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Welcome from the Chairs

Welcome to the Companion Proceedings for the 5th International Conference on
the Art, Science, and Engineering of Programming, named <Programming> 2021.

The International Conference on the Art, Science, and Engineering of
Programming is a conference focused on programming topics including the
experience of programming. We have named it ‹Programming› for short.
‹Programming› seeks for papers that advance knowledge of programming on any
relevant topic, including programming practice and experience.

To build a community and to foster an environment where participants
can exchange ideas and experiences related to practical software development,
‹Programming› hosts several co-hosted events, including workshops, posters and
the student research competition. This companion gathers all the papers for these
events.

This �fth edition was planned to be held in Cambridge, United Kingdom,
March 22-26, 2021. Due to the COVID-19 outbreak, it was held online. All
workshop events thus ran virtually including the the Salon Littéraire 2021, the
International Workshop on Modern Language Runtimes, Ecosystems, and VMs
(MoreVMs’21), the 5th edition of the International Workshop on Programming
Technology for the Future Web (ProWeb21), the 7th edition of the Programming
Experience Workshop (PX/21), the Compiler Coding Dojo (CoCoDo21), and the
Open Applications Development (OAF21) tutorial.

We are grateful to AOSA for sponsoring <Programming> 2021, to ACM
SIGPLAN and ACM SIGLOG for conferring the “in-cooperation-with” status, and
to all from the <Programming> 2021 Organizing and Steering Committee members
for the preparation of the event online.

We want to thank also the Program Committee members and the reviewers of
all co-hosted events for their e�orts in evaluating the submissions. We especially
wish to thank the authors of submitted papers for their support in such a special
edition a�ected by the COVID-19 outbreak.

Elisa Gonzalez Boix and Shigeru Chiba Luke Church
Workshops Co-Chairs General Chair
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5th International Workshop on
Programming Technology for the Future

Web (ProWeb21)

Full-�edged web applications have become ubiquitous on desktop and mo-
bile devices alike. Whereas “responsive” web applications already o�ered a more
desktop-like experience, there is an increasing demand for “rich” web applications
(RIAs) that o�er collaborative and even o�ine functionality—Google Docs being
the prototypical example. Long gone are the days when web servers merely had to
answer incoming HTTP requests with a block of static HTML. Today’s servers react
to a continuous stream of events coming from JavaScript applications that have
been pushed to clients. As a result, application logic and data is increasingly dis-
tributed. Traditional dichotomies such as “client vs. server” and “o�ine vs. online”
are fading.

The ProWeb workshop series is a forum for researchers and practitioners to
share and discuss new technology for programming these and future evolutions
of the web. It was our pleasure to host the 5th edition, ProWeb21, alongside
<Programming> 2021. Due to the continued disruption due to the COVID-19
pandemic, the workshop was held online.

ProWeb21 received 5 submissions, and the submissions went through a rigorous
reviewing process. Every submission received three reviews by the PC members,
and was carefully discussed until a consensus was reached. All decisions were
based solely on the quality of the submissions and on the outcome of the discussion;
we did not target any minimum or maximum number of papers to be accepted. The
program committee accepted two full papers to be included in these proceedings,
and one presentation abstract available on the website of the workshop.

We were immensely fortunate to host Guido Salvaneschi of the University of
St. Gallen as the workshop’s keynote speaker, who gave an excellent talk entitled
“Why Programming Languages for Distributed Systems are Inevitable”. Furthermore,
since the 2020 edition was called o� due to the start of the pandemic, we were also
fortunate to host two ProWeb20 talks along with the workshop.
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In spite of the lack of a physical meeting, we greatly enjoyed the high-quality
talks, audience participation, and lively discussions. We would like to thank all au-
thors for submitting a set of high-quality submissions, and the program committee
for their careful reviews.

Simon Fowler and Andrea Stocco
PC Co-Chairs

Program Committee
• Simon Fowler (University of Glasgow)

• Andrea Gallidabino (Università della Svizzera italiana)

• Daniel Hillerström (University of Edinburgh)

• Magnus Madsen (Aarhus University)

• Jens Nicolay (Vrije Universiteit Brussel)

• Gabriela Sampaio (Imperial College London)

• Andrea Stocco (Università della Svizzera italiana)
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7th International Workshop on
Programming Experience (PX/21)

Message From the Chairs
Some programming feels fun, other programming feels annoying. Why?

For a while now the study of programming has forced improvements to be
described through the Fordist lens of usability and productivity, where the thing
that matters is how much software can get built, how quickly.

But along the way, something has gone missing. What makes programmers
feel the way they do when they’re programming? It’s not usually fun to spend an
age doing something that could have been done easily, so e�ciency and usability
still matter, but they’re not the end of the story.

Some environments, activities, contexts, languages, infrastructures make pro-
gramming feel alive, others feel like working in a bureaucracy. This is not purely
technologically determined, writing Lisp to do your taxes probably still isn’t fun,
but it’s also not technologically neutral, writing XML to produce performance art
is still likely to be <bureaucratic></bureaucratic>.

Whilst we can probably mostly agree about what isn’t fun, what is remains
more personal and without a space within the academy to describe it.

In its past editions, PX set its focus on questions like: Do programmers create
text that is transformed into running behavior (the old way), or do they operate
on behavior directly (“liveness” ); are they exploring the live domain to understand
the true nature of the requirements; are they like authors creating new worlds; does
visualization matter; is the experience immediate, immersive, vivid and continuous;
do �uency, literacy, and learning matter; do they build tools, meta-tools; are they
creating languages to express new concepts quickly and easily; and curiously, is joy
relevant to the experience?

In this PX, we expand its focus to also cover the experience that programmers
have. What makes it and what breaks it? For whom? What can we build to share
the joy of programming with others?
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PX/21 was the seventh edition of PX and the second online-version of the work-
shop: Participants met virtually, authors presented their work in sessions following
the Writers’ Workshop structure, and everyone engaged in lively discussions that
extended beyond the end of the scheduled time.

Our post-workshop proceedings allowed authors to re�ect on the feedback they
got from both the program committee and the workshop participants and improve
their submission.

We would like to thank our program committee, all workshop attendees, and
most importantly our authors for their contributions, constructive criticism, hard
work, and willingness to share their ideas.

—Luke Church, Richard P. Gabriel, Hidehiko Masuhara, and Robert Hirschfeld

Papers
Exploring Modal Locking in Window Manipulation.
by Marcel Taeumel and Robert Hirschfeld

Improving on the Experience of Hand-assembling Programs for Application-speci�c
Architectures.
by Ian Piumarta

Javardeye: Gaze Input for Cursor Control in a Structured Editor.
by André L. Santos

Studying Programmer Behaviour at Scale: A Case Study Using Amazon Mechan-
ical Turk.
by Jason Jacques and Per Ola Kristensson

Towards End-user Web Scraping for Customization.
by Kapaya Katongo, Geo�rey Litt, and Daniel Jackson

Toward Exploratory Understanding of Software Using Test Suites.
by Dominik Meier, Toni Mattis, and Robert Hirschfeld
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4th Raincode Labs Compiler Coding Dojo
(CoCoDo 2021)

Welcome from the Chairs
CoCoDo — the Raincode Labs Compiler Coding Dojo — was founded in 2017,
not as a workshop or a mini-conference, but intentionally as a coding dojo. The
intent is that participants enjoy an entire day of hands-on programming, instead
of preparing a paper beforehand and giving a presentation about it on the day
of the event. The topic of CoCoDo is compiler construction: arguably the oldest
branch of computer science, which has been accumulating useful techniques since
at least the 1950s. Compiler construction comprises, but is not limited to, lexical
analysis, syntactic analysis, preprocessing, context handling, code generation, code
optimisation, virtual machines, interpreters, smell detection, clone management,
portability, migration, refactoring, domain-speci�c language design, linking and
loading, assembling and disassembling, generics and re�ection, and so much more.

The idea of CoCoDo came into existence within Raincode Labs, the largest inde-
pendent compiler company in the world, freely (but not always for free) providing
compiler services to anyone interested. Raincode analysts and developers know
better than anyone that compiler construction in practice is far from the boring
by-the-book activity it might seem to the uninitiated. This is because it covers a
wide range of software language engineering activities, from language design [17]
to grammar inference [18], from quality assurance [16, 19] to bad smell elimina-
tion [9, 15], from pattern mining [4, 13] to log di�ng [3], from model-based code
generation [1, 21] to new parsing techniques [18, 20], from live programming [5]
to abstract interpretation [6]. The main objective of CoCoDo was to expose par-
ticipants of ‹Programming›, practitioners and researchers alike, to such realities
and practices of compiler construction. Its intended audience was mixed, only
supposing some passion for programming languages.
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Over the years we have observed having three kinds of participants:

1. compiler experts, carefully handpicked and invited by the organisers; some
were serving as overseers of the dojo while others led by example;

2. metagrammarware developers, who were bringing their own language work-
benches, languages, tools and techniques to CoCoDo to demonstrate their
capabilities and to get feedback;

3. software engineers ranging from students to long time hobbyists, all sharing
a casual interest in compiler techniques.

In particular, the �rst instance, CoCoDo 2017, had the following sessions:

• Attribute Grammars for DSLs for Music and 3D Graphics, overseen by Eliza-
beth Scott and Adrian Johnstone with ART [7];

• Metaprogramming in Late Phases of Compilation, overseen by Anya Helene
Bagge with Rascal1;

• Experimenting with Racket as a Language Workbench, overseen by Robby
Findler with Racket2;

• The Future of Compilers: a session consisting of a number of short presen-
tations and pitches, including Rik Arends pitching his MakePad3, Ralf
Lämmel introducing his upcoming Software Languages book [11], Adrian
Johnstone again with his work on FunCons [8], and Nicolas Laurent with
his compiler framework Whimsy4 and parsing framework Autumn5 [12].

In 2018 we have gone for the similar experience with a di�erent lineup of
sessions:

• Peter D. Mosses presented his well-known work on FunCons6 — in fact, this
was the �rst historical public reveal of the newly redesigned CBS7, a frame-
work and meta-language for component-based speci�cation of programming
languages;

1Rascal metaprogramming language: https://www.rascal-mpl.org
2Racket (a Scheme dialect): https://racket-lang.org
3Makepad: https://makepad.nl
4Whimsy compiler framework: https://github.com/ncellar/whimsy
5Autumn parser combinator library: https://github.com/norswap/autumn
6PLanCompS: https://plancomps.csle.cs.rhul.ac.uk
7CBS framework: https://plancomps.github.io/CBS-beta/
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• Jesper Öqvist demonstrated and taught JastAdd8, a metacompilation system
for attribute grammars;

• Anya Helene Bagge returned with Rascal, this time walking the audience
through the language itself instead of showing libraries written in it;

• Johan Fabry gave a pitch on a live programming language for robotics [2],
Friedrich Steimann on dependency grammars [14] and Vadim Zaytsev
on compiler testing [19].

In 2019, we had the following:

• Scrap your DSL Boilerplate with a Universe of Syntaxes, their Programs and
Proofs, a highly interactive session where Guillaume Allais demonstrated
how one can use Agda9 to prove correctness of program properties;

• Language Engineering with Rascal, where Tijs van der Storm, one of the
core designers of the language, gave a full-�edged introductory course into
it;

• A very special Tool Battle sessions where two similar tools were presented
by members of their development team: SmaCC10 by Jason Lecerf and
PetitParser [10] by Andrei Chiş.

The battle of the parsers was a close one, where both parties recognised each
others respective strengths and weaknesses, so it was called a draw.

After the unfortunate decision to cancel (“postpone”) ‹Programming› 2020, we
also had to comply and cancel the already fully prepared dojo. We are still grateful
to Walter Cazzola, Je� Smits and Dimitri Racordon for the e�ort they have
put into the preparation, as well as for their understanding when we were hit by
the �rst conference cancellation in what turned out to be a persistent series of
event cancellations and virtualisations.

8JastAdd: https://jastadd.cs.lth.se/
9Agda: https://agda.readthedocs.io/en/v2.6.0.1/
10SmaCC compiler compiler: https://books.pharo.org/booklet-Smacc/html/
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In 2021, we have gone for the online setup right away, even though it seemed
like a poor �t for such a highly interactive event as CoCoDo. Following the online
conference format, we could �t three sessions:

• A Tutorial on the Spoofax Language Workbench by Eelco Visser, the main de-
signer of both the workbench and many of the (meta)languages it comprises;

• An Interactive Exploration of a Simple Compiler byMarcus Denker, amazing
us with the internals of Pharo;

• From Abstract Syntax Trees to Machine Code with LLVM with Dimitri Racor-
don providing a comprehensive primer introduction into LLVM11 and Swift12
with a specially designed Cocodol13 language as a running example.

After the event, we also collected submissions from all interested tutorialists of
2021 and provided them with detailed reviews by the members of our programme
committee (see next page), resulting in one �nal tutorial paper suitable for these
post-proceedings. We hope this serves as a good self-archiving point, and hereby
invite all the readers to participate in CoCoDo 2022 and beyond!

May 2021

Johan Fabry, johan@raincode.com
Vadim Zaytsev, vadim@grammarware.net

https://cocodo.github.io

11LLVM compiler infrastructure: https://llvm.org
12Swift programming language https://developer.apple.com/swift/
13Cocodol: https://github.com/kyouko-taiga/Cocodol
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