The Ignite Distributed Collaborative Visualization System

Sushil Bhojwani
University of Victoria
sushilsrk@gmail.com
Robert Krahn
CDG, SAP
robertkrahn@gmail.com
Marko Roder
CDG, SAP

markoroeder@cdglabs.org

Matt Hemmings

mhemming@uvic.ca
David Lary
UT Dallas
dlary@utdallas.edu
Yvonne Coady

ycoady@uvic.ca

University of Victoria
danhhingalls@gmail.com

University of Victoria

Figure 1: Application Screenshot

Collaboration around large data sets involves interactive
visualizations. Both large data sets and complex visualiza-
tion systems tax the resources of thin clients. Moreover, col-
laboration requires the transmission of information between
widely-separated colleagues. For this reason, distributed vi-
sualization systems have focussed on fat client systems in-
terconnected by very high-performance networks. Systems
such as the OptIPuter/OptIPortal[3] are very capable, but
are not ubiquitous desktop systems. An OptIPortal costs
tens of thousands; a gigabit connection to a national re-
search network is thousands/month. In this abstract we
show much of this functionality can be brought to the hand-
held, thanks to the emergence of the Distributed Cloud and
the capabilities of HTML5 and the Lively Web.

An interactive application requires a response within 150
ms[6]. Offering an application on a ubiquitous client re-
quires that data and processing take place on a server, and
any nontrivial network latency makes it impossible to meet
this deadline. The Distributed Cloud becomes an enabler of
a new class of application: rich collaboration around large
data sets using ubiquitous client devices.

To demonstrate this, we developed an interactive pollu-
tion visualizer, with servers distributed across the GENI in-
frasucture[2], showing pollution values for the entire world
on a month-by-month basis over a period of 20 years, on 10-,
25-, 50-, and 100- km? grids. The data was calculated from

Copyright is held by author/owner(s).

Performance Evaluation Review, Vol. 43, No. 3, December 2015

Jens Lincke
Hasso Plattner Institute
Jens.Lincke@hpi.de
Glenn Ricart
US Ignite

glenn.ricart@Qus-ignite.org

Dan Ingalls
CDG, SAP

Rick McGeer
CDG/US Ignite
rick@mecgeer.com

Ulrike Stege

University of Victoria

ustege@uvic.ca

a wide variety of data sources using machine learning[4, 5].
A screenshot of the application appears in Figure 1. Pollu-
tion values are displayed in each grid square by a color, with
red indicating high intensity. Users of the system are able
to manipulate the view using DVR-like controls and map
pan and zoom. A unique feature of the application is that
multiple users may be looking at this visualization, even on
different servers, and jointly manipulating it. The current
users are shown in the Participant box in the right side of
the screen. When a user manipulates his copy of the map,
it changes for all participants. The application becomes an
augmented conversation.

With a 150 ms time limit from request to response, the
demand on the network is significant. Drawing on the map
is a four-step process: the user requests data from the server,
the server searches through its database, the server returns
the data to the client, and the client draws the points on
the map. 30,000 points is a reasonable upper bound on the
number of points to be drawn, and experiments determined
that modern browsers could draw 30,000 points in 100 ms on
a commodity laptop or tablet. This left 50 ms for the other
three steps. A tailor-made database with caching could fetch
the data in 20 ms.

The only variability is in the network, and this is governed
by server/client latency and bandwidth. Our goal was to
determine what envelope of network round-trip times and
bandwidth would permit us to achieve our goal of a com-
plete referesh within 150 milliseconds. Our wire protocol
had about 27 bytes/point, so 30,000 points are roughly 6.4
megabits. We assumed 1500 byte packets and accelerated
slowstart (10-packet initial send). We tested four scenarios,
as shown below.

The Campus scenario assumed a server on the same cam-
pus as the client, with millisecond latency and gigabit band-
width. City assumed a server within 100 km or so, but not
resident on the same campus. Continent assumed an EC-2
like deployment, with a few POPs per continent. World as-
sumes a single POP for the entire globe. Our assumptions
were biased towards “Classic Cloud” (Continent and World)
deployments. We made a conservative bandwidth assump-
tion for the Campus and generous bandwidth assumptions
for the Continent and World scenarios.

The results are shown in Table 1. Only Campus and City
scenarios achieved a network time of 30 ms (35 ms for City).

45

Scenario | Latency | Bandwidth | Request | Response
Campus 1 ms 1 Gb/s 1 ms 8 ms
City 5 ms 1 Gb/s 5 ms 30 ms
Continent | 50 ms 100 Mb/s 50ms 30ms
Central 250 ms | 100 Mb/s 250ms 1500ms

Table 1: Request and Response Times for Scenarios

We assumed TCP as a transport layer, no loss, and an ac-
celerated slowstart with a 10-packet initial burst. There was
no way to achieve design goals without deployments at the
City or Campus level.

This analysis sufficed to demonstrate the indispensability
of the Distributed Cloud for this application. To recapit-
ulate, simple protocol analysis showed that interactive re-
sponse time could not be achieved unless a data server was
within about 5 ms of the client. A millisecond is roughly
200 km in fiber, so this gives a radius of about 1000 km in
straight-line distance. In practice, straight-line distance is
a loose lower bound on latency, so a rough guide is about
500 km, or a minimum of 32 POPs across North America
for full coverage.

The Ignite Collaborative Visualization System consists of
two major components:

1. The Ignite Application Engine, which will be based on
the GENI Experiment Engine[l], which offers deploy-
ment of applications across the GENI infrastructure,
and leverages the commercial ecosystem of lightweight
virtualization environments. Specifically, the GEE of-
fers a platform for the deployment of lightweight con-
tainers across the GENI infrastructure using Docker.

2. The Lively Web system developed at the Hasso-
Plattner Institute, the Communications Design Group
at SAP America, and the University of Victoria.

We used the Application Engine to distribute Docker con-
tainers with our application across the wide area. In our
prototype demo we used GENI Virtual Machines due to
temporary restrictions on disk size for Docker containers on
the GENI Experiment Engine, which will be our deployment
vehicle of choice going forward.

The Lively Web is an integrated environment for uni-
fied client- and server-side development of web applications,
with an integrated client-server and peer-peer messaging
system. It fully abstracts HTML and CSS into a graphi-
cal abstraction based on the Morphic system introduced in
Self and deployed in Squeak and Scratch. Development of
client-side applications is done by a combination of man-
ual drag-and-drop placement and configuration of Morphs,
and Javascript programming. Lively integrates Wiki func-
tionality, so deploying the client side of the application is
simply a file save on the Wiki server. Lively also comes
with a pluggable node.js server programmed from within
the browser, so server-side programming is done through
the same pane of glass. Lively integrates database servers,
and a WebDAV filesystem interface. Lively offers a sophisti-
cated client-server and peer-peer messaging system based on
WebSockets, which can be used to invoke Javascript func-
tions remotely: this “Lively2Lively” system forms the basis
of our unique remote-control architecture.

The application itself is simply a Lively web page. Data
is served from the local server, which employs a quad-tree

46

search across an on-disk database; each leaf of the quad-
tree is stored as a separate file. The 100-km grid leaf cells
are kept permanently in memory to provide rapid access to
coarse data. Omnce a leaf cell at any resolution is read, it
is cached in memory; the cache is flushed when the server
approaches a pre-set virtual memory limit.

Messaging is based on Lively2Lively. The application page
declares a local map drawing service, and registers itself as
a conversation participant to a centralized server. On each
map update, it broadcasts an update message to other par-
ticipants, with Lively2Lively handling inter-server message
delivery. On receipt of an update message, the page requests
data from the local server corresponding to the map viewbox
contained in the message, recenters the map to that view-
box, and then draws the points on receipt from the server.
The workflow (and the perceived latency) is thus identical
from a remote update and a Ul event. A user can’t distin-
guish latency from a remote participant without out-of-band
communication. Though there is speed-of-light latency be-
tween participants, the time between the notification to a
user that a remote participant has changed the map and its
change is within the 150 ms bound.

The system was a major International Demonstrator in
the plenary session at the SmartFuture2015 event, with par-
ticipants in Washington, Tokyo, San Francisco, Victoria,
Canada, Potsdam, Germany, and Ghent, Belgium. Partici-
pants used a large number of devices in the demonstration,
including an Android phone and iPhone, a Chromebook, an
iPad, and several laptop systems. All devices performed to
the 150 ms bound and all participants saw the same display.

This work was partially supported by the GENI Project
Office under contract 1957, by SAP America and by MI-
TACS. The authors wish to thank the staff at the GENI
project office and the participants in the demonstrator.

1. REFERENCES

[1] A. Bavier, J. Chen, J. Mambretti, R. McGeer,
S. McGeer, J. Nelson, P. O’Connell, G. Ricart,
S. Tredger, and Y. Coady. The geni experiment engine.
In Teletraffic Congress (ITC), 2014 26th International,
pages 1-6, Sept 2014.

[2] M. Berman, J. S. Chase, L. Landweber, A. Nakao,

M. Ott, D. Raychaudhuri, R. Ricci, and 1. Seskar. Geni:
A federated testbed for innovative network
experiments. Computer Networks, 61(0):5 — 23, 2014.
Special issue on Future Internet Testbeds - Part 1.

[3] T. A. DeFanti et al. The optiportal, a scalable
visualization, storage, and computing interface device
for the optiputer. Future Generation Computer
Systems, 25(2):114 — 123, 2009.

[4] D. J. Lary, F. S. Faruque, N. Malakar, A. Moore,

B. Roscoe, Z. L. Adams, and Y. Eggelston. Estimating
the global abundance of ground level presence of
particulate matter (pm2. 5). Geospatial health,
8(3):611-630, 2014.

[5] D. J. Lary, T. Lary, and B. Sattler. Using machine
learning to estimate global pm2.5 for environmental
health studies. Environmental Health Insights, 1(doi:
10.4137/EHI.S15664):41-52, 2015.

[6] N. Tolia, D. G. Andersen, and M. Satyanarayanan.
Quantifying interactive user experience on thin clients.
Computer, 39(3):46-52, 2006.

Performance Evaluation Review, Vol. 43, No. 3, December 2015

