, escalating strategies for applying changes. The impact of this 
diference is difcult to assess, as the paper does not describe a user 
study or evaluation. Notably, however, similar to GrammarCells, 
Barista uses a specifcally designed language [19] to map from a 
parse tree to an interactive view but does not do so automatically. 

An alternative approach that sacrifces most of the benefts ex-
pected by structured editing is to add structural editing interactions 
on top of a text editor. For example, Vim or Emacs, in particular 
Emacs’ ParEdit mode2, provide text objects, often akin to syntactic 
constructs, that users can address as part of shortcuts. Deuce [15] 
augments a text editor by providing structural selection and also 
integrates guided editing options via a menu that allows users to 
perform predefned operations on their selection. The goal here is 
typically efciency or convenience. As the underlying system is 
still a text editor, benefts such as tool integration or syntactically-
guided editing cannot be gained or only approximated through a 
parser. 

In the space of education, structured editors that focus on drag-
and-drop without considerations for textual editing are preva-
lent, often called block-based editors, for example Scratch [29] 
or Snap [14]. Here, users move and assemble composed language 
constructs using their mouse. The keyboard is typically only used 
to type numbers or names. To form a bridge between block-based 
editors and text editors, frame-based editing [16] displays code in 
draggable structures on the statement level but allows for text edit-
ing for expressions. While this compromise is helpful, in particular 
for imperative languages such as Java, languages that focus more 
heavily on expressions, such as Clojure, see less beneft. 

2.2 Generating Structured Editors 
A number of dedicated language creation frameworks or toolkits 
exist. In Proxima [31], Harmonia [5], or MPS [37] authors defne 
languages that the framework then turns into structured editors. 
They difer in their approach but neither is necessarily designed to 
enable reuse of existing general-purpose language grammars. 

Language workbenches, such as Rascal [34], support authors in 
creating domain-specifc languages, for example by deriving often-
used tools such as debuggers or autocompletion. Rascal2MPS [23] 
allows authors to take a language defnition in the Rascal language 
workbench and translate it to a projectional editor in MPS. The 
approach requires some manual steps and the authors note that 
usability is likely limited, pending analysis through a user study. 

Kogi [36] and S/Kogi [35] similarly take as input a Rascal or Ohm 
language defnition and translate it to a Blocky [12] block-based 
editor. S/Kogi preprocesses the grammar to arrive at a version 
that generates block-based editors that the authors describe as 
more usable, as indicated by fewer blocks required to formulate a 
program. Their preprocessing steps inspired the steps we describe 
in subsection 4.1. However, unlike the editors generated for S/Kogi, 

2https://www.emacswiki.org/emacs/ParEdit 

which the authors stated were only feasible for small to medium-
sized domain-specifc languages, our system is designed to work 
with general-purpose programming languages. 

3 EDITING IN AN AUTOMATICALLY 
GENERATED STRUCTURED EDITOR 

The primary design goals of our system are to provide editing 
interactions that feel familiar and efcient to users coming from 
textual editing and to work consistently on syntax trees of arbitrary 
languages. As such, even though the user’s edits are at all times 
constrained by the grammar, we need to support the sequences 
of input users are used to and would expect from entering expres-
sions in a textual editor. Figure 2 demonstrates this behavior in 
a walkthrough for a refactoring in a TypeScript editor generated 
by our system, where the user wants to extract an expression to a 
new variable. We chose TypeScript as an example language with 
moderately complex syntax. 

First, frames (a) through (b) show that the navigation and copying 
behavior in our editor is equivalent to textual editors, with the 
exception of structural selection. In frame (a), the user’s cursor 
is on the setQuaternionFrom property. The user moves the cursor 
word-wise until it is inside the expression to be extracted, uses the 
enlarge selection shortcut to select the entire expression, and copies 
it to the clipboard (b). 

Frames (c) through (l) demonstrate the editing behavior, again 
equivalent to textual editing, but guided by the structural properties 
of the tree: with the selection of the expression still active, the user 
begins typing the name of the desired variable (c), which replaces 
the selection as it would in a text editor. Using Shift+Enter, the user 
adds a new statement above the current statement (d). The user be-
gins typing the keyword let, which initially is ambiguous according 
to the grammar, as le could also be an identifer. Correspondingly, 
our system displays a popup where the user can explicitly disam-
biguate the input. Instead, the user continues typing and fnally 
hits space (f), at which time the input is unambiguous and thus ex-
panded to a declaration. The user continues typing the name of the 
variable and the equal sign (g), then pastes the copied expression 
(h). 

Our editor permits intermediate stages of incomplete syntax 
trees to allow the user to change even non-structural properties 
of subtrees. In our scenario, the user realizes that a constant decla-
ration would be better suited here, thus jumps to the start of the 
statement, and clears the let keyword (i), which our editor allows 
but remembers the fact that this text feld is meant to hold the let 

keyword. As soon as the user hits the c character in the now empty 
text feld, the declaration is adapted, keeping the still compatible 
subtree to the right of the keyword. Finally, the user navigates 
to the identifer, presses the colon character (k), and adds a type 
declaration (l). 

The walkthrough demonstrates that our system is capable of 
interpreting user input in a manner that should appear familiar 
to users coming from textual editing in popular editors such as 
Visual Studio or IntelliJ IDEA. The rules driving these interactions 
are defned by our input reconciliation process that interfaces with 
the Tree-sitter TypeScript grammar; the interactions are defned 
for arbitrary syntax trees and thus work consistently in editors 

https://www.emacswiki.org/emacs/ParEdit


CHI ’23, April 23–28, 2023, Hamburg, Germany Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

Figure 2: The user extracts an expression into a new variable 
by copying it, creating a new assignment statement, and past-
ing the expression (a-h), changes the declaration from let 

to const (i-j), and adds a type to the declaration (k-l). Shown 
in black boxes are the keypresses from the previous to the 
adjacent frame. 

generated for any other language. Three central heuristics guide 
the design of the input reconciliation process to provide users with 
predictable, familiar editing interactions that resemble those of 
textual editing: 

(1) Navigation follows the visual layout of text felds and blocks, 
rather than the tree structure. 

(2) Character entry by the user is treated as if injected in the 
string representation of the tree and bufers input until the 
user’s intent appears unambiguous. 

(3) Deletion acts conservatively, requiring explicit action before 
deleting structures even when empty. 

In the following, we will describe how these heuristics are real-
ized in our system to act on arbitrary syntax trees. 

3.1 Navigation 
Our editor creates user interface (UI) elements from syntax trees, 
mapping each non-terminal node in the tree to a block with an 
outline and each terminal node to a text feld. Text felds and blocks 
store references back to the grammar operator that created them. 

To support keyboard-driven navigation and editing in the editor, 
text felds and blocks can be selected via a block cursor. This block 
cursor can be in one of three types of positions, as illustrated in 
Figure 3: 

Figure 3: The three types of cursor positions. In the top-left, 
the cursor is inside a text feld, in a text position. In the top-
right, the cursor selects the entire visible subtree of the call 
expression. Finally, at the bottom, the cursor is in an insert 
position. A hint is showing what types of grammar rules can 
be instantiated at the selected position. 

• In a text position, the cursor is inside a specifc text feld at a 
specifc caret position within that text feld’s string contents. 

• In a select position, the cursor selects an entire block. This 
allows the user to move the selection up and down the hier-
archy of the syntax tree. 

• In an insert position, the cursor is at a position between 
blocks where the grammar allows repetition or optional 
elements. Here, users may begin typing to create a corre-
sponding element. 

As per the previously established heuristic, the cursor moves 
along the cardinal directions visually. During pilots, we realized 
that the majority of users preferred this behavior rather than for 
example following the tree structure. This observation is consis-
tent with previous work on structure editors [24]. Correspondingly, 
via the left and right arrows, the cursor moves through the leaf 
nodes of the tree of text felds and blocks, stopping in all caret 
positions of text felds and all insert positions between blocks. Via 
the Control modifer, the cursor moves block-wise, also skipping 
insert positions. To move to a select position, users can press the 
enlarge selection shortcut, Shift+Up arrow, mimicking the typical 
Shift+Arrow keys selection in text editors. The up and down ar-
rows simulate the behavior of navigating vertically in a text editor. 
First, we collect all text felds that are below or above our selection, 
respectively. We then select the text feld whose bounds rectan-
gle has the smallest Euclidian distance to the top or bottom tip 
of our cursor from the closest point along any of its edges, thus 
typically jumping to a text feld just above or below our current 
one. In addition, as the tree is constantly restructured as the user 
is typing as part of the input reconciliation process for character 
entry or deletion, we ensure that the positioning of the cursor after 
a restructuring allows the user to continue typing as they normally 
would in a text editor. We do so by fnding the last character the 
user actually typed themselves, placing the cursor just after when 
a restructuring occurred. 

3.2 Character Entry 
A modifed parser, which we call a partial parser [2] informs our rec-
onciliation process of how users’ changes can be made compatible 
with the language grammar. Tree-sitter’s default parser supports 
incremental parsing with error recovery, which is diferent from 
partial parsing. Incremental parsing speeds up subsequent parses 
by reusing unchanged parts of the parse tree; error recovery con-
tains errors in the input to the smallest area possible, sometimes at 



Structured Editing for All: Deriving Usable Structured Editors from Grammars CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 4: The fve steps of our input reconciliation process 
for character entry. (1) The user has typed a letter in a string. 
While the string is not valid until the user has entered the 
quotation mark, the prefx of the regex still matches and 
the edit is thus allowed. (2) The plus is not allowed inside 
the number, thus the system places a query to replace the 
number with a wrapped expression. (3) An equal sign is en-
tered; the binary operator cannot incorporate it, however 
by "stringifying" the operator’s contents and re-parsing, we 
fnd that an augmented assignment operator can incorporate 
the full string. (4) A number is entered that cannot be added 
to the array delimiter. The system searches for subsequent 
positions that would take it and creates a number inside the 
array. (5) The user enters a plus sign at the right edge of the 
expression. We cannot wrap the number as in scenario (2) 
because addition was defned to be left-associative, so we try 
again on the parent and fnd that we can apply the wrap (2) 
operation. 

the expense of correctness. While related, these features are not ft 
for our need of exhaustively listing options in which partial input 
could be turned into valid subtrees [2]. 

Partial parsing yields a superset of an ordinary CFG parser. A par-
tial parser accepts input even when only a prefx of a rule matches. 
Prefx matches are autocompleted by creating placeholder nodes. 
In addition, we can query the partial parser giving not only a string 
to be parsed but a mix of characters and existing nodes. In case 
of a partial parse tree, we interpret the placeholder nodes as the 
locations where users can continue typing to create a valid syn-
tactical structure. For example, if the user provides 2+ as input, a 
partial parser will produce a valid parse tree where the missing 
right-hand operand will be flled by a hole, a block where the user 
can continue typing. The partial parser is realized by reimplement-
ing all grammar operators of the Tree-sitter grammar language (i.e. 
sequences, repeats, regexes, ...) and modifying the sequence and 
regex operators to not abort once the input stream is exhausted but 
instead autocompleting with placeholders [2]. 

As part of the input reconciliation process for character entry, 
the partial parser is typically queried multiple times to check if 
the given input is compatible with the place the query is probing. 
Following the heuristic that character entry should be handled as if 
inserted in a textual source code string, we seek the closest position 
to the cursor in the syntax tree that accepts the user’s input. To do 
so, we attempt each of the following steps until the frst succeeds, 
as illustrated in Figure 4: 

(1) type in text feld, 
(2) wrap selection, 

Figure 5: The two types of adjacent positions: in the left 
scenario, in JavaScript, typing an equal sign would expand 
the text felds and blocks for the optional assignment that 
is hinted at in the popup. In the right scenario, in Python, 
typing a letter would forward the input into the expression 
hole. 

(3) stringify selection, 
(4) insert in adjacent, and 
(5) recurse on parent. 

Type in text feld. In the simplest case, we can insert the input 
into the currently focused text feld at the cursor position and the 
resulting string still conforms to the text feld’s regular expression, 
as derived from the Tree-sitter grammar. More specifcally, we 
require only a prefx match of the regex. For example, a regular 
expression specifying a string (ignoring escaping) may take the 
form /'[\^']*'/. An input such as 'a does not conform to the full 
regex but should still be accepted by the text feld as it would 
commonly occur when the user is in the process of initially typing 
the string. 

Wrap selection. Otherwise, if the cursor was at the very start or 
end of the selected text feld, we attempt to wrap the containing 
block (hereafter named selected block). For this, we place the se-
lected block in the input stream that we pass to the partial parser 
and insert the user’s input characters before or after the element in 
the stream, depending on the cursor position. As the parent gram-
mar operator for our query to the partial parser, we specify the 
selected block’s own parent grammar operator, as we expect the 
result of the partial parser to take the selected element’s place. For 
example, this allows replacing the expression 2 with an expression 
of the form 2+_ by typing a plus sign at the end of the number 
expression. 

Stringify selection. If wrapping did not succeed or the cursor was 
not at the start or end of the text feld, we attempt to "stringify" the 
contents of the selected text feld and insert the user’s input. Unlike 
the previous two operations, this allows the selected text feld or 
block to be reconstructed with an entirely new parent grammar 
operator and based on a diferent grammar rule. For example, in 
Python there are two diferent grammar rules for integers and foats. 
As such, to turn an integer into a foat, we take the literal string 
contents of an integer block’s text feld, append the dot character 
and ask the partial parser for matching results, which will produce 
a block for the foat rule. 

Insert in adjacent. If none of the steps above yielded results, we 
check for adjacent cursor positions that would place the cursor 
either in an insert position or in a text position for a text feld that 
is currently empty. Both cases are illustrated in Figure 5. The frst 
case, insert positions, occurs for example for JavaScript variable 
declarations. A simplifed version of the rule is expressed through 
the form: 



CHI ’23, April 23–28, 2023, Hamburg, Germany Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

Figure 6: The user typed the character a, which in the context 
of a TypeScript expression is ambiguous. A popup ofers the 
user to select an option and thus explicitly disambiguate. 
Alternatively, the user may continue typing until the desired 
construct is unambiguous. 

declaration := "let " identifier ("=" expression)? 

When frst typing the let keyword, only the keyword and identifer 
are constructed as the assignment is optional. If the user then 
types an equal sign at the end of the identifer neither of the frst 
three steps above will produce results. Instead, when checking 
its adjacent insert positions, we fnd the optional elements after 
the identifer. By passing the user’s input into our partial parser 
and taking ("=" expression) as the desired parent grammar operator, 
we fnd that this position indeed conforms to the user’s input. The 
second case, an empty text feld, most often occurs when we expand 
larger constructs. For example, if the user places their cursor in 
the keyword of an if-conditional in Python, where the condition 
has not been flled out yet, entering the letter a is again not a valid 
input for the if keyword, but the adjacent empty text feld for the 
conditional can be turned into an identifer, consuming the input. 

Recurse on parent. Finally, if neither of the above steps succeeded, 
we restart the entire process, this time taking the parent of the previ-
ously focussed text feld or block as reference. So, when stringifying, 
wrapping, or looking for adjacent positions, we consider a larger 
subtree of the program. We abort unsuccessfully if this step is 
reached and the parent is the root of the program tree. 

3.3 Modifying and Correcting Input 
The above presents the linear fow of the process when users enter 
language constructs character-by-character, left-to-right, without 
error. Here, we describe how the input reconciliation process re-
covers from deviations from the happy path. 

Ambiguity. For many inputs, there are multiple valid constructs 
that match according to our partial parser. For example, given just 
the input a with a parent grammar operator for an expression in 
TypeScript, we obtain among other options the identifer a, an 
await _ expression, and an async _ => _ function literal, as shown in 
Figure 6. In the presence of such ambiguity, we show a popup and 
ofer the user to either directly select any of the given options, or 
to continue typing. In this example, if the user adds the letter x to 
the input, we immediately choose the identifer ax as option, as all 
other previous choices no longer consume all input. 

The user can also trigger the popup manually through an ex-
plicit insert-before action (mapped to Shift+Space by default). This 

Figure 7: (a) The user selects the expression they want to wrap 
in an assignment. (b) They hit the insert-before-shortcut to 
open a popup and begin typing the declaration. (c) As they 
complete the expression, the partial parser ofers two options 
to restructure the selected subtree, given the input. 

Figure 8: The user typed the characters x a in a TypeScript 
editor using our system. In turn, our system autocompleted 
an as-expression for type casts. The user has not typed the 
s of the as keyword yet, as such it is displayed translucent. 
Users can now either type the missing s or navigate to the 
hole with the red outline directly. 

somewhat unintuitive step is covered as part of the accompanying 
tutorial and is currently required to insert larger structures before 
the selection. As an example, the user may want to assign the array 
[1] to a variable, as demonstrated in Figure 7. In this case, they select 
the array, invoke the popup, and type varname=, at which point the 
partial parser can construct the assignment subtree for varname=[1]. 
The need for the popup arises as committing to an option as soon 
as possible can sometimes cause jarring transitions, as signifcant 
tokens to determine the desired language construct may only be 
entered late, as users are essentially flling a gap in the middle of a 
prefx and a sufx language construct. In the above example, we 
would immediately convert the structure into an attribute access 
of the form v[1], only to later reinterpret it as assignment once the 
equal sign has been entered. In this instance, while jarring, the edit 
would work; if larger structures had been created in intermediary 
stages, the desired conversion may not have been possible anymore. 

Autocompleted Tokens. One consideration for the aforementioned 
goal of supporting a typing fow that is identical to textual input 
concerns autocompleted tokens. For example, in TypeScript, users 
can perform an explicit cast using the infx operator as, e.g. x as 

int. However, since this is the only infx operator in TypeScript 
starting with the character a, our system immediately commits to 
this parse tree when the user presses the a key. As such, users in 
our pilots frequently ended up typing x as sint (note the double s), 
as the s was autocompleted but typing it was still in their muscle 
memory. As a solution, we still autocomplete the structures eagerly 
but leave all characters that the user did not explicitly type in a 
slightly translucent color and italic font, as shown in Figure 8. Users 



Structured Editing for All: Deriving Usable Structured Editors from Grammars CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 9: The block containing the number 2 and its parent 
grammar operators (other blocks shown for context). The 
grammar operators show that this block represents the number 

rule of the grammar. Specifcally, it is a reference to that rule 
found inside a repeat operator (marked bold), which in turn 
is inside a sequence that is the body of a call_expression. 

can now either just type the autocompleted letters or skip ahead by 
navigating, in which case we turn the characters into the regular 
font and style. 

Whitespace. Most language grammars treat whitespace as fller 
tokens that may appear anywhere between tokens, a secondary 
notation designed to allow users to create logical groupings around 
the primary notation. In our design, we embraced the trend of pretty 
printers that streamline and auto-format all whitespace except 
deliberately placed empty lines. On language import, we modify 
the grammar’s statement rule such that it may also allow empty 
lines and detect these when parsing fles. Whitespace that is entered 
around tokens, for example when typing a = 5, is recognized but 
ignored by the partial parser, as it will not have an impact on the 
generated expression. 

Errors. As users type expressions, they will inevitably produce 
typos. As these occur, two scenarios are possible: frst, the input 
reconciliation process may not fnd a means to insert the given char-
acters. In that case, the input will be bufered in the popup shown 
in Figure 7b and a notice is shown to the user. Second, the input 
reconciliation process will eagerly produce a language construct 
that was not desired. If that language construct autocompleted 
further tokens, such as an if-statement, users must use the undo 
shortcut to directly revert their change. Otherwise, they can just 
backspace to revert to a previous cursor position, as described in 
the next section. 

3.4 Deletion 
Explicitly invoked deletion occurs when the user presses either the 
delete or cut shortcuts. In this case, we traverse up the parents of 
the selected text feld’s or block’s grammar operators to see if we 
fnd a repeat node, as illustrated in Figure 9. If so, and given that 
deletion will maintain the minimum number of elements for this 
repeat operator, we simply remove the text feld or block from the 
tree. If no repeat operator is found, we instead turn the selected 
block into a hole, essentially clearing the contents of that subtree 
and allowing users to type new contents. Explicit deletion always 
acts on an entire block, if the cursor is in a text position or insert 
position, the containing block is targeted. 

Figure 10: The three steps of our input reconciliation process 
for deletion. All three examples are based on the Python 
grammar. The later steps only occur if the previous were 
not applicable (refer to Figure 11 for a continuous example). 
In the frst scenario, the user deletes the decimal part of a 
foat via backspace. As a result, the regex for the foat rule no 
longer matches and the block is turned into an integer. In the 
second scenario, the user deleted all but the comparison in 
the if-block (including the colon, which is set in italics to sig-
nal that it has been deleted but is syntactically still required 
here, as also seen in Figure 8). On the next backspace, the 
now-empty parts are removed and replaced by the only non-
empty child, the comparison. In the third scenario, the user’s 
cursor is in the empty block, which is required inside an if 
block per the grammar. As a result, when the user presses 
backspace, the cursor moves to the left and does not delete 
anything. 

Implicit deletion occurs through backspacing and follows the 
heuristic stated in the introduction to this section to act conserva-
tively. In our pilots the need to support backspacing to "undo" the 
construction of previously typed blocks became apparent: users 
were used to be able to correct mistakes by backspacing and re-
typing constructs from textual editing and were expecting the same 
functionality to work in our structured editor. At the same time, 
if users were correcting errors, jarring transitions from removal 
of elements as soon as they were empty caused users to question 
whether they did the right thing. As such, once elements are empty, 
we still wait for the user to press backspace one more time before 
proceeding to remove any elements. 

Similar to the input reconciliation process for character entry 
described in subsection 3.2, the input reconciliation process for dele-
tion successively tries to apply more local to more global changes, 
proceeding to the next step only if no previous step succeeded. 
Figure 10 illustrates the process described below: 

(1) delete character, 
(2) reinterpret without empty, and 
(3) move cursor left. 

Delete Character. If the selected text feld is not empty, we just 
delete the character before the cursor. After deletion, we check if 
the string now contained in the text feld matches the full regu-
lar expression of that text feld, unlike in input reconciliation for 
character entry where we only check for the prefx of that regular 
expression. If it is not valid, we ask the partial parser to try and fnd 
a new subtree that would match the contents. Matching the full 



CHI ’23, April 23–28, 2023, Hamburg, Germany Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

Figure 11: A step-by-step of an editing scenario. Shown are 
frst the user interface, then the corresponding parse tree, 
and fnally which step of the input reconciliation process 
applies to arrive at the next state. In scenario (1), the user 
would like to delete the binary operator and right operand, 
only keeping the 2 (5). Shown are the resulting text felds 
and blocks after pressing backspace, the syntax tree, and the 
steps of our input reconciliation process for deletion that 
apply. In (4), the plus sign has been deleted but the binary 
operator signals that it would have otherwise contained a 
plus sign. We do not immediately delete the operator at this 
point to allow users to easily change the plus into for example 
a minus. 

regular expression is required to go from Python’s foat rule back 
to an integer rule, as an integer is a valid prefx of every foat in 
Python and would thus not signal a need to re-parse the contents. 

Reinterpret without Empty. Otherwise, if the text feld is empty, 
we pass all non-empty children of the current selection’s parent 
to the partial parser and see if a new element can be constructed 
using just those elements. In practice, this means that users can 
progressively empty larger elements until only the parts are left 
they want to keep. 

Move Cursor left. If no deletion was possible in the previous steps, 
we move the cursor one position to the left. As a result, we skip 
over as-of-yet non-deletable parts of the program without users 
having to switch to navigation themselves. 

As an example, assume the user placed the cursor at the very 
end of the expression 2+3 and wants to delete everything but the 
number 2, as shown in Figure 11. As the user hits backspace, we 
frst delete the character 3, as the cursor is in a non-empty text 
feld. Reinterpreting the new contents as a diferent type can be 
omitted, as the text feld is now empty. Next, when the user presses 
backspace again, there are no more characters to delete in this text 
feld, so we skip to the second step. We then try to reinterpret the 
children of the binary addition but, in the TypeScript grammar, 
no other rules match the elements we still have. Thus, we skip 
to the third step, where we simply move the cursor left, into the 
plus character’s text feld. Again, this plus sign is deleted as per 
the frst step. Finally, only after the next backspace in the already 
empty text feld, we attempt to reinterpret the contents and fnd 

Figure 12: Changing a for-loop to be a while-loop. The user 
clears all felds they wish not to keep and changes the key-
word. If instead, the user changes the keyword without frst 
deleting the other felds, the text will appear in a popup in-
forming the user that the input is not valid here, as shown in 
Figure 7. Refer to section 6 for a discussion of this behavior. 

that the remaining number block can be used as a replacement for 
our binary addition. 

Modifying Elements. Modifcations to elements follow the same 
heuristics as deletion. Assume that a user has typed a C-style for-
loop and wants to change it to a C-style while-loop, as shown in 
Figure 12. We follow the heuristic to act conservatively: as the 
while-loop requires fewer blocks than the for-loop, just converting 
it would either yield an invalid tree or would require arbitrarily 
discarding elements that the user may want to keep. Instead, we 
impose on the user to perform conversions such as this one, where 
some blocks have to be discarded, to frst empty or move those 
blocks they do not care about and only then trigger the conversion, 
in this case simply by changing the keyword. In this way, the 
structure of the tree is maintained at all times, the interactions 
resemble those of textual editing, with the exception of imposing 
an order to the operations. Modifcations that do not discard blocks 
can be performed without additional consideration, for example 
changing an addition of the form a+b to an attribute access of the 
form a.b can be performed by replacing the plus sign with a dot. 

4 FROM GRAMMARS TO STRUCTURED 
EDITORS 

Our system takes arbitrary Tree-sitter grammars and derives user 
interface (UI) elements in the form of nested blocks. Figure 1 shows 
snippets in a number of diferent languages in our structured editor. 
Here, we briefy describe the import process and underlying data 
structure that informs our input reconciliation process. 

4.1 Automatically Importing Grammars 
The import process of the grammar into our system is fully au-
tomatic, with the exception of defnitions of external rules and 
optional annotations, which we both describe further below. Users 
provide the URL to a Github repository containing the grammar 
defnition and our system imports and generates the defnitions as 
described below. We then preprocess the Tree-sitter grammar to 
condense it as much as possible, to reduce the number of blocks 
generated in the translation step while still maintaining fexibility 
during editing. 

Tree-sitter grammars are composed of operators for labels, texts, 
choice, sequences, repeats, symbols, and precedence/associativity 
(and other, more specifc ones, not relevant to this discussion). 
Tree-sitter grammars support left-associativity, which is commonly 
used for the expression rule in programming language grammars. 



Structured Editing for All: Deriving Usable Structured Editors from Grammars CHI ’23, April 23–28, 2023, Hamburg, Germany 

Note that for the purpose of producing subsequent partial parses 
this poses a particular challenge, as elements in the tree cannot 
be considered in isolation during parsing but rather have to be 
considered in the context of their parents in the tree. The partial 
parser may address this by reparsing multiple times, trying each 
left-associative parent of the current selection and listing all valid 
results [2]. 

The preprocessing steps are adapted from a similar method de-
scribed in related work [35]. 

• Tree-sitter allows specifying that a rule should be inlined in 
a user-facing parse tree. We apply this inlining step as part 
of our preprocessing. 

• We repeatedly apply a normalization step that, for example, 
merges nested repeats or turns A+? into A*, which occur as 
part of other transformations. 

• As blocks are visually delineated through their appearance, 
we remove separators in lists, which renders editing less 
noisy. We employ three heuristics derived from Tree-sitter 
grammars we analyzed to detect separated lists. 

As an example of such separated lists, given the rule 

call_expr := sequence(expr , "(" , 
repeat(sequence(expr , ",")), optional(expr), ") ") 

we detect the pattern that defnes a delimited list and rewrite it as: 
call_expr := sequence(expr , "(" , repeat(expr , ","), ") ") 

In the object representation of the repeat operator, we remember 
that this repeat was delimited by the "," character in the original 
grammar such that users can still type the delimiter if they want to. 

External Rules. For cases where specifying a rule in Tree-sitter’s 
DSL is either convoluted or simply not possible, Tree-sitter ofers 
grammar authors to formulate an external scanner using C code. 
For example, bash’s heredoc notation, which begins a literal string 
with user-defned delimiters, requires such an external scanner. If 
the imported grammar uses an external scanner, we require users 
to specify approximations in Tree-sitter’s DSL of the rules that are 
specifed in C. If the user does not provide them, the editor still 
works but the respective language constructs cannot be entered 
as our editor cannot infer the relevant tokens. Of the languages 
shown in Figure 1, Bash (heredoc, fle descriptor, variable names, 
regexes), Python (string prefxes), and TypeScript (template string, 
automatic semicolon) each have at least one relevant external rule, 
while Smalltalk, Java, and Clojure have none. 

Optional Annotations. There are three kinds of optional anno-
tations we cannot derive automatically from the grammar that 
enhance the editor’s functionality if specifed during import. First, 
users can specify which repeat operators in the grammars contain 
what is considered statements in the imported language. With this 
information, we know what elements to insert when the Return key 
is pressed. Second, users can specify a statement terminator string, 
which is then removed from the grammar during preprocessing, 
similar to list separators. Third, users can specify which grammar 
operators signal soft or hard line breaks, as well as indentation, 
for the layouting engine. Without any hints, the layouting engine 
will place hard line breaks after statements, and soft line breaks 
in sequences and repeats, which tends to produce more soft line 
breaks than is desirable. 

Figure 13: Blocks and text felds with their associated gram-
mar operators for the TypeScript expression in the top-left, 
labeled "combined block". Every bold label marks a generated 
block or text feld. All non-bold labels are operators in the 
grammar. Parent and child pointers are stored between all 
grammar operators, blocks, and text felds, as exemplifed 
through the arrows. Text operators yield text felds, symbol 
operators yield blocks. Note that the stmt, expr_stmt, and expr 

symbols are marked as supertypes in this Tree-sitter gram-
mar, meaning they act as container symbols for a number of 
other symbols and thus do not get their own block. 

Applicability to Other Grammar Languages. Our approach and 
the described procedures are not limited to Tree-sitter. To our knowl-
edge, Tree-sitter currently presents one of the largest, openly avail-
able repositories of language grammars within one language and 
was thus our choice for demonstrating the feasibility of the in-
put reconciliation process. More generally, any grammar language 
with support for partial parsing can be used. As partial parsing 
is based on CFGs, any CFG-based language can be used [2]. The 
major consideration, besides coverage of languages, is the closeness 
of mapping between the expression of language constructs in the 
grammar language and the way users tend to think about them. If 
the grammar requires for example unrolling rules for precedence 
or introducing helper rules to express constructs, the resulting 
editors will display that incidental complexity to the user, too. Con-
sequently, a grammar language that is similarly high-level as Tree-
sitter’s, such as the one used in Rascal [34], may be more suitable, 
than for example Parsing Expression Grammars [10], which, while 
easier to parse, tend to require grammar authors to depart further 
from the way languages are understood by users. 

4.2 User Interface Data Structure 
To go from a textual source fle to our user interface, we invoke 
the Tree-sitter parser, which acts on the unmodifed grammar. For 
each parse node in the parser’s output, we traverse the grammar 
operators in their corresponding grammar rule and produce text 



CHI ’23, April 23–28, 2023, Hamburg, Germany Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

felds and blocks, making sure to map to our preprocessed version 
of the grammar in the process. 

The layout and display of tree structure we chose to adopt is 
inspired by related work [1]. Symbol operators, which correspond 
to references to rules, get turned into blocks, as shown in Figure 13. 
Label and text operators get turned into text felds. The other oper-
ators only pass the request down to their child operators. 

Text felds and blocks store a reference to the grammar operator 
that produced them. The grammar operators in turn store references 
to their parent and child operators as shown in Figure 13. We can 
thus traverse the stack of operators starting from each text feld 
or block. Through this data structure, the partial parser can obtain 
information on what constraints from the grammar are imposed on 
the text felds and blocks that are passed in queries and text felds 
and blocks can determine whether they are in a valid state. 

4.3 System Overview 
To give a more complete impression of the system in which our 
implementation of the input reconciliation process is embedded in, 
we briefy discuss some aspects not relevant to the process itself. 

Our system is implemented in Squeak/Smalltalk [17], based on 
the Morphic UI framework [22] and is publicly available on Github3. 
It is designed with a specifc frontend in mind but can also act as a 
backend for other systems that wish to support textual editing inside 
a structured editor by providing our system with the new frontend’s 
keyboard input and replaying the edits to the tree structure our 
system generates in the new frontend’s user interface. 

Next to textual interactions, which are at the heart of our input 
reconciliation process, our system supports mouse-based interac-
tions. Users can click in text felds to place the block cursor. Users 
can also drag-and-drop blocks, thus acting as a block-based editor 
that also supports textual editing. Selection of multiple elements 
or cross-cutting selections only have rudimentary support at this 
point: users can multi-select via shift and left click but a partial 
selection of the textual contents is not currently possible. As with 
most editors, the appearance is confgurable, both in terms of color 
but also in terms of the layout and size of blocks. The design pre-
sented here and evaluated in our user study favored larger blocks 
to increase clarity. 

Our system integrates with the operating system’s clipboard: 
when users copy a block, its textual representation is copied as 
well. If they paste a string and it successfully parses to a parse 
node at their cursor location, it is inserted; failures to parse are 
not currently handled. Users can open and edit textual fles as 
they are used to from textual development environments. When 
saving, our editor follows a set of default heuristics that determines 
potentially required whitespace to output syntactically valid code 
(in particular: output whitespace if a letter or number is adjacent 
in two neighboring tokens, output newline for each statement) but 
users can also point our system to an external pretty printer for 
their language to be used. 

If language authors specifcally target our system as a frontend, 
they can extend the default set of shortcuts (cut/copy/paste) with 
custom shortcuts designed for their language. For example, an 
adaptation for the Clojure language may add the "slurp" and "barf" 

3https://github.com/hpi-swa-lab/sb-tree-sitter/ 

operations from ParEdit. In addition, our system can integrate with 
language servers to ofer semantic editing operations, such as iden-
tifer autocompletion, refactoring actions, or resolving variable 
names. This is possible by storing and updating the text ranges 
of each parse node and using these in communication with the 
respective language servers. 

5 EVALUATION 
We evaluate our design along the following four research ques-
tions, which correspond to properties of our generated editors we 
described in section 1: 

RQ1: Does working in our editor appear natural to users? A major 
goal of our design is to provide editing interactions that feel nat-
ural or familiar to users coming from textual editing. For this, we 
conducted a user study where we asked participants to perform a 
set of tasks and rate their experience. We aim to provide familiar 
editing interactions to reduce the cognitive load that users expe-
rience when using a structured editor for the frst time, and thus 
reduce the entry barrier. Thus, we asked users to provide answers 
to the NASA TLX [13] to gauge the load experienced during the 
tasks. 

RQ2: Do the interactions users learn transfer between editors for 
diferent languages? Our approach uses the same heuristics for all 
generated editors, independent of the language. Thereby, our edi-
tors should provide consistent editing interactions between all lan-
guages. The importance of consistency in interactions in structured 
editors has been pointed out by the GrammarCells project [38], 
noting that authors of structured editors typically have to defne 
interactions each time they add support for a language anew. Con-
trarily, in text editors, interactions are always consistent between 
languages, as interactions do not need to be special-cased for enter-
ing specifc language constructs; users always enter only characters 
or navigate the cursor. 

To test this, all participants used Python as the same language 
during the tutorial and then worked with JavaScript, Clojure, and 
Regular Expressions in the study. In addition, the languages we 
selected for our study have varying syntactic characteristics. 

RQ3: Is working in our editor efcient? In our editor, despite the 
heuristics, edits to the program have a higher complexity, as a 
change to the program does not only change the mere text but 
may infuence the local structure of the program. Thus, we expect 
the editor to slow down programmers in their editing efciency. A 
small slowdown would be acceptable, given the short training time 
the study setup permits and the projected advantages of structured 
editors in tool integration or support for learners. Nevertheless, our 
design aims to keep the slowdown small through familiar editing 
operations. To get an estimate of the actual impact of our design 
on the editing efciency, we measured task completion times for 
each task in our editor and presented users with an equivalent task 
to be done in a text editor. 

RQ4: Does our interaction design allow users to enter all desired 
structures? Finally, our input reconciliation system aims to interpret 
input sequences such that our system arrives at the same language 
constructs a textual parser would, given the same input. As an 

https://github.com/hpi-swa-lab/sb-tree-sitter/


Structured Editing for All: Deriving Usable Structured Editors from Grammars CHI ’23, April 23–28, 2023, Hamburg, Germany 

Regex

Clojure

JS

100 50 0 50 100
Percentage

Response
strongly disagree

disagree

slightly disagree

neutral

slightly agree

agree

strongly agree

Figure 14: Participants reported whether they are famil-
iar with the above languages. Median values are 5.5/7 for 
JavaScript, 1/7 for Clojure, and 5/7 for Regular Expressions. 

approximation for evaluating this property, we sampled program 
subtrees of open-source projects in diferent languages, automati-
cally re-typed them using our system, and evaluated whether our 
system reproduced the same program subtrees without mistake. 

5.1 User Study 
Our user study was designed to gauge the impact of the editing 
method (structured/textual) on the editing experience and perfor-
mance of participants (RQ1, RQ3) and whether the learned interac-
tions generalize across languages of diferent syntactic characteris-
tics (RQ2). 

Method. We designed our study as within-subjects. We recruited 
18 participants, 17 male, 1 female; 2 professional programmers, and 
5 PhD, 9 graduate, 2 undergraduate students between age 20 and 
28; participants reported between 1 and 18 years of programming 
experience, of that between 0 and 6 in professional capacity. We frst 
collected demographics, programming experience, and familiarity 
with the programming languages used in the experiment (shown 
in Figure 14) through a survey. Participants then spent around 5 
minutes on an interactive tutorial for our editor, focused on teaching 
the mindset of typing code as one is used to and structural selection. 

Next, participants performed 8 tasks in total; the frst two were 
in Python and designed for warmup, to verify that the objective was 
well understood and is thus not reported in the results below. Of the 
other six tasks two were in JavaScript, two were in Clojure, and two 
were in ECMAScript Regular Expressions, embedded in JavaScript. 
This was to cover a wide spectrum of languages, from C-like, to 
Lisp-like, to an extremely concise, declarative language in the case 
of Regular Expressions. Both the tutorial and the two warmup tasks 
were using Python to not provide any learning efect. Participants 
did a task for all three languages in both our editor and a text editor. 
We counterbalanced the order of the tasks and editors through latin 
square to lessen learning efects; the order in which tasks and editor 
assignments would appear was thus diferent for each participant. 
For the text editor, we chose a subset of CodeMirror, a popular web-
based code editor, that provides similar conveniences as our editor, 
matching the standard confguration of current popular editors 
such as Visual Studio Code: in particular, closing parentheses were 
automatically inserted, users could press parentheses on a selection 
to wrap the selection, standard shortcuts for cut, copy, paste and 
syntax highlighting were enabled for the respective languages, as 
shown in Figure 15. Identifer autocompletion was disabled in both 

Figure 15: Screenshots of our editor (left) and the text editor 
(right) as presented to participants during the experiment 
for the JavaScript task. Note that we show excerpts of both 
permutations, so identifers and order of tasks difer. 

editors and support for multiple cursors was disabled in CodeMirror. 
Throughout the tasks, we recorded all keypresses and clicks. 

After performing each task, we asked participants to fll out the 
six values of the NASA TLX [13]. After all tasks were completed, 
we asked participants to rate how natural text editing, deleting, and 
navigation felt in our system and performed a semi-structured in-
terview to gain qualitative insights beyond our observations during 
participants’ use of the system. 

Tasks. For each task, we gave participants small programs of 
13 (RegExp), 47 (JavaScript), and 21 (Clojure) lines of code. Each 
program had several TODOs inlined as comments that expressed 
a code change in natural language, as seen in Figure 15. Before 
participants started work on the task, we allowed them to read 
every desired change and to ask for clarifcation, e.g. if they did 
not know how to formulate a requested language construct. This 
was done to single out the time for editing, without the noise from 
strategic considerations while editing. To maintain some level of 
ecological validity, we nevertheless used composed editing tasks, 
consisting of adding multiple program elements across a number 
of code locations. Once participants went through all TODOs, they 
pressed a start button, performed the changes, and pressed a stop 
button. The time we report is the interval between the frst and last 
keypress users performed while the task was active, thus excluding 
the time needed to move the cursor to the start/stop button. For 
each language, the two tasks in the two diferent editors required 
users to type the same language constructs using the same number 
of keystrokes but using diferent identifers and in a diferent order, 
to reduce a learning efect between tasks, even if the tasks were 
otherwise identical in structure in order to be comparable. 

RQ1: Editing Experience. Through observation by the instructors 
through screenshare, we determined that participants were able 
to complete all tasks in both our editor and the text editor. In 
some runs, participants accidentally omitted tokens such as closing 



CHI ’23, April 23–28, 2023, Hamburg, Germany Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

Navigating

Deleting

Editing

100 50 0 50 100
Percentage

Response
strongly disagree

disagree

slightly disagree

neutral

slightly agree

agree

strongly agree

Figure 16: Participants rated whether they agree that text 
editing, deleting, and navigating felt natural in our system 
after completing all tasks. A majority tend to agree with each 
statement; deleting and navigating score lower, with two 
participants stating disagreement in either. Median values 
are 6 for editing and deleting and 5 for navigating. 

Mental Physical Temporal Performance Effort Frustration

−
50

0
50

D
el

ta
 o

f o
ur

 E
di

to
r 

−
 B

as
el

in
e

JavaScript Clojure RegExp

Figure 17: Boxplot of delta between raw values of TLX per 
language in our editor minus the text editor. Values below 0 
indicate a load that was lower in our editor, values above 0 a 
load that was lower in the text editor. 

js clojure regex

1
2

3
4

Slowdown / Task

our.js text.js our.clj text.clj our.reg text.reg

0
50

10
0

15
0

20
0

25
0

30
0

Time in sec / Task / Editor

Figure 18: On the left: Boxplot of slowdown of task comple-
tion times per language. A factor of 1 means equal time in 
both editors, a factor of 2 would mean that users took twice 
as long in our editor as in the text editor. On the right: Box-
plot of time in seconds per task (JS, Clojure, Regex) in our 
editor and in the text editor. 

parentheses in the text editor. In our editor, participants in some 
cases accidentally entered an incorrect but visually similar language 
construct. Answers from the TLX (Figure 17) suggest a slightly 
lower task load in the text editor. In general, task load appears 
not to have varied strongly across the editors with all dimensions 
averaging around close to the same load level. As shown in Figure 16, 
a majority of participants tended to agree that text editing, deleting, 
and navigating in our system felt natural, with navigation scoring 
the lowest. 

RQ2: Consistency Between Languages. Our experiment was spe-
cially set up to demand of our participants to extrapolate learned 
interactions between languages. Instructions were only given for 
the Python editor, to familiarize users with the editor in general. 
The tasks were then carried out in editors for diferent languages 
with no further instructions and no time for the users to familiarize 
themselves. Still, participants successfully completed all tasks. As 
such, we conclude that participants successfully formed an under-
standing of the editors’ function during the tutorial that generalized 
across languages. 

RQ3: Editing Efciency. With regard to the editing efciency, we 
found that, in general, participants were slower using our editor 
than using the text editor. The median of the sums of all task times 
of each participant is 181s for the text editor and 243s for our system. 
However, the results difer between languages as can be seen in the 
detailed breakdown in Figure 18. For the large tasks in JavaScript 
and Clojure, most participants were able to use the editor with only 
a small slowdown. For JavaScript the median slow-down factor of 
our editor is 1.2x (range 0.8x - 2.7x) and for Clojure it is 1.3x (range 
0.8x - 4.8x). In both languages, a few participants even performed 
faster than or very much on par with the text editor. The small 
slowdown for JavaScript and Clojure is promising as participants 
were able to use the editor with such a small slowdown despite the 
fact that they initially were unfamiliar with the editor and only 
received minimal training. 

The Regex task yielded diferent results: Participants exhibited a 
larger slowdown factor of 1.9x (range 1.0x - 4.2x). Note that these 
higher slowdown factors for the Regex task apply to task times that 
are much lower: the Regex task has a median task time of 50s across 
all conditions (range 19s - 159s), while the JavaScript task has a 
median task time of 103s (range 49s - 239s). Further, the Regex task 
turned out to have a special infuence on how participants interacted 
with the editor. The subsequent detailed analysis of interactions 
shows that many participants used signifcantly more navigation 
actions in the Regex task when using our editor (� (17) = 4.2, � < 
.001), as seen in Figure 19. Overall, our presented setup does not 
allow us to decide whether the higher slowdown just coincides 
with the shorter tasks and the higher number of navigation events, 
or whether there is a causal relation between any of the three. 

While we expect language profciency to generally have an ef-
fect on participants’ editing efciency, in our study, other factors 
infuenced the efciency more strongly. Almost all participants 
reported to be somewhat familiar with JavaScript and Regex, while 
all reported to be unfamiliar with Clojure, as seen in Figure 14. At 
the same time, Clojure editing efciency is not worse than Regex 



Structured Editing for All: Deriving Usable Structured Editors from Grammars CHI ’23, April 23–28, 2023, Hamburg, Germany 

editing efciency. Also, while there are moderate, negative correla-
tions between the time overhead and language profciency, none of 
these correlations were signifcant for our results. 

We also investigated the recorded interactions as shown in Fig-
ure 19 in more detail in order to understand the slowdown in editing 
performance in our editor and to gain insights for future iterations 
of structured editors. Participants used signifcantly more inter-
actions in our editor (� (53) = 2.8, � < 0.01) and also took longer 
per interaction (� (53) = 4.8, � < 0.001), so both aspects need 
to be considered in the future. A notable exception of these re-
sults, which may lead to more interesting insights in the future 
is that the diference in the number of interactions was less pro-
nounced in the JavaScript task and the only non-signifcant difer-
ence (� (17) = −1.0, � = 0.33). 

Threats to Validity. Even though we tried to prevent a learning 
efect between tasks by letting users read and understand every 
change they want to perform before each task and by shufing and 
exchanging identifers, it is still possible that participants encoun-
tered unexpected challenges only after they started typing on the 
frst task. As a result, some cases may favor the second task in each 
language. In addition, the small size of the tasks may overemphasize 
incidental diferences, as the time taken to recover from accidental 
inputs in both editors may amount to a large portion of total edit 
time. Further, the comparison between a text editor that users have 
been working with for years and our novel interface that users only 
had around 5 minutes of training time with necessarily renders 
the task completion times as approximations and as an indication 
of the efciency users can expect as they just get started with the 
interface. 

5.2 Observations 
In the following, we describe observations and insights we collected 
while the participants were using the editor and the subsequent 
interviews. Quotes from participants are translated from German 
by the authors and marked with P1 through P18. 

Some participants expressed surprise at how quickly they had 
become familiar with the editor that visually seemed to suggest 
a more complicated method of use (P12: "using [the editor] felt 
very intuitive", P4: "I did not expect that I would be comfortable 
working in this editor so quickly."). Especially in the languages 
where participants were not as familiar, a majority of participants 
expressed that they appreciated the support given by the syntactic 
support of the structure editor. P9 said "from the layout, one could 
directly see when the code had a wrong structure, for example the 
way the [JavaScript] arrow function acts on expressions. In the text 
editor, I was less sure about that." 

We observed three notable issues with our design that were 
recurring between runs. First, participants encountered issues with 
error recovery: users sometimes did not notice that a typo had led 
to the creation of a diferent language construct than desired and 
subsequently entered text was thus also placed in undesired spots. 

Second, the popup that bufered input while it was still ambigu-
ous caused some confusion, especially initially, as participants were 
still getting used to its function. Occasionally, participants would 
type a larger sequence in the popup but at an incorrect insert point, 
expecting it to eventually accept their input. For example, P14 said 

Characters Navigation Deletion Clicks Modified
−

50
0

50
10

0

JavaScript Clojure RegExp

Figure 19: Boxplot of delta between number of interactions 
per language in our editor minus the text editor. Values below 
0 indicate a count that was lower in our editor. Navigation 
includes arrow keys, home, end, and page up and down; dele-
tion includes backspace and delete keys; clicks is the number 
of mouse clicks; modifed includes all keys where ctrl/cmd 
were held simultaneously; characters include all other key 
presses. 

referring to the popup: "the hints were mostly confusing, maybe 
fnd a more friendly way to tell me what’s happening". P3 said "the 
popup initially pulled me out of my [editing] fow, by now I have 
gotten used to it". 

Third, we believe that the visual presentation we chose led some 
participants to get into a mode akin to flling out a form, as they 
tended to press the enter key when (read-only) hints popped up or 
after fnishing to type in a text feld (e.g, P15: "[...] pressed enter fre-
quently, even though I don’t usually do that when coding"), whereas 
just typing like in a text editor would have been the intended inter-
action. Similarly, navigation in our system was surprising to users 
in some ways, a potential explanation for the comparatively lower 
scores in a natural feeling in Figure 16 and the diferences in inter-
action counts in Figure 19. While users reported that block-wise 
navigation behaved as they expected it to, they also reported that 
they had trouble predicting where the cursor would go in character-
and line-wise navigation. P3 said "it wasn’t clear how often I had to 
press [the arrow keys] to get to a specifc spot. When I held control 
[for block-wise movement] it worked fne though". 

On the positive side, some participants lauded the large padding 
for clearly showing structures, especially for the regular expression 
task (P12: "seeing the regex spread out like this helped understand 
its function"). Contrarily, the extra space taken up by the blocks led 



CHI ’23, April 23–28, 2023, Hamburg, Germany Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

Table 1: Projects from which we sampled the 50 expressions 
on single lines for our evaluation. For each language, we 
selected popular repositories of medium size that were active 
at the time of writing. The reported lines of code and number 
of fles include only fles of the language we evaluated. 

Project Language Lines of Code Files Failures 

fask4 

express.js5 

Compojure6 

Metacello7 

Python 
JavaScript 
Clojure 
Smalltalk 

10372 
16381 
1202 
64785 

75 
153 
12 
4596 

1 
0 
0 
0 

Vue.js8 TypeScript 61351 386 4 

the auto-layout to introduce more line breaks than in the equiva-
lent program in the text editor, increasing the vertical distance of 
program elements further and adding visual complexity (P18: "the 
display of the regular expressions felt noisy because there were so 
many boxes"). 

Deletion was mentioned positively during the interviews across 
participants and proved to be a reliable way for users to backtrack, 
for example P16 said "deleting the entire box like this feels satisfy-
ing", or P9 said "deleting felt the same as in a text editor". 

According to the interviews, structural selection was the editor 
feature that was best received. P17, for example said: "I liked how 
easy it was to replace whole blocks. I could just shift-select the 
entire [expression] without having to precisely select the [text 
range of the] expression.", and P3 said: "using [structural selection] 
by selecting upward worked well. Copy-pasting whole blocks is 
usually what I intend to do anyways". Participants reported that 
they felt more productive and explicit in their actions, being able 
to perform their desired tasks with fewer keypresses than in a text 
editor. P18 said for example, "I got a bit the impression of working 
in Vim, it felt similarly efcient". 

5.3 Automatically Retyping Program Subtrees 
In the user study, we observed that users were able to formulate 
any language constructs the tasks required and were also able to 
recover from typos using backspace. To get an impression of the 
robustness of our system when entering language constructs we 
did not choose ourselves, we sampled lines of code of a number 
of popular open-source projects, deleted them, and retyped them 
using our system. Note that the input was thus the fnal code that a 
programmer checked into source control and did not contain slips 
like typos that would happen when frst formulating the code. The 
experiment was thus used to evaluate compatibility with diverse 
language constructs and not a perfect simulation of user behavior. 
Error recovery and user behavior were covered by our user study. 
Thus, by checking a variety of language constructs in numerous 
situations, we can identify cases where the required input to enter 
a language construct deviates from the exact sequence used in a 

3https://github.com/pallets/fask/tree/c34c84b69085e6bce67d0701b8f8ba3145f42f2 
4https://github.com/expressjs/express/tree/33e8dc303af9277f8a7e4f46abfdcb5e72f67 
5https://github.com/weavejester/compojure/tree/cd9536e11f24c075ec670c2abc4b040 
6https://github.com/metacello/metacello/tree/214c51948d36400251cf862009093765e 
7https://github.com/vuejs/vue/tree/60d268c4261a0b9c5125f308468b31996a8145ad 

text editor; an absence of errors would give us greater certainty 
that our approach provides an exact match of input behavior to a 
text editor. 

We selected fve open-source projects, choosing from active 
projects with a comparatively high count of Github stars. The list of 
projects is shown in Table 1. For each project, we picked a random 
fle and a random subtree in that fle that was on a single line 
to approximate a change a user may do during a refactoring. We 
then take the selected program subtree as textual source code and 
send the corresponding string character by character as keyboard 
input to our system. Finally, we compare if the resulting subtree is 
identical in structure to the one we had deleted. For each project, 
we repeat this process 50 times, yielding a total of 250 re-typed 
subtrees. 

Almost all subtrees were correctly recreated, as shown in the 
last column of Table 1. The exception in Python occurred on an 
import statement of the form from a import b. As commas are op-
tional in our system, there is a valid insert position before the import 

token that accepts the frst letters of the import keyword, leading 
to an expression of the form from a, import import b (as the import 
keyword had been autocompleted but also re-typed into the insert 
position). Here, our design should either reconsider the removal of 
commas or redirect the input as soon as it was clear that the user 
was typing a keyword, not a package name. 

The TypeScript failures consist of 3 parsing errors in our sys-
tem, and one template string of the form `${key}_${i}`. Our system 
currently requires users to explicitly state that they aim to create a 
template interpolation by moving into an insert position inside the 
string. 

For a human user observing the editor state both issues are 
easily circumvented, potentially even more so as users become 
more familiar with a mindset of thinking in language constructs as 
opposed to textual tokens. However, to not pose any unexpected 
surprises, we plan to address both issues in future iterations. 

6 DISCUSSION AND FUTURE WORK 
Our described concept to achieve a text-like editing experience was 
confrmed by almost all participants, with some not even being able 
to state diferences to editing in text editors when prompted during 
the interview. 

In the following, we discuss means to address the three ma-
jor points for improvement that resulted from our interviews and 
observations, as described subsection 5.2. 

Error Recovery. As our system creates structures as soon as the 
input is unambiguous, it depended on users noticing faulty input 
quickly, e.g., when users might want to create a for loop but mistype 
a keyword and thus create a diferent language construct but con-
tinue to type as if the for loop construct had been created. We 
took great care to ensure that correcting errors is easy by allowing 
users to simply use backspace to undo the creation of language 
elements even of large constructs, which was also well-received 
in the interviews and in practice. Still, users tended to take some 
time to identify that a wrong language construct had been created 
and to which point they had to backtrack. Future work may investi-
gate means to let users correct faulty input without need to delete 
structures. 

https://7https://github.com/vuejs/vue/tree/60d268c4261a0b9c5125f308468b31996a8145ad
https://6https://github.com/metacello/metacello/tree/214c51948d36400251cf862009093765e
https://5https://github.com/weavejester/compojure/tree/cd9536e11f24c075ec670c2abc4b040
https://4https://github.com/expressjs/express/tree/33e8dc303af9277f8a7e4f46abfdcb5e72f67
https://3https://github.com/pallets/flask/tree/c34c84b69085e6bce67d0701b8f8ba3145f42ff2


Structured Editing for All: Deriving Usable Structured Editors from Grammars CHI ’23, April 23–28, 2023, Hamburg, Germany 

Input Popup. The popup that bufers input while it is ambiguous 
was described as confusing by users. From our observations, we 
believe the main hurdle was a lack of clarity on where the bufered 
text would eventually be integrated into the program tree, as the 
popup element obscures potentially important context. In a future 
iteration, we will investigate removing the popup entirely and inte-
grating the bufered text into the already-existing tree, to give users 
continuous feedback about the input’s precise position in the tree. 
Further, this will allow input to temporarily exist in the tree, while 
the user deletes elements that were preventing a reinterpretation 
of a block to a block of another type, as it may occur in the scenario 
in Figure 12. 

Visuals and Layout. The appearance and layout of blocks proved 
to be a point where users were divided: while some appreciated 
the increase in clarity through the large padding, others found the 
resulting diference from the line-like layout they are used to from 
textual code confusing. We believe the largest impact on usability, 
especially for predicting the outcome of navigation actions, arose 
from heterogeneous size of gaps in the block layout. In a text editor 
with a monospace font the cursor always moves equal distances. In 
our editor the vertical gaps between elements are of diferent sizes, 
leading the cursor to seemingly accelerate as it jumped greater 
vertical distances. This was compounded by the large padding we 
chose for blocks and occasional suboptimal decisions by our auto-
layout. Similarly, prior work emphasized that screen space usage 
tends to be a major issue for visual programming interfaces [6, 25, 
26]. Future versions of our layouting algorithm may thus tweak 
visuals to appear more strongly as in a text editor, for example by 
reducing padding of blocks, making hints for structure more subtle, 
and aligning elements to have equal distances. 

7 CONCLUSION 
We presented Sandblocks, a system that, given arbitrary Tree-sitter 
grammars, generates structured editors that have consistent inter-
actions across languages and, according to a user study, tend to 
feel natural to users coming from a textual editing background. 
Guided by three central heuristics, (1) letting navigation follow the 
visual structure of the tree, (2) interpreting character entry as a tex-
tual parser would, and (3) conservatively requiring explicit action 
to delete structures, our input reconciliation system meets users 
expectations to make editing in our generated structure editors 
feel familiar. Our system thus forms a basis for making the vast 
number of current textual languages available in structured editing, 
hopefully enabling future work that better integrates tools with the 
syntax tree, or form a middleground between structured and tex-
tual editing to beneft both learners of particular general-purpose 
languages and enrich the editing experience of advanced users. 

ACKNOWLEDGMENTS 
We thank Jens Lincke for feedback on the structure of the paper. 
We thank Paul Methfessel and Corinna Jaschek for feedback on 
early versions of the generated structured editors.

This work was supported by Deutsche Forschungsgemeinschaft 
(DFG) grant #449591262. We also gratefully acknowledge the f-
nancial support of HPI’s Research School9 and the Hasso Plattner 
Design Thinking Research Program10. 

REFERENCES 
[1] Tom Beckmann, Stefan Ramson, Patrick Rein, and Robert Hirschfeld. 2020. Visual 

Design for a Tree-Oriented Projectional Editor. In Conference Companion of the 
4th International Conference on Art, Science, and Engineering of Programming 
(Porto, Portugal) (<Programming> ’20). Association for Computing Machinery, 
New York, NY, USA, 113–119. https://doi.org/10.1145/3397537.3397560 

[2] Tom Beckmann, Patrick Rein, Toni Mattis, and Robert Hirschfeld. 2022. Partial 
Parsing for Structured Editors. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering (Auckland, New Zealand) 
(SLE 2022). Association for Computing Machinery, New York, NY, USA, 110–120. 
https://doi.org/10.1145/3567512.3567522 

[3] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dangprasert, 
and Janet Siegmund. 2016. Efciency of Projectional Editing: A Controlled 
Experiment. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). 
Association for Computing Machinery, New York, NY, USA, 763–774. https: 
//doi.org/10.1145/2950290.2950315 

[4] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green, Corin A. 
Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes, Chrystopher L. Nehaniv, 
Marian Petre, Chris Roast, Chris Roe, Allan Wong, and Richard M. Young. 2001. 
Cognitive Dimensions of Notations: Design Tools for Cognitive Technology. In 
Proceedings of the 4th International Conference on Cognitive Technology: Instru-
ments of Mind (CT ’01). Springer-Verlag, Berlin, Heidelberg, 325–341. 

[5] Marat Boshernitsan. 2001. Harmonia: A Flexible Framework for Constructing 
Interactive Language-Based Programming Tools. Technical Report CSD-01-1149. 
University of California at Berkeley, USA. 

[6] Wayne Citrin, Richard Hall, Carlos Santiago, and Benjamin Zorn. 1998. Ad-
dressing the Scalability Problem in Visual Programming Through Containment, 
Zooming and Fisheyeing. In 1998 IEEE Aerospace Conference Proceedings (Cat. 
No.98TH8339), Vol. 4. IEEE, USA, 189–202. https://doi.org/10.1109/AERO.1998. 
682192 

[7] Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based Programming 
with Structure Editing. (2021). arXiv:2110.08993 [cs.PL] Online at http://tomasp. 
net/academic/papers/typed-image; Presented at Human Aspects of Types and 
Reasoning Assistants (HATRA), 2021. 

[8] Jonathan Edwards and Tomas Petricek. 2022. Interaction vs. Abstraction: Man-
aged Copy and Paste. In Proceedings of the 1st ACM SIGPLAN International Work-
shop on Programming Abstractions and Interactive Notations, Tools, and Envi-
ronments (Auckland, New Zealand) (PAINT 2022). Association for Computing 
Machinery, New York, NY, USA, 11–19. https://doi.org/10.1145/3563836.3568723 

[9] Epic Games. 2012. Unreal Engine Blueprint. Epic Games. Retrieved 11 September 
2022 from https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/ 

[10] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-Based Syntactic 
Foundation. SIGPLAN Not. 39, 1 (jan 2004), 111–122. https://doi.org/10.1145/ 
982962.964011 

[11] David B. Garlan and Philip L. Miller. 1984. GNOME: An Introductory Program-
ming Environment Based on a Family of Structure Editors. SIGSOFT Softw. Eng. 
Notes 9, 3 (apr 1984), 65–72. https://doi.org/10.1145/390010.808250 

[12] Google. 2020. Blockly. Google. Retrieved 10 August 2022 from https://developers. 
google.com/blockly 

[13] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006), 
904–908. https://doi.org/10.1177/15419312060500090 

[14] Brian Harvey and Jens Mönig. 2015. Lambda in blocks languages: Lessons learned. 
In 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond). IEEE, USA, 35–38. 
https://doi.org/10.1109/BLOCKS.2015.7368997 

[15] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Light-
weight User Interface for Structured Editing. In Proceedings of the 40th In-
ternational Conference on Software Engineering (Gothenburg, Sweden) (ICSE 
’18). Association for Computing Machinery, New York, NY, USA, 654–664. 
https://doi.org/10.1145/3180155.3180165 

[16] Michelle Ichinco, Kyle Harms, and Caitlin Kelleher. 2017. Towards Understanding 
Successful Novice Example Use in Blocks-Based Programming. Journal of Visual 
Languages and Sentient Systems 3, 1 (July 2017), 101–118. https://doi.org/10. 
18293/vlss2017-012 

[17] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. 
Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. 
SIGPLAN Not. 32, 10 (Oct. 1997), 318–326. https://doi.org/10.1145/263700.263754 

[18] Amy J. Ko, Htet Htet Aung, and Brad A. Myers. 2005. Design Requirements for 
More Flexible Structured Editors from a Study of Programmers’ Text Editing. In 
CHI ’05 Extended Abstracts on Human Factors in Computing Systems (Portland, 
OR, USA) (CHI EA ’05). Association for Computing Machinery, New York, NY, 
USA, 1557–1560. https://doi.org/10.1145/1056808.1056965 

9https://hpi.de/en/research/research-school.html
10https://hpi.de/en/dtrp/ 

https://doi.org/10.1145/3397537.3397560
https://doi.org/10.1145/3567512.3567522
https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1109/AERO.1998.682192
https://doi.org/10.1109/AERO.1998.682192
https://arxiv.org/abs/2110.08993
http://tomasp.net/academic/papers/typed-image
http://tomasp.net/academic/papers/typed-image
https://doi.org/10.1145/3563836.3568723
https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/390010.808250
https://developers.google.com/blockly
https://developers.google.com/blockly
https://doi.org/10.1177/15419312060500090
https://doi.org/10.1109/BLOCKS.2015.7368997
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.18293/vlss2017-012
https://doi.org/10.18293/vlss2017-012
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/1056808.1056965
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/


CHI ’23, April 23–28, 2023, Hamburg, Germany 

[19] Amy J. Ko and Brad A. Myers. 2005. Citrus: A Language and Toolkit for Simpli-
fying the Creation of Structured Editors for Code and Data. In Proceedings of the 
18th Annual ACM Symposium on User Interface Software and Technology (Seattle, 
WA, USA) (UIST ’05). Association for Computing Machinery, New York, NY, USA, 
3–12. https://doi.org/10.1145/1095034.1095037 

[20] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework 
for Enabling New Tools, Interaction Techniques and Views in Code Editors. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 
(Montréal, Québec, Canada) (CHI ’06), Rebecca E. Grinter, Tom Rodden, Paul M. 
Aoki, Edward Cutrell, Robin Jefries, and Gary M. Olson (Eds.). Association for 
Computing Machinery, New York, NY, USA, 387–396. https://doi.org/10.1145/ 
1124772.1124831 

[21] Eyal Lotem and Yair Chuchem. 2011. Lamdu. Lamdu Community. Retrieved 31 
August 2022 from https://www.lamdu.org/ 

[22] John H. Maloney and Randall B. Smith. 1995. Directness and Liveness in the 
Morphic User Interface Construction Environment. In Proceedings of the 8th 
Annual ACM Symposium on User Interface and Software Technology (Pittsburgh, 
Pennsylvania, USA) (UIST ’95). Association for Computing Machinery, New York, 
NY, USA, 21–28. https://doi.org/10.1145/215585.215636 

[23] Mauricio Verano Merino, Jur Bartels, Mark van den Brand, Tijs van der Storm, 
and Eugen Schindler. 2021. Projecting Textual Languages. In Domain-Specifc 
Languages in Practice: with JetBrains MPS, Antonio Bucchiarone, Antonio Cic-
chetti, Federico Ciccozzi, and Alfonso Pierantonio (Eds.). Springer International 
Publishing, Cham, 197–225. https://doi.org/10.1007/978-3-030-73758-0_7 

[24] Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. 1994. Evolution of 
Novice Programming Environments: The Structure Editors of Carnegie Mellon 
University. Interactive Learning Environments 4, 2 (1994), 140–158. https://doi. 
org/10.1080/1049482940040202 

[25] Brad A. Myers. 1990. Taxonomies of visual programming and program visual-
ization. J. Vis. Lang. Comput. 1, 1 (1990), 97–123. https://doi.org/10.1016/S1045-
926X(05)80036-9 

[26] Bonnie A. Nardi. 1993. A Small Matter of Programming: Perspectives on End User 
Computing. MIT Press, Cambridge, MA, USA. https://doi.org/10.7551/mitpress/ 
1020.001.0001 

[27] David Notkin. 1985. The GANDALF project. Journal of Systems and Software 5, 2 
(1985), 91–105. https://doi.org/10.1016/0164-1212(85)90011-1 

[28] Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, 
Jonathan Aldrich, and Matthew A. Hammer. 2017. Toward Semantic Founda-
tions for Program Editors. In 2nd Summit on Advances in Programming Lan-
guages (SNAPL 2017) (Leibniz International Proceedings in Informatics (LIPIcs), 
Vol. 71), Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.). 
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 11:1– 
11:12. https://doi.org/10.4230/LIPIcs.SNAPL.2017.11 

Beckmann, Rein, Ramson, Bergsiek, Hirschfeld 

[29] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn 
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S. Silver, Brian 
Silverman, and Yasmin B. Kafai. 2009. Scratch: Programming for All. Commun. 
ACM 52, 11 (2009), 60–67. https://doi.org/10.1145/1592761.1592779 

[30] André L. Santos. 2020. Javardise: A Structured Code Editor for Programming 
Pedagogy in Java. In Conference Companion of the 4th International Conference on 
Art, Science, and Engineering of Programming (Porto, Portugal) (<Programming> 
’20). Association for Computing Machinery, New York, NY, USA, 120–125. https: 
//doi.org/10.1145/3397537.3397561 

[31] Martijn M. Schrage. 2004. Proxima - A presentation-oriented editor for struc-
tured documents. Ph. D. Dissertation. Institute for Programming research and 
Algorithmics, Universiteit Utrecht. https://hdl.handle.net/1874/1074 

[32] Tamás Szabó, Markus Voelter, Bernd Kolb, Daniel Ratiu, and Bernhard Schaetz. 
2014. Mbeddr: Extensible Languages for Embedded Software Development. Ada 
Lett. 34, 3 (Oct. 2014), 13–16. https://doi.org/10.1145/2692956.2663186 

[33] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer: A 
Syntax-Directed Programming Environment. Commun. ACM 24, 9 (sep 1981), 
563–573. https://doi.org/10.1145/358746.358755 

[34] Tijs van der Storm. 2011. The Rascal Language Workbench. Technical Report SEN-
1111. Centrum Wiskunde & Informatica, Amsterdam. https://ir.cwi.nl/pub/18531 

[35] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert Hirschfeld, 
and Jurgen J. Vinju. 2021. Getting Grammars into Shape for Block-Based Editors. 
In Proceedings of the 14th ACM SIGPLAN International Conference on Software 
Language Engineering (Chicago, IL, USA) (SLE 2021). Association for Computing 
Machinery, New York, NY, USA, 83–98. https://doi.org/10.1145/3486608.3486908 

[36] Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based Syntax 
from Context-Free Grammars. In Proceedings of the 13th ACM SIGPLAN In-
ternational Conference on Software Language Engineering (Virtual, USA) (SLE 
2020). Association for Computing Machinery, New York, NY, USA, 283–295. 
https://doi.org/10.1145/3426425.3426948 

[37] Markus Voelter. 2011. Language and IDE Modularization, Extension and Compo-
sition with MPS, In Generative and Transformational Techniques in Software 
Engineering IV, GTTSE 2011, Ralf Lämmel, João Saraiva, and Joost Visser (Eds.). 
GTTSE 2011 7680, 383–430. https://doi.org/10.1007/978-3-642-35992-7_11 

[38] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian Erdweg, and 
Thorsten Berger. 2016. Efcient Development of Consistent Projectional Editors 
Using Grammar Cells. In Proceedings of the 2016 ACM SIGPLAN International 
Conference on Software Language Engineering (Amsterdam, Netherlands) (SLE 
2016), Tijs van der Storm, Emilie Balland, and Dániel Varró (Eds.). Association 
for Computing Machinery, New York, NY, USA, 28–40. https://doi.org/10.1145/ 
2997364.2997365 

[39] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. 2014. Towards 
User-Friendly Projectional Editors. In Software Language Engineering, Benoît 
Combemale, David J. Pearce, Olivier Barais, and Jurgen J. Vinju (Eds.). Springer 
International Publishing, Cham, 41–61. 

https://doi.org/10.1145/1095034.1095037
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/1124772.1124831
https://www.lamdu.org/
https://doi.org/10.1145/215585.215636
https://doi.org/10.1007/978-3-030-73758-0_7
https://doi.org/10.1080/1049482940040202
https://doi.org/10.1080/1049482940040202
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.7551/mitpress/1020.001.0001
https://doi.org/10.7551/mitpress/1020.001.0001
https://doi.org/10.1016/0164-1212(85)90011-1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.11
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3397537.3397561
https://hdl.handle.net/1874/1074
https://doi.org/10.1145/2692956.2663186
https://doi.org/10.1145/358746.358755
https://ir.cwi.nl/pub/18531
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1145/2997364.2997365

	Abstract
	1 Introduction
	2 Related Work
	2.1 Usability in Structured Editors
	2.2 Generating Structured Editors

	3 Editing in an Automatically Generated Structured Editor
	3.1 Navigation
	3.2 Character Entry
	3.3 Modifying and Correcting Input
	3.4 Deletion

	4 From Grammars to Structured Editors
	4.1 Automatically Importing Grammars
	4.2 User Interface Data Structure
	4.3 System Overview

	5 Evaluation
	5.1 User Study
	5.2 Observations
	5.3 Automatically Retyping Program Subtrees

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References



