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(a) Python matplotlib: a string mapped to

allow choosing from a menu.

(b) A toggle in TypeScript: diagnostics

work in the expressions nested in visual

replacements.

(c) Babylonian Programming in Python:

an example and a probe.

Figure 1. Visual replacements work across languages and integrate with language support to enable use of domain-speci�c

representations (DSRs) in a wide range of use cases.

Abstract

To help developers work at the level of abstraction of their

choice, some editors o�er to replace parts of source code

with domain-speci�c representations (DSRs). Typically, such

replacements are language-speci�c and optimized to lim-

ited use-cases. In this paper, we extend a general-purpose

structured editor with visual replacements, a mechanism to

replace code of any programming language with DSRs. A

visual replacement consists of language-dependent queries

to map arbitrary syntax trees and a language-independent

DSR of di�ering abstraction and interactivity, ranging from

simple images to graphical user interfaces that modify source
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code. Our extension synchronizes source code and DSR au-

tomatically, while ensuring that language support such as

autocompletion and error checking work even inside a re-

placement. We demonstrate the use and applicability of the
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1 Introduction

Developers seek di�erent means to express code depending

on the task at hand. As a tendency, the closer the match be-

tween the task’s domain and their means of expression, the

fewer workarounds that may introduce faults or mismatches

are required to formulate code for the task. Some tasks have

inherent visual properties, such as choosing a color or con-

�guring a visualization. Typically, however, these tasks are

mapped to a textual interface within integrated development

environments, posing a mismatch against a natural formula-

tion in the task domain that would show visual properties.

Within this paper, we refer to widgets as user interface ele-

ments that replace, wrap, or annotate the default view on

source code and instead provide a domain-speci�c repre-

sentation (DSR). This is independent of whether the user is

working with a structured editor or textual source code.

A number of works have demonstrated the possibilities of

editors that augment source code, to maintain the powerful

combination and abstraction mechanisms found in program-

ming languages, with widgets to provide a closer match to a

task’s domain [1, 9, 12, 13, 16]. However, these approaches

are designed for particular languages and often even require

special syntactic extensions, hindering their adoption in ex-

isting programming language ecosystems, particularly with

regards to the language’s tool ecosystem.

In this paper, we introduce a concept of visual replacements

that work across languages andwrap or replace arbitrary syn-

tax trees. In the presence of compatible semantics in targeted

languages, a single visual replacement can even be reused

across these languages with minimal e�ort. A language gains

support through a runtime mapping that informs the visual

replacements how expressions can be evaluated and, for each

visual replacement, a mapping from that language’s syntactic

concepts to the data the replacement needs to construct its

user interface, as shown in Figure 2. Visual replacements are

designed to make use of built-in syntactic constructs to inte-

grate with general-purpose languages without interfering

with their function in their existing ecosystem of tools.

In the following, we will �rst discuss related work to our

concept. We then derive a set of requirements for a visual

replacement concept, before describing the concept itself. We

will then describe case studies of its use using the example

of our reference implementation of visual replacements in

the structured editor Sandblocks [2]. Finally, we discuss its

applicability and limitations, future extensions, and conclude

the paper.

2 Related Work

A number of approaches exist that extend a language with

speci�c types of syntactic elements or annotations to provide

widgets.

Graphite is an implementation of active code comple-

tion [13], which augments autocompletion in IDEs with

widgets de�ned in palettes for speci�c types for the Java

language. Users invoke autocompletion on a type for which

a palette is de�ned to open a widget for the expression’s text

region. After completing an editing task with a widget, the

text region is replaced with the widget’s textual result. A

pattern explored in Graphite is to store additional data that a

widget generates in a comment adjacent to the source code.

Interactive syntax [1] describes a new syntactic element

in the Dr. Racket programming environment that extends

the editor to support widgets. The special syntactic element

denotes both the runtime e�ect of the element and stores

additional data that the editor may need.

Livelits are a mechanism to o�er composable, widgets in

the Hazel programming environment [12]. To use a livelit

widget, programmers type out a reference to a prior livelit

de�nition, which then displays a widget next to the reference.

Unlike the previous two approaches, livelit are designed to

contain nested editors for Hazel expressions that themselves

can contain livelits.

Projectional editors are designed to be able to provide

di�erent projections on a part of a program. The program-

ming environment mbeddr [16] for example allows users

to edit state machines using a widget, or mathematical ex-

pressions using a notation that breaks from the linear layout

imposed by most textual editors. Similarly, the structured ed-

itor Barista [10] allows programmers to de�ne custom views

that compose with other views de�ned in Barista. Both ed-

itors store syntax trees in a custom serialized format that

allows to seamlessly compose languages and store any data

needed by the projections.

Other approaches detect patterns as they exist in regular

source code and show widgets nearby or instead of that

source code. Implementations range from visualizing the

e�ect of the source code to allowing edit operations that are

written back to code.

Examples are most commonly available text editors, such

as those based on the JavaScript editor framework CodeMir-

ror [7]. Through a matching query, developers can for ex-

ample specify that hexadecimal color codes should show a

color picker next to them.

Moonchild [5] demonstrates how widgets can replace re-

gions of source code. For example, a comment containing

markdown syntax is replaced by a rich-text editor that shows

the rendered markdown. Extra data needed for the function

of widgets is stored in comments as well.

3 Requirements

Visual replacements are designed to work across languages

and to integrate well with existing ecosystems: a mechanism

that integrates with and modi�es source code necessarily co-

exists with a variety of other tools. Especially for text-based

languages, a number of tools, such as version control, global

text-based search, and language tooling, for example via the
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Language Server Protocol, have become indispensable in

the work�ows of many programmers. Visual replacements

target the same ecosystem and as such need to follow some

practical constraints to �t in well. We decided on the below

list of requirements after multiple iterations of the design

and alternative approaches, balancing di�erent trade-o�s.

No new syntax. Adding new syntax would require adapt-

ing parsers of all tools that depend on a language’s syntax,

such as compilers and language support. In some ecosys-

tems, such as Racket or JavaScript, extending and modifying

the syntax is comparatively well-supported but even then it

requires all tools to be aware of the syntax extensions.

Graceful degradation. Editors that do not support dis-

playing visual replacements will display a serialized form,

ideally in the host language’s syntax of the visual replace-

ment. Visual replacements should aim to look native to the

conventions of the textual form of the host language to allow

working with their serialized form without damaging it. For

example, when merging changes to the same visual replace-

ment in a version control system, it should be obvious how

parts of the replacement’s data should be reassembled when

a con�ict occurs.

Avoid comments. While comments in textual program-

ming languages would serve well to add arbitrary data, they

are also not considered during error checking or automated

refactoring operations. As visual replacements support nest-

ing expressions, preserving language support within a visual

replacement’s data is an important factor. Additionally, care-

less merging or accidental editing to the serialized format

in a comment would yield errors only once opened in a

programming environment supporting visual replacements,

while use of the host language’s syntax ensures that the ex-

isting language tooling can communicate violation of some

constraints.

Static and dynamic information. Visual replacements

should be able to make use of both static information, found

in the source code’s syntax tree, and dynamic information

obtained from a runtime. To that end, adding support for

visual replacement in a new language should entail �nding

ways of allowing execution of code snippets in a context and

reporting results to the replacement in a serialized form.

Open ceiling. Visual replacements should augment func-

tionality accessible through source code and not block users’

abilities to express complex constructs. For example, while

it may be nice to create a visual replacement that contains

a slider to set some values, ideally that slider could also

be replaced by a variable. When designing visual replace-

ments, authors should thus prefer to nest di�erent visual

replacements rather than create monolithic visual replace-

ments that bundle and hide functionality. Unlike other visual

Figure 2. Visual replacements integrate with the source

code of existing languages. They require the de�nition of

a runtime mapping that exposes an evaluate and a watch

primitive once per language, as well as the de�nition of

a query per language per replacement. The user interface

de�nition of a replacement, the DSR, can be shared across

languages.

approaches, users should always be able to show visual re-

placements as plain source code, as opposed to the DSR.

4 Replacement Mechanism

Source code is at some point in its lifecycle represented as

a tree of syntax nodes, its abstract syntax tree (AST). For

textual languages, this process occurs during parsing. In

structured editing, the source code is edited at the AST-level

directly, skipping parsing.

Our visual replacement concept builds on top a continu-

ously available representation of the AST, as such it bene�ts

from the use of a structured editor. To obtain a structured

editor for arbitrary textual languages, an approach such as

Sandblocks may be used [2], allowing users to generate a

structured editor from a grammar for a textual programming

language. A continuously available syntax tree that is sta-

ble across arbitrary textual edits can be approximated in

text editors through a set of heuristics that match syntactic

constructs based on their locations between edits.

The syntactic elements that a language is composed of

serve di�erent functions: some express runtime behavior,

some assert assumptions or properties on state or data �ow,

some facilitate abstraction. Depending on the aspect a visual

replacement is designed to support, any of these may be

replaced or wrapped with a visual replacement.

4.1 Visual Replacements

Authors of visual replacements work with two data types:

the visual replacement itself and a runtime mapping, if in-

formation from a runtime is required for the replacement,

as illustrated in Figure 2. Conceptually, a visual replacement

is made up of a constructor for the replacement’s user in-

terface, one or many language-dependent matching queries,
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and an optional template with an accompanying keyword

for invocation.

VisualReplacement :=

build: (bindings: Map <string , AST >) => UI

queries: {language: symbol , query: string}

template: {keyword: string , code: string}

For obtaining dynamic information, visual replacements

need a runtime mapping.

RuntimeMapping :=

language: string

watch: (node: AST) => AST

eval: (node: AST) => Object

We will explain the function of the parts of a visual re-

placement in subsection 4.3 and of a runtime mapping in

subsubsection 4.3.5.

4.2 Types of Visual Replacements

We distinguish between di�erent types of visual replace-

ments along three factors, depending on the way they inte-

grate with the syntactic constructs and runtime of a language.

These factors demonstrate the design space for authors of

visual replacements.

First, visual replacements may either be static or dynamic.

A dynamic visual replacement reports runtime information

to the replacement within the editor, which the replacement

thenmaymake use of to display information. A static replace-

ment only displays statically available information, such as

information that can be derived from the syntax tree or ad-

ditional documentation.

Second, visual replacements may either be terminal or non-

terminal. A terminal replacement replaces a subtree and nests

no other syntactic nodes inside it. However, it may contain

text �elds, images or other user interface elements. A non-

terminal replacement also replaces a subtree but nests at least

one syntactic node inside it. Consequently, further visual

replacements may occur within a non-terminal replacement,

if the nested syntactic nodes match another replacement.

Examples for static, terminal visual replacements are sim-

ple data editors, as shown in Figure 3. For example, programs

may be augmented with sliders, checkboxes, or dropdowns

to make editing parts of a program more direct and less re-

liant on a keyboard. This may be particularly bene�cial in a

part of a program that de�nes a static data structure.

Static, non-terminal visual replacements are well-suited,

for example, for dynamic data structures that still have an

inherent visual structure. A state machine object or array

that de�nes a table lend themselves well to be represented

with a visual structure instead of source code but both may

nest arbitrary expressions. For an example from related work,

consider interactive syntax[1], where the representation in

source code of a red-black tree is replaced with a dynamic

graph visualization of a red-black tree. As such, the visual

replacement makes the inherent visual structure of the data

Figure 3. Examples for each combination of static/dynamic

and terminal/non-terminal. Top left: a preview for a plot,

replacing a plt.show() call; top right: a Babylonian probe;

bottom left: an enum with icon previews and a color picker;

bottom right: a comment around a part of a regular expres-

sion.

structure visible but still exposes the potentially non-visual

aspects: expressions calculating or de�ning its data �elds as

expressions in the original language.

Dynamic, terminal visual replacements can be used for

visualizations. A "save to �le" method call may be replaced

in its entirety by view on that �le’s contents.

Dynamic, non-terminal visual replacements are useful to

wrap expressions that are evaluated at runtime and the result

of the evaluation fed back to the programming environment.

This allows modeling an inline probe to visualize the runtime

value of an expression or a memoization replacement.

A third factor concerns the way replacements are stored

and thus also restored after a �le has been closed and re-

opened. Here, visual replacements may either be implict or

explicit. For explicit replacements, the replacement adds a

marker to the AST. This could be an annotation, comment,

or other means to inform the system that the user explicitly

opted to display this AST node as visual replacement. In

contrast to this, implicit visual replacements match against

source code as it would be written without visual replace-

ments in mind. There is still a speci�c rule to �nd whether

the replacement applies here but no traces of the visual re-

placement are stored in the AST, thus also not revealing

whether the user did opt-in to a replacement explicitly.

4.3 Lifecycle of Visual Replacements

The lifecycle of visual replacement can be regarded in sepa-

rate steps. First, some trigger invokes the system to consider

an AST node for replacement. The system then traverses the

list of replacements to match eligible options. A matched

option is then constructed and replaces the AST node. These

steps are visualized in Figure 4. Subsequent edits to the visual
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Figure 4. Lifecycle of a visual replacement from its invoca-

tion to eventual display in the editor.

replacement are synced to the underlying AST. The visual

replacement can interface with the runtime, if needed.

4.3.1 Invoke. Our reference implementation of visual re-

placements supports three means of invoking the replace-

ment mechanism. First, the user selects an AST node and

presses a dedicated, con�gurable shortcut. The system then

moves to the next step for the selected node, trying to locate

a suitable visual replacement as described below. In prac-

tice, this explicit invocation is most often used to invoke

implicit replacements, those without a prior explicit mark-

ing as replacement in the AST. As part of being invoked, the

replacement’s implementation may also choose to rewrite

the AST to add a marker, thus making the visual replacement

explicit.

Second, a replacement may de�ne a template and key-

word that is used to invoke it. As the user begins typing

identi�ers in any syntax node, visual replacements whose

keyword matches the identi�er are suggested to the user for

invocation in an autocompletion menu, as shown in Figure 5.

The provided template is used to instantiate the AST that

the visual replacement will be matching. This functional-

ity is available to both explicit and implicit replacements.

Similarly, authors of visual replacements can de�ne palettes

similar to Scratch’s or Snap’s block palettes [6, 15], contain-

ing template visual replacements that users can place in their

program via drag-and-drop.

Third, as explicit replacements have speci�cally been

marked by the user as such, we invoke explicit replacements

Figure 5. The user has started typing "color" in a Smalltalk

method. The programming environment o�ers both the reg-

ular autocompletion entries from language support tools, as

well as a visual replacement that has "color" declared as its

keyword.

automatically. Here, the system recursively traverses the AST

upon its initial load, as well as during edits to the AST, and

checks whether any visual replacements marked as explicit

would match the given node, as described below.

4.3.2 Match Options. Visual replacements de�ne a query

to match against the structure of a node’s syntax subtree.

Queries in our reference implementation use an extended

form of Tree-sitter’s query mechanism [3].

In the below example, the �rst form in each S-Expression

is used to denote types of AST nodes. Subsequent forms

are used to describe nested children in the tree and their

properties. The equal sign is used tomatch against the textual

contents of the form preceding it. The "@" sign is used to put

a matched node in a binding for later use during construction.

(call_expression

(identifier) =" visualize"

(arguments

(expression) @render

(string) @color))

The example thus matches expressions in source code

such as visualize(random_points(), "red").

4.3.3 Construct. As described in the matching phase, the

query formulates a set of bindings to AST nodes. These

bindings are used during the constructing phase to map from

the AST to a widget. In general, a binding is an access to the

matched AST to construct a user interface and a closure that

de�nes how to map back from the state of the user interface

to the AST.

For example, we may bind the contents of a string to a user

interface element, such as a color picker. During initializa-

tion, we access the string to �nd the color value, interpret it,

and assign it as the picker’s color. For updating, we read the

picker’s current color, serialize it as string, and update the

AST. If a value remains read-only in the widget, the updating

closure can be left empty.

For embedding a bound AST node in our widget, we re-

place the matched node with a placeholder in the original

AST that references the node. We can then add the node
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to our widget instead. In the update closure, we temporar-

ily swap the placeholder and the original node to provide a

complete AST again.

The above two examples of bindings concern a one-to-one

mapping from one source to one destination. The system

also supports sub-matches within containers. For example, if

our replacement binds an array node, we can create a nested

repeat binding that

• speci�es a query to be run inside the array to �nd and

bind existing children,

• a snippet that speci�es a template for the sub-AST

when the user inserts a new element into the array,

and

• a function that maps each child to the desired user

interface within the widget.

In the below snippet, we take the matched array binding,

specify that wewant to query for any children that it contains

that are arrow functions, and speci�cally we extract their

body. We provide a snippet for creating a new element in the

array. And �nally we provide a closure where each matched

child is turned into a user interface.

self

createRepeatBindingFor: '@array '

childQuery: '(arrow_function body: (_) @root)'

new: '() => _expr '

build: [: bindings |

self addMorph: (bindings at: '@root ')]

4.3.4 Edit and Sync. During construction, we establish a

mapping between the AST and the user interface. Edit opera-

tions by the user are �rst only re�ected in the user interface

of the visual replacement. Whenever the AST is traversed,

in particular for purposes of turning the AST back to text

for saving textual languages, we run the update closures of

all bindings. As such, from the point of view of an outside

observer such as tools, the mapping is always up-to-date.

As embedded nodes are moved between their original

place in the AST and the visual replacement’s user interface

between update calls, information that attaches to the node,

is moved with it. So, if an error-checking tool attaches an

indicator to an AST node, the indicator is also shown in the

embedded node in the visual replacement. Other tools that

rely on the context of an entire module, such as semantic

autocompletion, continue to work in the same manner, as,

from the perspective of the tool, even the embedded code is

still inside the AST.

4.3.5 Runtime. As described above, visual replacements

do not exist as a separate concept from the point of view of

external tools. These also include the compiler or runtime of

the program containing visual replacements. Instead, they

appear as regular code, sometimes adapted to serve speci�c

needs of a replacement, such as a marker.

One particular advantage of the visual replacement mech-

anism is, however, its ability to handle instrumentation code.

For example, to implement a watch that reports the value of a

wrapped expression back to the programming environment,

the expression can be wrapped in a marker such as vrReport(

expression=3 + 5, id=32123), where the vrReport function is an

injected function that sends a serialized form of the evaluated

result of the given expression, along with an id to uniquely

identify that watch, to the programming environment, then

returns the evaluated result.

The means to communicate between the runtime and pro-

gramming environment depend on the runtime’s constraints.

In our implementation, runtimes that execute directly on

top of the user’s operating system use TCP connections. The

programming environment hosting the visual replacement

opens a TCP socket on a random port, invokes the runtime

while passing the chosen port as an environment variable,

and the injected code sends a JSON object to the waiting

socket at the indicated port. For web applications, we use a

HTTP request to an endpoint opened by the programming

environment while we listen to the runtime’s activity.

While the instrumented code is necessarily jarring to look

at, visual replacements will hide all but the parts relevant

to the user, which would typically leave a visualization of

the runtime value and the expression to be evaluated, if it

is to remain editable by the user. Unlike other means of

instrumentation, this approach requires no modi�cations to

the runtime. It is, however, also limited to work with the

code where visual replacements have been used.

4.4 Language-agnostic Visual Replacements

While visual replacements, once created, only match for

language constructs in the language its query is written

for as described in subsubsection 4.3.2, adding support for

further languages is simple. Two parts are necessary for a

visual replacement to work with a given language.

First, the visual replacement’s query needs to be adapted

to the syntax of every new language. In the ideal case, dif-

ferences between the languages in the ways bindings are

extracted can be handled in the query directly. For example,

in some languages the string node is terminal, in others may

include multiple string_content nodes. If a more complicated

extraction logic is required, authors can add instructions to

manually perform a translation step to unify the binding’s

format, for example in the form of a pre- and post-processing

step to the access and update part of a binding as described

in subsubsection 4.3.3.

Second, users need to de�ne a language runtime mapping

that informs the programming environment how programs

can be executed. In particular, the runtime mapping should

de�ne two mechanisms: an evaluate-in-scope mechanism that

allows the environment to pass a source code string and

an AST node, where the runtime mapping tries to invoke

its runtime with the given code as close to the given node
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as possible; and a watch mechanism that replaces a given

expression with an expression that still returns the same

value and importantly only evaluates it once, but also reports

the value to the programming environment, as described in

subsubsection 4.3.5.

Visual replacements that are written for a speci�c API, or

aspects where semantics that concern the visual mapping

di�er between languages, a port to another language may

not make sense or require more e�ort.

5 Case Studies

A number of practical considerations arise when putting

the outlined visual replacement concept into practice. In the

following, we describe case studies of diverse uses of visual

replacements to illustrate these considerations.

5.1 Matplotlib

Data visualization is a crucial task in the �eld of data sci-

ence [4]. Python is one of the primary languages used by

data scientists [4]. In this context, matplotlib, developed by

John Hunter in 2007, stands out as one of the oldest and

most popular library for data visualization in the Python

ecosystem [8].

Several approaches have been explored to enhance the

integration of plotting libraries with programming environ-

ments. For example, mage facilitates binding code to corre-

sponding custom user interface widgets in a Jupyter note-

book extension [9]. The respective widget allows changing

the type of the plot, switching between pre-de�ned parame-

ters, and viewing the resulting plot immediately in the user

interface. However, the authors acknowledge a reduced ex-

pressiveness of their widgets system compared to writing

code directly. In B2 [17], a two-way feedback binding mecha-

nism enables interaction with the visualization to update the

underlying code and vice versa. In this way, the gap between

visual and textual programming is bridged, speci�cally in

terms of layout, semantics, and temporal aspects; layout re-

ferring to the mismatch of traditional one-dimensional code

layouts vs. multi-dimensional visualization layouts, seman-

tics referring to the incompatibility of writing code and inter-

acting with visualizations, and temporal aspects referring to

the lack of persistence when interacting with visualizations

compared to writing code.

As opposed to the other discussed approaches that require

explicit bindings between code and user interface, our imple-

mentation of a bridge between visual and textual program-

ming for data visualizations uses implicit visual replacements

exclusively. Every encountered API call to matplotlib is auto-

matically replaced with a visual replacement. Consequently,

two challenges arise: �rst, how can we map large, relevant

parts of the API surface with minimal e�ort, and two, how

can visual replacements provide useful feedback to authors

of visualizations across the varied functions of API calls of

matplotlib?

For the �rst challenge, our approach leverages the ex-

tensive documentation provided by matplotlib to guide the

e�ort to make the API more discoverable and provide better

feedback. Within this context, a reusable layer of generic

visual replacements on top of the fundamental functionality

as described in section 4 emerged. For the most basic re-

placements, we extracted thumbnails for common plot types

from already existing documentation1 and displayed those

adjacent to the code text to provide visual anchors in the

otherwise uniform looking source code. The corresponding

visual replacement makes no assumptions concerning pro-

gramming language or API and can be reused in any place

small illustrations are appropriate.

Similarly, a set of visual replacements mimicking widgets

as they would appear in a form emerged, which replace liter-

als and rewrite the source code when changed. For parameter

values that are discrete and limited, such as typical enums,

users select options via dropdown menus and may even

bene�t from an icon for each option, again extracted from

documentation in matplotlib’s case as shown in Figure 1a.

Booleans become checkboxes, colors receive a color picker,

or numbers can be turned to spinboxes or sliders.

Some parts of matplotlib’s API we deemed both non-

generalizable and di�cult to understand without a domain-

speci�c view. One such example is the dashes parameter of

the plot function to create a dashed line. It sets the distances

between lines and gaps through a tuple of values. To support

user’s understanding and provide immediate feedback on

the outcome of their con�guration, we show a dialog when

the user begins to edit any value that previews the resulting

dashed line. Extending that dialog with direct manipulation

of line distances would also be feasible.

Better means for exploring the possibility space is a ma-

jor advantage of graphical user interfaces, which both mage

and B2 incorporated, such that users can explore the param-

eter space by simply clicking on areas of interest. In our

implementation, we made use of the sidebar known from

block-based editors to demonstrate to users what options are

at their disposal. This sidebar takes into account the cursor

position, e.g., if the cursor is within the parentheses of the

plot function, it brings the relevant parameters to the top,

followed by general matplotlib functions.

Importantly, our design does not impose a ceiling in terms

of the possibility space that users can interact with. Only

parts of the matplotlib API are mapped to visual replace-

ments but they are embedded within regular Python code.

Consequently, users can always make use of the means of

combination and abstraction o�ered by Python, or call func-

tions that our implementation currently does not consider.

1h�ps://matplotlib.org/cheatsheets (last accessed: July 2023)
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Figure 6. Use case scenario: (1) the user opens a Python �le,

(2) the user adds an example and a probe, (3) when saving, the

visual replacements for the example and probe are written

to the �le and the editor automatically runs the example,

(4) the editor generates a Python script that triggers the

function that holds the example, (5) during the execution, the

vrReport function is executed, which reports the result of the

expression 5 back to the editor. To distinguish between values

reported for di�erent examples, the editor injects a di�erent

PORT environment variable for each run of an example that

vrReport uses.

5.2 Babylonian Programming

Babylonian Programming [14] is an approach to example-

based live programming. It adds examples to language con-

structs that provide entrypoints for execution closer to the

relevant code than running the entire program. Users can add

probes to show runtime values, aggregated by the example

during whose execution the value was reported.

We describe here an implementation of its core elements,

examples and probes, using the visual replacement system.

An example in our implementation annotates a function and

consists of three parts: a name, saved as a string, an em-

bedded expression that returns an array of arguments to be

passed to the annotated function, and an optional embedded

expression that constructs an instance of an object, if the

function is a method of a class.

For most languages, we store these three parts in a dictio-

nary literal or, alternatively, an array. Both arguments and

constructor are wrapped in a closure that is never evaluated

as part of the main program. For Python, the serialized form

in code of an example with the data it needs to store looks

as follows:

# Example as stored source code

{

"_sb_example ": "example 1",

"args": lambda: [2, 3],

"self": lambda: MyObject ()

}

# Query to match examples

(dictionary

(pair

key: (string) ="args"

value: (lambda (_) @arguments))

(pair

key: (string) =" _sb_example"

value: (string) @name))

The query looks for dictionary literals containing the

magic "_sb_example" key to identify the explicit visual replace-

ment. An equivalent query for JavaScript is almost identical,

except for the closure and constructor syntax:

# Example as stored source code

{

"_sb_example ": "example 1",

"args": () => [2, 3],

"self": () => new MyObject ()

}

# Query to match examples

(object

(pair

key: (string (string_fragment) ="args")

value: (arrow_function (_) @arguments))

(pair

key: (string (string_fragment) =" _sb_example ")

value: (string (string_fragment) @name)))

The implementation of Babylonian Programming using

visual replacements is illustrated in Figure 6. Probes are

implemented using the watch mechanism described in sub-

section 4.4. Examples trigger execution whenever the open

�le is saved in the programming environment. The example

will then evaluate a snippet of code made up of the invoca-

tion of the function call with the con�gured arguments and

object. While the example is executing, all values reported by

watches are collected and tagged for the executing example.

5.3 Regular Expressions

Regular expressions that exceed a certain level of complexity

are often considered challenging to understand, especially

by a person that was not its original author, due to its terse

syntax. In response to that, tools such as regex101.com add

syntax highlighting, live feedback, and explanations of syn-

tax elements and their e�ect.

In this case study, we describe a "verbose mode" for regular

expressions, where each part of an expression’s syntax can

be given a more or less terse appearance as seen in Figure 7.

In addition, special no-op markers are added that allow users
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Figure 7. Verbose mode for regular expressions, embedded

in JavaScript. Elements such as + are replaced with a verbose

descriptor "at least once" and feature a checkbox to toggle

their lazy mode. A collapsible comment annotates the �rst

part of the regex.

to add comments to parts of a regex or mark it for reporting

live-feedback.

Visual replacements help in another aspect: regular ex-

pressions typically exist as a language nested within another

language. Through the replacement mechanism, a regular

expression speci�ed as a string in Python can �rst be re-

placed with a structured editor for the same regex. Then,

each syntactic part of that regex can be replaced with its

verbose pendant.

As most regular expressions do not have support for a

comment syntax, our design o�ers two di�erent solutions

to persist information that is not supposed to be part of a

match: information can either be placed next to the regular

expression, indicating character o�sets for the region they

apply to, or embedded in a non-capturing group that should

never appear, in the form of (?:(?:annotation){0}(?:pattern)

). Here, the pattern is the part of the regex we would like

to annotate and the annotation is base64-encoded arbitrary

data that we want to store related to the pattern, for example

a comment or a JSON object. While storing annotations

in the encoded format compromises readability while in

editors without visual replacement support, it also ensures

that the regex remains self-contained and for example no

fragile means of annotating, such as indices, are used.

6 Discussion

In this section, we discuss our approach of visual replace-

ments concerning our requirements and their applicability

in a cross-language context.

6.1 Requirements

In the following, we will consider the requirements estab-

lished in section 3 and discuss each, considering our ap-

proach and insights gained from our case studies.

No new syntax. As evident from the design described in

section 4, visual replacements match against the existing syn-

tax tree of a language. Implicit visual replacements, by their

de�nition do not require additional information. Explicit vi-

sual replacements make use of language speci�c means to

annotate the AST with the means provided by the language.

Notably, as demonstrated by the regular expressions case

study, some languages do not o�er any means to annotate

the AST. Here, choosing a workaround that compromises

readability or a stando� markup option, storing annotations

next to the syntax tree may be the only options for authors.

The main advantage to be gained from not adding new

syntax is to keep existing tool support working. While this

does indeed work, linters and similar tools may report stored

expressions and other generated code speci�c to a visual

replacement as potential mistakes. While in an editor with

support for visual replacements we can easily isolate and

hide these warnings, programmers in other programming en-

vironments may perceive these as annoying when working

in a code base with visual replacements.

Graceful degradation. Editors that do not support visual

replacements should still o�er a presentable representation

to users. As seen in the Babylonian Programming case study,

little boilerplate is added around the essential information:

the expressions that make up the example. Dictionary keys

replace labels in the user interface, making the association

clear. However, again, some visual replacements may appear

jarring or distracting when seen in source code, for example

the pattern to denote an explicit slider [3.14, "slider"][0]

used for some languages in our implementation. As such, we

may have ensured that users outside an editor supporting

visual replacements can understand what the visual replace-

ment is supposed to mean and make an e�ort to preserve its

structure during merging operations; however, they would

tend not to look natural.

Avoid comments. While visual replacements can make

use of comments, for the previously mentioned reasons of

gaining some assurances in terms of syntactic structures

from the host language, designers of visual replacements are

encouraged and able to store information needed for their

replacement as proper part of the syntax tree.

Static and dynamic information. Both static and dy-

namic information is available to visual replacements. Our

case studies demonstrate helpful uses of both. We will dis-

cuss the complexity from their implementation below in

subsection 6.2.

Open ceiling. As discussed in the matplotlib use case,

which seeks to make a domain mapping that is expressed

exclusively in code more accessible through visual elements,

the elements only augment source code. Users can at any

point choose to instead express logic using code, or mix

visual replacements with code. The possibility to nest ex-

pressions within visual replacements allows designers of

replacements great �exibility for their use case. Coupled

with a watch, even a replacement on a dynamic expressions
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rather than a literal, can provide a rich domain-speci�c dis-

play. Additionally, as visual replacementsmaintain a bijective

mapping to source code, users can choose to work on source

code instead of the DSR.

6.2 Cross-language Visual Replacement

In section 1, we described that visual replacements should

work across di�erent languages with minimal e�ort. The

Babylonian Programming case study illustrates for a non-

trivial use case to what extent this is possible.

Runtime: watch mechanism. In the platforms we tar-

geted in our reference implementation (GDScript, Python,

node.js with JavaScript and TypeScript, JavaScript on the

web, Squeak/Smalltalk), the watch mechanism was compar-

atively simple to implement. Static languages that have very

little run-time or compile-time re�ection, such as C, are con-

siderably more di�cult targets, as general-purpose serial-

ization as needed to report values back to the programming

environment is not readily available within the language.

Here, visual replacements may need to inform a watch about

speci�c properties of the expression they are nesting, such

that more sophisticated code generation can take place.

Runtime: execute context. In our reference implementa-

tion, executing an expression can be considered a best-e�ort,

depending on the language. For Squeak/Smalltalk, where the

runtime is continuously alive, even a highly speci�c context

can be easily obtained. Contrarily, other languages require

us to produce a �le that imports relevant code or just run

the entire program and can thus only approximate the e�ect

of an isolated evaluation.

Matching the syntax tree. For a majority of visual re-

placements we have implemented, adding support for a new

language did indeed only require adapting the matching

query to the names of the language construct in that lan-

guage. Common patterns that visual replacements use had

to be rediscovered once per language, such as storing addi-

tional data in the regular expression case study, or storing

expressions that should never be evaluated in closures.

6.3 Future Work and Conclusion

Visual replacements form a basic, cross-language, general-

purpose mechanism for replacing source code with other

representations while maintaining a tight integration with

the syntax tree and language tools.

To better support cross-language visual replacements, fu-

ture work could build another layer on top of the modi�ed

Tree-sitter queries described in subsubsection 4.3.2. Here, as-

pects such as string content, function call, or closure could be

formulated as speci�c Tree-sitter query once and then reused

in a compatible, generalized context, such that queries only

have to be written once per language. A similar approach

has been demonstrated by a Babylonian Programming im-

plementation on top of GraalVM [11].

As of right now, invocation of visual replacements always

occurs through statically available information. Instead, it

could be possible to use dynamic information from the run-

time to invoke visual replacements, for example to attach to

AST nodes and explain type errors that occurred at runtime.

Finally, when further extending the use cases, we build

up layers of reusable functionality on top of the visual re-

placement mechanism. The matplotlib case study shows how

parts of its implementation, form widgets, can be designed in

a way that is reusable across languages. In the context of the

same case study, automatic derivation of visual replacements

from documentation could pave the way for wide-spread

availability of tightly integrated, rich inline documentation.
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