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Abstract— A Sense/Compute/Control (SCC) application is
one that interacts with the physical environment. Such ap-
plications are pervasive in domains such as building automa-
tion, assisted living, and autonomic computing. Developing an
SCC application is complex because the implementation must
address both the interaction with the environment and the
application logic, because any evolution in the environment
must be reflected in the implementation of the application,
and because correctness is essential, as effects on the physical
environment can have irreversible consequences.

The SCC architectural pattern and the DiaSpec domain-
specific design language propose a framework to guide the
design of such applications. From a design description in
DiaSpec, the DiaSpec compiler is capable of generating a
programming framework that guides the developer in imple-
menting the design and that provides runtime support. In this
paper, we report on an experiment using DiaSpec (both the
design language and compiler) to develop a standard robotics
application. We discuss the benefits and problems of using
DiaSpec in a robotics setting and present some changes that
would make DiaSpec a better framework in this setting.

I. INTRODUCTION

A Sense/Compute/Control (SCC) application is one that
interacts with the environment [17]. The SCC architectural
pattern guides the description of SCC applications and in-
volves four kinds of components, organized into layers [6],
[10]: (1) sensors at the bottom, which obtain information
about the environment; (2) then context operators, which
process this information; (3) then control operators, which
use this refined information to control (4) actuators at
the top, which finally impact the environment. A robotics
application is a kind of SCC application where the environ-
ment is composed of a robot (sensors/actuators/body, control
architecture, etc) and the robot’s neighborhood (the walls,
ground, people, etc) [15]. As noticed by Taylor et al. [17],
the Sense/Plan/Act architecture [15], widely used in robotics,
closely resembles the SCC architectural pattern.

DiaSpec is a domain-specific design language dedicated
to describing SCC applications [6], [7]. From such a design
description, the DiaSpec compiler produces a dedicated
Java programming framework that is both prescriptive and
restrictive: it is prescriptive in the sense that it guides the
developer, and it is restrictive in the sense that it limits the
developer to what the design description allows. By separat-
ing application logic (implemented by the developers) and
runtime support (generated in the programming framework),
DiaSpec facilitates the design, implementation and evolution
of SCC applications.

Contributions

Our contributions are as follows:
• A report on an experiment of designing and imple-

menting a standard robotics application in the SCC
architectural pattern with the DiaSpec domain-specific
design language and framework (Sections II and III).
This report includes detailed instructions and guidelines
to allow further experiments.

• A discussion of the benefits and problems of using
DiaSpec in a robotics setting (Section IV). This discus-
sion includes a list of changes to DiaSpec that would
make it a better framework for developing new robotics
applications.

We finally highlight some related works and conclude in
sections V and VI.

II. DESIGNING A ROBOTICS APPLICATION

In this section we first explain how to decompose a
robotics application in DiaSpec component types. Then we
present a case study that we use as an example of how to
describe a robotics application with DiaSpec.

In the rest of this paper we are going to take ROS1 as
the underlying middleware for our case study. We believe it
is a good choice as ROS is becoming a standard within the
robotics community. It is important to note however that our
approach and DiaSpec are completely independent of any
middleware.

A. Decomposing

Designing an application with DiaSpec requires a decom-
position in layers. Each layer corresponds to a separate type
of component:

• A sensor sends information sensed from the environ-
ment to the context operator layer through data sources.
A sensor can both push data to context operators and
respond to context operator requests. We use the term
“sensor” both for entities that actively retrieve informa-
tion from the environment, such as system probes, and
entities that store information previously collected from
the environment, such as structured information coming
from the middleware.

• A context operator refines (aggregates and interprets)
the information given by the sensors. Context operators

1http://www.ros.org/wiki/

http://www.ros.org/wiki/


can push data to other context operators and to con-
trol operators. Context operators can also respond to
requests from parent context operators.

• A control operator transforms the information given by
the context operators into orders for the actuators.

• An actuator triggers actions on the environment.
The following details the steps to follow in order to de-

compose a robotics application into these component types.
Reusing existing components: In the presence of a

previous application developed with DiaSpec, it is possible
and advisable to reuse as much components as possible.
Depending on the amount of reused components, this can
have a huge impact on the application of the other steps.

Listing capabilities: Each robot comes with its own set
of capabilities (e.g., sensing motion and projecting light).
These capabilities should be mapped to sensor sources and
actuator actions. Related sources and actions should then
be grouped inside entity classes (e.g., a camera providing
a picture source and zooming action). Beside sources and
actions, an entity class may also have attributes to charac-
terize its instances (e.g., resolution, accuracy and status). In
the presence of a high-level middleware (such as ROS), it
can be useful to also map capabilities of the middleware
into sources and actions (e.g., a mapping or a localization
capability).

Identifying main context operators: The next step of
the decomposition in components is the identification of
the main high-level pieces of information required by the
application. These pieces of information are represented
as context operators and directly used as input to control
operators

Decomposing into lower-level pieces: Then, lower-level
context operators must be identified to act as input sources
for the higher-level ones. This decomposition is typically
done in several steps, each step slightly lowering the level of
previously identified context operators. This decomposition
ends when each identified context operator can directly take
its input from a set of sensor sources.

Identifying control operators: From the high-level con-
text operators, it is then necessary to derive a set of control
operators that are going to send orders to actuators. Because
the code of a control operator can not be reused in another
part of the application, it is important that this code is as
simple as possible. If there is opportunity for reuse, the code
should be moved to a new context operator.

Identifying data types: While proceeding with the above
steps, it is also necessary to define various data types. These
types are used to describe entity sources, context operators,
and parameters of actuator actions. A data type is either
primitive (e.g., integer, boolean and float), an enumeration
of names (e.g., a luminosity can either be low, normal
or high), or a structure (e.g., a coordinate with x and y
fields). An important question arises in the presence of a
high-level middleware (such as ROS): should the types of
the application be the types provided by the middleware
or should the application define new types. The former
solution is easier to use whereas the latter provides more

Fig. 1. The case study decomposed into the different type of components
of DiaSpec

decoupling. A general principle is to provide new types
when their transcription in DiaSpec is straightforward (e.g.,
a coordinate) and to reuse the middleware types otherwise
(e.g., ROS defines a “twist” data type that is complex enough
to not be reimplemented).

B. Case Study

As a running example, we present an application that is
typical of the robotics domain. In this application, a robot
evolves in an unknown environment and has two modes:
random and exploration. In the random mode, the robot
goes straight and when an obstacle is close enough turns
before going straight again. In the exploration mode, the
robot goes to unvisited locations with the goal to visit as
much as possible from the neighborhood. The current mode
can be changed anytime by an operator through a graphical
interface. In both modes, the robot turns on an embedded
projector and takes pictures when it is in a zone with
obstacles.

Let us now discuss the above steps in the context of this
case study (Figure 1 represents the result).

Reusing existing components: We assume no previous
DiaSpec application and thus no DiaSpec component to
reuse.

Listing capabilities: Our robot comes with a range-
finder type laser scanner, a light projector, a camera, and
a set of wheels. We are reusing the exploration capability
developed by the Bosch robotics research group.2 This
capability is based on a well-known frontier-based explo-
ration algorithm [18]. In this algorithm the exploration is
composed of two steps: a motion toward a location and a new
observation of the environment at this location. The location
is chosen among a set of candidate locations on the frontier
between explored and unexplored space. This capability is

2http://www.ros.org/wiki/explore
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exactly what we need for the robot’s exploration mode. From
all these capabilities, we identify:

• a LaserScan entity class with a ranges source
providing laser ranges from the sensor which can be
deactivated when the robot is in exploration mode;3

• A ModeSelector entity that provides a graphical
interface for the operator to choose the robot’s current
mode.

• an Exploration entity that provides a source of
twists for the robot;

• a Light and Camera entities that respectively take
pictures and enlighten the neighborhood on request;

• a Wheel entity that can turn or roll on request;
Identifying main context operators: The most important

activity of our robot is to move. Therefore we introduce a
Motion context operator that produces a twist, representing
the robot’s motion. Because our robot takes pictures and
turns on its projector when it is in a zone with obstacles,
we introduce an ObstacleZone context operator that indi-
cates whether or not some obstacles are in the neighborhood.

Decomposing into lower-level pieces: The Motion
context operator produces a twist based on which mode
is currently selected and on the twist values coming from
both modes. The currently selected mode is directly provided
by the ModeSelector entity. We introduce a Random-
Motion context operator that produces random twists. The
twist for the exploration mode is directly provided by
the Exploration entity. Both the ObstacleZone and
RandomMotion context operators need the information
about nearby obstacles. We thus introduce the Obstacle-
Detection context operator to indicate the proximity of
an obstacle.

Identifying control operators: The Motion-
Controller control operator takes information from
the Motion context operator and transmit this information
to the Wheel entity. The ObstacleManager control
operator takes information from the ObstacleZone
context operator and triggers the light and takes a picture
with the camera.

Identifying data types: We have already seen that our
application uses the notion of twist to indicate motion. A
twist can be defined as a pair of vector which represent
the linear and angular velocity. The robot current mode is
represented as an enumeration of the RANDOM and EX-
PLORATION names. The ObstacleDetection context
operator provides an Obstacle data type containing both
a boolean to indicate if an obstacle is in front of the robot
and a set of float numbers (the ranges) as provided by the
laser scan giving details about the neighborhood.

C. Describing with DiaSpec

Once the application is decomposed using the different
component types, the transcription to the DiaSpec design

3it is important to note that the application is not going to deactivate
the hardware-level sensor (which is used in the two modes) but only the
application-level source (which is only used in the random mode).

1 import Twist as org.ros.message.geometry_msgs.Twist;
2 structure Obstacle { isDetected as Boolean;
3 ranges as Float[]; }
4 enumeration RobotMode { RANDOM, EXPLORATION }
5 action OnOff { on(); off(); }
6 entity Light { action OnOff; }
7 entity LaserScan {
8 source ranges as Float[]; action OnOff;
9 }

10 entity Exploration { source twist as Twist; }
11 entity ModeSelector { source mode as RobotMode; }
12 context ObstacleDetection as Obstacle {
13 source ranges from LaserScan;
14 interaction { when provided ranges from LaserScan
15 always publish }
16 }
17 context ObstacleZone as Boolean {
18 context ObstacleDetection;
19 interaction { when provided ObstacleDetection
20 maybe publish }
21 }
22 context RandomMotion as Twist {
23 context ObstacleDetection;
24 interaction { when provided ObstacleDetection
25 always publish }
26 }
27 context Motion as Twist {
28 source mode from ModeSelector;
29 context RandomMotion;
30 source twist from Exploration;
31 interaction { when provided mode from ModeSelector
32 no publish }
33 interaction { when provided RandomMotion maybe publish }
34 interaction { when provided twist from Exploration
35 maybe publish }
36 }
37 controller MotionController {
38 context Motion; action TurnAndRoll on Wheel;
39 interaction { when provided Motion
40 do TurnAndRoll on Wheel }
41 }

Listing 1. An extract of the description of the robotics application with
the DiaSpec design language

language is straightforward. Listing 1 gives an extract of the
case study transcription.4

In this listing, the entity, context, and
controller keywords are respectively used to introduce
a new entity class, a new context operator, and a new
control operator. For this application, we decide to reuse
the Twist data type of the ROS middleware which is
illustrated in line 1.

Additionally to the description of an operator’s input
sources, the DiaSpec language allows each operator to de-
scribe a set of interaction contracts that coordinate these
input sources. An interaction contract is a tuple that describes
an activation condition indicating which input sources can
activate the operator and a reaction indicating what to do
as a result of the activation condition.5 The interaction
keyword is used to introduce an interaction contract. For
example, the ObstacleDetection’s interaction contract
(Listing 1, line 14) indicates that this context operator always
publishes a data when it receives information from the laser
scan.

4The full case study description in DiaSpec and implementation can be
found in http://github.com/DamienCassou/diarobot.

5Previous work [6] also includes in the tuple a set of data requirements
indicating the additional input sources that can be used for a particular
activation condition. This is not used in this case study.

http://github.com/DamienCassou/diarobot


In this section we saw how to design a robotics application
using the SCC architectural pattern and the DiaSpec design
language. Both the pattern and the language help decompos-
ing an application in well defined components. Both make
it easy to reuse as much as possible from the underlying
middleware and existing applications. In the next section we
discuss how to implement a robotics application with our
approach.

III. IMPLEMENTING A ROBOTICS APPLICATION

The DiaSpec compiler generates a programming frame-
work with respect to a set of declarations for entity classes,
context operators and control operators (Figure 2). For each
component description (entity or operator) the compiler
generates an abstract class. The abstract methods in this
class represent code to be provided by the developer (hole
in Figure 2), to allow him to program the application logic
(e.g., to trigger an entity action) (bump in Figure 2).

DiaSpec
description

Compiler Programming
Framework

Developer's
implementation

Fig. 2. Overview of the DiaSpec development process

Implementing a DiaSpec component is done by sub-
classing the corresponding generated abstract class. In doing
so, the developer is required to implement each abstract
method. The developer writes the application code in sub-
classes, not in the generated abstract classes. This strategy
contrasts with generating incomplete source code, to be
filled by the developer. As a result, in our approach, one
can change the DiaSpec description and generate a new
programming framework without overriding the developer’s
code. The mismatches between the existing code and the new
programming framework are revealed by the Java compiler.
To facilitate the implementation process, most Java IDEs are
capable of generating class templates based on super abstract
classes.

In this section, we give an overview of how to implement
some parts of the case study. For a more detailed description,
we refer to our previous works [5]–[7].

A. Implementing an operator

For each context or control operator, a dedicated abstract
class is generated in the programming framework. For each
interaction contract of this operator, the generated abstract
class contains an abstract method and a corresponding call-
ing method. The abstract method is to be implemented by the
developer while the calling method is used by the framework
to call the implementation of the abstract method with the
expected arguments.

The signature of each abstract method is directly derived
from the interaction contract: the name of the method is

1 // Implementation of RandomMotion from Listing 1 line 22
2 public class RandomMotion extends AbstractRandomMotion {
3

4 @Override // from super class
5 public Twist onObstacleDetection(Obstacle obstacle) {
6 Twist cmd = new Twist();
7 if (obstacle.getIsDetected())
8 cmd.angular.z = angleVelocity(obstacle.getRanges());
9 else

10 cmd.linear.x = new Float(1);
11 return cmd;
12 }
13

14 private int middle(List<Float> ranges) {
15 return ranges.size() / 2;
16 }
17

18 private Float angleVelocity(List<Float> ranges) {
19 double midA = 0, midB = 0;
20 // we look to the left and to the right and decide
21 // which one has more space
22 for (int i = 0; i < middle(ranges); i++)
23 midA += ranges.get(i);
24 for (int i = middle(ranges); i < ranges.size(); i++)
25 midB += ranges.get(i);
26 if (midA > midB)
27 return new Float(-1.0);
28 else
29 return new Float(1.0);
30 }
31 }

Listing 2. A developer-supplied Java implementation of the Random-
Motion context operator described in Listing 1. The AbstractRandom-
Motion super class is automatically generated

derived from the activation condition, the return type is
derived from the reaction, and the parameters are derived
from the activation condition and the reaction.

Listing 2 presents a possible Java implementation
of the RandomMotion context operator. The on-
ObstacleDetection method is declared abstract in the
AbstractRandomMotion generated super class.

Because an operator only manipulates input sources to
produce a result, its implementation is independent of any
robotics software framework. This facilitates operator reuse
for different applications and robots.

B. Implementing an entity

Contrary to operators which are dedicated to the applica-
tion logic, an entity is at the border between the application
and its environment (e.g., the middleware and robot hard-
ware). Implementing an entity thus requires some knowledge
of the underlying hardware or middleware.

Listing 3 presents a possible Java implementation of the
LaserScan entity class for the ROS middleware. When the
middleware publishes a new laser scan message, this message
is automatically received by the RosLaserScan instance
through the ROS MessageListener interface.

Listing 4 presents a possible Java implementation of the
Light entity class for the ROS middleware. The constructor
receives a ROS publisher as a parameter which allows
the entity implementation to send commands to the robot
through the middleware.

C. Deploying an application

Deploying an application requires writing a deployment
script in Java. To do this, a developer creates a new Java class



1 // Implementation of LaserScan from Listing 1 line 7
2 public class RosLaserScan extends AbstractLaserScan
3 implements MessageListener<LaserScan> {
4

5 private boolean isStarted = false;
6

7 // required by design in Listing 1 line 5 and line 6
8 @Override // from super class
9 protected void on() throws Exception {

10 isStarted = true;
11 }
12

13 // required by design in Listing 1 line 5 and line 6
14 @Override // from super class
15 protected void off() throws Exception {
16 isStarted = false;
17 }
18

19 // triggered when ROS publishes a LaserScan message
20 @Override // from ROS MessageListener
21 public void onNewMessage(LaserScan message) {
22 float[] ranges = message.ranges;
23 if (isStarted) {
24 // sends the list of floats to subscribed
25 // context operators through the source defined
26 // in Listing 1 line 8
27 publishRanges(convert(ranges));
28 }
29 }
30

31 private List<Float> convert(float[] ranges) {
32 // converts a float[] to a List<Float>
33 }
34 }

Listing 3. A developer-supplied Java implementation of the LaserScan
entity class described in Listing 1, line 7. The AbstractLaserScan
super class is automatically generated

1 // Implementation of Light from Listing 1 line 6
2 public class RosLight extends AbstractLight {
3

4 // A ROS publisher to communicate with the robot
5 private final Publisher<Bool> publisher;
6

7 public RosLight(Publisher<Bool> publisher) {
8 this.publisher = publisher;
9 publish(false);

10 }
11

12 // required by design in Listing 1 line 5
13 @Override // from super class
14 protected void on() throws Exception {
15 publish(true);
16 }
17

18 // required by design in Listing 1 line 5
19 @Override // from super class
20 protected void off() throws Exception {
21 publish(false);
22 }
23

24 // turns on or off the light depending on the parameter
25 private void publish(boolean val) {
26 // converts the Java type boolean to the ROS type BOOL
27 Bool bool = new Bool();
28 bool.data = val;
29 // asks the robot to trigger its light projector
30 publisher.publish(bool);
31 }
32 }

Listing 4. A developer-supplied Java implementation of the Light entity
class described in Listing 1, line 6. The AbstractLight super class is
automatically generated

1 // Deployment script that creates ROS nodes and DiaSpec
2 // component instances
3 public class Deploy extends MainDeploy
4 implements NodeMain {
5

6 private Node node;
7

8 // starting point defined by ROS
9 @Override // from ROS NodeMain

10 public void main(NodeConfiguration configuration) {
11 // creates a ROS node
12 node = new DefaultNode(" l a s e r _ c m d ", configuration);
13 addLaserScan();
14 addLight();
15 // this is defined in the MainDeploy abstract class
16 deployAll();
17 }
18

19 private void addLaserScan() {
20 RosLaserScan scan = new RosLaserScan();
21 // asks ROS to send laser scan messages to laserScan
22 node.createSubscriber(" /ATRV/ S ick ",
23 " senso r_msgs / Lase rScan ", scan);
24 // schedules for deployment
25 add(laserScan);
26 }
27

28 private void addLight() {
29 // allows the application to send messages to ROS
30 Publisher<Bool> rosPublisher;
31 rosPublisher = node.createPublisher(" /ATRV/ L i g h t A c t ",
32 " s td_msgs / Bool ");
33 RosLight lightPublisher = new RosLight(rosPublisher);
34 // schedules for deployment
35 add(lightPublisher);
36 }
37

38 // automatically called by the programming framework
39 @Override // from super class
40 protected AbstractRandomMotion createRandomMotion() {
41 // creates a new instance of a context operator that
42 // will be deployed by deployAll()
43 return new RandomMotion();
44 }
45 }

Listing 5. An extract of a developer-supplied Java deployment script for
the case-study application

by sub-classing the abstract class MainDeploy generated
in the programming framework. By doing so the developer
is required to implement one abstract method per operator,
to call the add() method to register entity instances, and to
call the deployAll() method to trigger the deployment.
The ROS middleware requires an implementation of the
NodeMain interface. An extract of the deployment script
for the case study application is shown in Listing 5.

In this section we saw how to implement a robotics
application on top of a programing framework generated by
the DiaSpec compiler. This programming framework calls
developer’s code when necessary and make the development
easy by passing everything the developer needs as a param-
eter to abstract methods. In the next section we discuss the
benefits and problems of using DiaSpec in a robotics setting.

Figure 3 presents a running simulation of our case study.
The code generated is completely integrated in the ROS
middleware and the execution can be analyzed by the tools
provided by ROS.

IV. DISCUSSING

DiaSpec decomposes the development of an application
into two well defined stages: a design stage for which



Fig. 3. Screenshot of a simulation of the case study. On the left, a window
displays the standard rviz visualization tool presenting the neighborhood
visited by the robot in exploration mode. On the top-right, a button allows
an operator to change the current mode of the robot. On the bottom-right,
a window displays an instance of the Stage simulation engine

DiaSpec provides a domain-specific design language and
an implementation stage for which DiaSpec provides a
design-specific programming framework. With the design
language and SCC architectural pattern, a developer is guided
in creating components with a single responsibility each,
thus enhancing reuse. An application design also explicits
interactions between components making the runtime behav-
ior easier to understand. With the programming framework
dedicated to the design, a developer is guided in creating an
implementation for each components. Indeed, the generated
programming framework takes care of the control loop of
the application as well as all interactions between the com-
ponents. As a result, a developer can focus on implementing
the high-level application logic, letting the framework handle
the details. Moreover, the programming framework provides
all necessary pieces of required information directly as
parameters to the abstract methods. This reduces the amount
of documentation required to start using the programming
framework.

In the previous sections we saw that DiaSpec can be used
to design, implement and deploy a robotics application for a
widely used middleware. In the following we discuss various
problems we have met while applying DiaSpec in a robotics
setting.

A. DiaSpec Dynamicity

DiaSpec has been created to handle appearing and disap-
pearing entities at runtime. This requires additional code that
should not be necessary in a robotics settings where most, if
not all, entities are known at deployment time. For example,
to receive information from entity sources, context operators
have to subscribe to each source of interest:

1 @Override
2 protected void postInitialize() {
3 discoverExplorationForSubscribe.all().subscribeTwist();
4 discoverModeSelectorForSubscribe.all().subscribeMode();
5 }

This method has to be implemented in the Motion Java
class (for the Motion context operator) to let it receive
information from the Exploration and ModeSelector

entities. This code could be inferred automatically from the
description of the Motion context operator and pushed
inside the generated programming framework. However, in
a multi-robots settings, where a robot can discover services
provided by nearby robots, the DiaSpec entity discovery and
subscription mechanisms still could be useful. The DiaSpec
design language could be extended to let a developer declare
which entities are known at deployment time and which ones
should be discovered at runtime. The compiler could then
leverage this additional information to generate the necessary
code in the programming framework.

B. Data Type Reuse

DiaSpec allows the definition of new types (structures and
enumerations) as well as the importation of existing Java
types. Very often, middleware such as ROS come with their
own data types. The developer must then choose to reuse the
data types coming from the middleware or define new ones.
Using the middleware data types can be particularly useful as
these data types can be complex such as the ROS “twist” data
type. This is the solution we use for the case study and the
Twist data type as is illustrated by the use of the import
keyword in Listing 1, line 1. However, choosing reuse of
data types from a middleware tightly couples the application
with this middleware and thus prevents potential for reuse
of this application with other middleware. Another solution
is to develop new data types in DiaSpec. This makes the
application independent from any underlying middleware.
However, this requires conversion code at the boundaries of
the application where communication with the middleware
is required. For example, it could be possible to define the
Twist data type within the design with some code like this:

structure Vector3 { x as Float; y as Float; z as Float; }
structure Twist { linear as Vector3; angular as Vector3; }

Then, an implementation of the Wheel entity would have
to convert from the DiaSpec Twist type to the ROS Twist
type:

@Override
protected void setTwist(Twist twist) throws Exception {

publisher.publish(convert(twist));
}
private org.ros.message.geometry_msgs.Twist

convert(Twist twist) {
org.ros.message.geometry_msgs.Twist rosTwist;
rosTwist = new org.ros.message.geometry_msgs.Twist();
rosTwist.angular = convert(twist.getAngular());
rosTwist.linear = convert(twist.getLinear());
return rosTwist;

}
private org.ros.message.geometry_msgs.Vector3

convert(Vector3 vector) {...}

This solution makes the code harder to read and maintain.
Moreover, similar code has to be duplicated everywhere in
the application where a conversion is required. An interme-
diate solution is to develop new data types in Java. This
solution can embed required conversions in the data type
itself to avoid duplication. The resulting code is still harder
to read than the first one however.



C. Decomposition grain

During the development of the case study we noticed
that following the SCC architectural pattern and the steps
proposed in Section II resulted in fine grained components,
promoting reuse. It is however important that the developer
pays attention not to create too fine grained components
which would make the runtime behavior hard to understand
and debug. Indeed, because the generated programming
framework handles the interactions between the components,
debugging very fine grained components requires stepping
often into the generated programming framework. This is
cumbersome and should not be needed. A possible addition
to DiaSpec could involve a dedicated debugger which would
let the developer debug his application without stepping into
the generated programming framework.

V. RELATED WORK

Several software engineering approaches have been pro-
posed to lower the complexity of robotics systems [3].

Middleware and Software Frameworks: Numerous mid-
dleware and software frameworks have been proposed to
support the implementation of robotics applications (e.g.,
CLARATy [8], ROS [13] and Player/Stage [9]). Such ap-
proaches attempt to cover as much of the robotics domain
as possible in a single programming framework. This strat-
egy often leads to large APIs, providing little guidance to
the developer and requiring boilerplate code to customize
the programming framework to the characteristics of the
application. In contrast, a DiaSpec-generated programming
framework specifically targets one application, limiting the
API to methods of interest to the developers. Our code gener-
ator could potentially target these middleware thus leveraging
existing work and completely hiding their intricacies from
the developer.

Component-Based and Model-Driven Software En-
gineering: Component-Based Software Engineering for
robotics (e.g., [4]) and Model-Driven Engineering for
robotics (e.g., OMG RTC [11], SmartSoft [14]) relies on
general-purpose notations such as UML to model domain-
specific concerns. By using general-purpose and established
notations, these approaches leverage existing knowledge
from developers and existing tools. Even though such ap-
proaches propose a conceptual framework for developing
robotics applications, they only provide the user with generic
tools. For example, these approaches require developers to
directly manipulate UML diagrams, which become “enor-
mous, ambiguous and unwieldy” [12]. In contrast, DiaSpec
abstracts away such technologies, limiting the amount of
expertise required from the developers.

Domain-Specific Languages: Smach is a Python embed-
ded DSL based on hierarchical concurrent state machines for
building complex robot behavior from primitive ones [1].
Smach is tightly coupled with ROS, allows only static
compositions of behavior and can not adapt compositions
to new situations during execution. SmartTCL (Smart Task
Coordination Language) is an extension of Common Lisp
that is used to do on line dynamic reconfiguration of the

software components involved in a robot [16]: knowledge
bases, simulation engines, symbolic task planners, models
and low-level hardware. At design time, the developer defines
execution variants that robot operates at runtime. In order to
lower robotics inherent complexity, analysis and simulation
tools could also be used at runtime to determine pending
execution steps with specific parametrisation before the robot
effectively execute them. Unlike these DSLs, DiaSpec allows
a natural decomposition of applications according to the
SCC architectural pattern, guiding the work of the devel-
oper. Compared to SmartTCL DiaSpec lacks the ability to
recompose the components at runtime.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed to use DiaSpec, a
domain-specific design language for Sense/Compute/Control
applications, in a robotics setting. We have shown how
this language allows a developer to structure an application
in fine-grained and reusable components by following the
SCC architectural pattern. Developing a complex application
shows the benefits of such an approach in terms of reusing
existing software and lowering complexity for the developer.
We have also highlighted various problems we have met
during the development of a standard robotics application.

Being able to adapt a robotics system to different capabil-
ities and resources is a key issue in software engineering
for robotics. For example, two similar missions can be
performed differently with different resources on the robot.
Our approach facilitates changes to a robotics system by
making explicit the software components and their interac-
tions. However supporting static adaptation is not enough
in a robotics setting as robots need to dynamically adapt
to resource evolutions (e.g., failures and environment) while
performing their tasks. Resource-adaptive architectures ad-
dress dynamic adaptations. However, such architectures are
ad hoc solutions that can not be reused and scaled. There-
fore, an ideal robot control architecture should be resource-
adapting, i.e., an architecture that explicitly manages and
represents resources [2]. The main perspective of this work
is to introduce such dynamic variability inside DiaSpec.
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