
i

March 22–26, 2021
Virtual, UK

‹Programming› 2021
Companion
Companion Proceedings of the 5th International Conference on

the Art, Science, and Engineering of
Programming

Edited by:

Luke Church, Shigeru Chiba, and Elisa Gonzalez Boix

Sponsored by:

in-coop with ACM SIGPLAN, in-coop with ACM SIGSOFT
Supported by:

AOSA

ii

Association for Computing Machinery, Inc.
1601 Broadway, 10th Floor
New York, NY 10019-7434

USA

Copyright © 2021 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard
copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided
that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, USA.

Notice to Authors of Past ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously published by
ACM. If you have written a work that was previously published by ACM in any journal or conference proceedings
prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital
Library, please inform permissions@acm.org, stating the title of the work, the author(s), and where and when pub-
lished.

ACM ISBN: 978-1-4503-8986-0

Additional copies may be ordered prepaid from:

Phone: 1-800-342-6626
ACM (USA and Canada)
General Post Office +1-212-626-0500
P.O. Box 30777 (All other countries)
New York, NY 10087-0777 Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Cover photo “Woods of Girton”, © 2020, by Luke Church, permission released to ACM, cropped version.

Production: Conference Publishing Consulting
D-94034 Passau, Germany, info@conference-publishing.com

iii

Welcome from the Chairs

Welcome to the Companion Proceedings for the 5th International Conference on
the Art, Science, and Engineering of Programming, named <Programming> 2021.

The International Conference on the Art, Science, and Engineering of
Programming is a conference focused on programming topics including the
experience of programming. We have named it ‹Programming› for short.
‹Programming› seeks for papers that advance knowledge of programming on any
relevant topic, including programming practice and experience.

To build a community and to foster an environment where participants
can exchange ideas and experiences related to practical software development,
‹Programming› hosts several co-hosted events, including workshops, posters and
the student research competition. This companion gathers all the papers for these
events.

This �fth edition was planned to be held in Cambridge, United Kingdom,
March 22-26, 2021. Due to the COVID-19 outbreak, it was held online. All
workshop events thus ran virtually including the the Salon Littéraire 2021, the
International Workshop on Modern Language Runtimes, Ecosystems, and VMs
(MoreVMs’21), the 5th edition of the International Workshop on Programming
Technology for the Future Web (ProWeb21), the 7th edition of the Programming
Experience Workshop (PX/21), the Compiler Coding Dojo (CoCoDo21), and the
Open Applications Development (OAF21) tutorial.

We are grateful to AOSA for sponsoring <Programming> 2021, to ACM
SIGPLAN and ACM SIGLOG for conferring the “in-cooperation-with” status, and
to all from the <Programming> 2021 Organizing and Steering Committee members
for the preparation of the event online.

We want to thank also the Program Committee members and the reviewers of
all co-hosted events for their e�orts in evaluating the submissions. We especially
wish to thank the authors of submitted papers for their support in such a special
edition a�ected by the COVID-19 outbreak.

Elisa Gonzalez Boix and Shigeru Chiba Luke Church
Workshops Co-Chairs General Chair

iii

iv

<Programming> 2021 Organization Committee

General Chair
Luke Church University of Cambridge, UK

Program Chair
Jeremy Gibbons University of Oxford, UK

Workshops Co-Chairs
Shigeru Chiba The University of Tokyo, Japan
Elisa Gonzalez Boix Vrije Universiteit Brussel, Belgium

Student Research Competition Co-Chairs
Philipp Haller KTH Royal Institutue of Technology, Sweden
Hidehiko Masuhara Tokyo Institute of Technology, Japan

Poster and Demonstrations Co-Chairs
Patrick Rein Hasso Plattner Institute, Germany
Emma Söderberg Lund University, Sweden

Student Volunteers Chair
Tom Beckmann Hasso Plattner Institute, University of Potsdam, Germany

Virtualization Co-Chairs
Toni Mattis Hasso Plattner Institute, University of Potsdam, Germany
Alan McCabe Lund University, Sweeden
Fabio Niephaus Hasso Plattner Institute, University of Potsdam, Germany
Patrick Rein Hasso Plattner Institute, Germany

Publicity Chair
Fabio Niephaus Hasso Plattner Institute, University of Potsdam, Germany

iv

v

Web Chair
Tobias Pape Hasso Plattner Institute, University of Potsdam, Germany

Steering Committee
Theo D’Hondt Vrije Universiteit Brussel, Belgium (chair)
Ademar Aguiar Universidade do Porto, Portugal
Davide Ancona University of Genova, Italy
Jane Cleland-Huang University of Notre Dame, USA
Krzysztof Czarnecki University of Waterloo, Canada
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Matthew Flatt University of Utah, USA
Lidia Fuentes Universidad de Málaga, Spain
Richard P. Gabriel Dream Songs, Inc. & HPI, California
Robert Hirschfeld Hasso Plattner Institute Potsdam, Germany
Ranjit Jhala University of California at San Diego, USA
Cristina Videira Lopes University of California at Irvine, USA
Stefan Marr University of Kent, UK
Patrick Rein Hasso Plattner Institute, Germany
Guido Salvaneschi Technische Universität Darmstadt, Germany
Manuel Serrano INRIA, France
Emma Söderberg Lund University, Sweden
Mario Südholt IMT Atlantique, Nantes, France

Sponsors

In-cooperation

v

vi

5th International Workshop on
Programming Technology for the Future

Web (ProWeb21)

Full-�edged web applications have become ubiquitous on desktop and mo-
bile devices alike. Whereas “responsive” web applications already o�ered a more
desktop-like experience, there is an increasing demand for “rich” web applications
(RIAs) that o�er collaborative and even o�ine functionality—Google Docs being
the prototypical example. Long gone are the days when web servers merely had to
answer incoming HTTP requests with a block of static HTML. Today’s servers react
to a continuous stream of events coming from JavaScript applications that have
been pushed to clients. As a result, application logic and data is increasingly dis-
tributed. Traditional dichotomies such as “client vs. server” and “o�ine vs. online”
are fading.

The ProWeb workshop series is a forum for researchers and practitioners to
share and discuss new technology for programming these and future evolutions
of the web. It was our pleasure to host the 5th edition, ProWeb21, alongside
<Programming> 2021. Due to the continued disruption due to the COVID-19
pandemic, the workshop was held online.

ProWeb21 received 5 submissions, and the submissions went through a rigorous
reviewing process. Every submission received three reviews by the PC members,
and was carefully discussed until a consensus was reached. All decisions were
based solely on the quality of the submissions and on the outcome of the discussion;
we did not target any minimum or maximum number of papers to be accepted. The
program committee accepted two full papers to be included in these proceedings,
and one presentation abstract available on the website of the workshop.

We were immensely fortunate to host Guido Salvaneschi of the University of
St. Gallen as the workshop’s keynote speaker, who gave an excellent talk entitled
“Why Programming Languages for Distributed Systems are Inevitable”. Furthermore,
since the 2020 edition was called o� due to the start of the pandemic, we were also
fortunate to host two ProWeb20 talks along with the workshop.

vi

vii

In spite of the lack of a physical meeting, we greatly enjoyed the high-quality
talks, audience participation, and lively discussions. We would like to thank all au-
thors for submitting a set of high-quality submissions, and the program committee
for their careful reviews.

Simon Fowler and Andrea Stocco
PC Co-Chairs

Program Committee
• Simon Fowler (University of Glasgow)

• Andrea Gallidabino (Università della Svizzera italiana)

• Daniel Hillerström (University of Edinburgh)

• Magnus Madsen (Aarhus University)

• Jens Nicolay (Vrije Universiteit Brussel)

• Gabriela Sampaio (Imperial College London)

• Andrea Stocco (Università della Svizzera italiana)

vii

viii

7th International Workshop on
Programming Experience (PX/21)

Message From the Chairs
Some programming feels fun, other programming feels annoying. Why?

For a while now the study of programming has forced improvements to be
described through the Fordist lens of usability and productivity, where the thing
that matters is how much software can get built, how quickly.

But along the way, something has gone missing. What makes programmers
feel the way they do when they’re programming? It’s not usually fun to spend an
age doing something that could have been done easily, so e�ciency and usability
still matter, but they’re not the end of the story.

Some environments, activities, contexts, languages, infrastructures make pro-
gramming feel alive, others feel like working in a bureaucracy. This is not purely
technologically determined, writing Lisp to do your taxes probably still isn’t fun,
but it’s also not technologically neutral, writing XML to produce performance art
is still likely to be <bureaucratic></bureaucratic>.

Whilst we can probably mostly agree about what isn’t fun, what is remains
more personal and without a space within the academy to describe it.

In its past editions, PX set its focus on questions like: Do programmers create
text that is transformed into running behavior (the old way), or do they operate
on behavior directly (“liveness”); are they exploring the live domain to understand
the true nature of the requirements; are they like authors creating new worlds; does
visualization matter; is the experience immediate, immersive, vivid and continuous;
do �uency, literacy, and learning matter; do they build tools, meta-tools; are they
creating languages to express new concepts quickly and easily; and curiously, is joy
relevant to the experience?

In this PX, we expand its focus to also cover the experience that programmers
have. What makes it and what breaks it? For whom? What can we build to share
the joy of programming with others?

viii

ix

PX/21 was the seventh edition of PX and the second online-version of the work-
shop: Participants met virtually, authors presented their work in sessions following
the Writers’ Workshop structure, and everyone engaged in lively discussions that
extended beyond the end of the scheduled time.

Our post-workshop proceedings allowed authors to re�ect on the feedback they
got from both the program committee and the workshop participants and improve
their submission.

We would like to thank our program committee, all workshop attendees, and
most importantly our authors for their contributions, constructive criticism, hard
work, and willingness to share their ideas.

—Luke Church, Richard P. Gabriel, Hidehiko Masuhara, and Robert Hirschfeld

Papers
Exploring Modal Locking in Window Manipulation.
by Marcel Taeumel and Robert Hirschfeld

Improving on the Experience of Hand-assembling Programs for Application-speci�c
Architectures.
by Ian Piumarta

Javardeye: Gaze Input for Cursor Control in a Structured Editor.
by André L. Santos

Studying Programmer Behaviour at Scale: A Case Study Using Amazon Mechan-
ical Turk.
by Jason Jacques and Per Ola Kristensson

Towards End-user Web Scraping for Customization.
by Kapaya Katongo, Geo�rey Litt, and Daniel Jackson

Toward Exploratory Understanding of Software Using Test Suites.
by Dominik Meier, Toni Mattis, and Robert Hirschfeld

ix

x

Web
http://programming-experience.org/px21/
https://2021.programming-conference.org/home/px-2021/

Program Committee
Shigeru Chiba, The University of Tokyo, Japan
Luke Church, University of Cambridge & Lund University & Lark Systems, United
Kingdom
Youyou Cong, Tokyo Institute of Technology, Japan
Jácome Cunha, HASLab/INESC TEC & University of Minho, Portugal
Tao Dong, Google, United States
Tim Felgentre�, Oracle Labs, Potsdam, Germany
Richard P. Gabriel, Dream Songs & Hasso Plattner Institute (HPI), United States
Robert Hirschfeld, Hasso Plattner Institute (HPI), University of Potsdam, Germany
Jens Lincke, Hasso Plattner Institute (HPI), Germany
Mariana Marasoiu, University of Cambridge, United Kingdom
Hidehiko Masuhara, Tokyo Institute of Technology, Japan
James Noble, Victoria University of Wellington, New Zealand
Yoshiki Ohshima, Croquet Studios, Japan
Michael Perscheid, SAP Innovation Center Potsdam, Germany
Ian Piumarta, Kyoto University of Advanced Science, Japan
Patrick Rein, Hasso Plattner Institute (HPI), Germany
Emma Söderberg, Lund University, Sweden
Marcel Taeumel, Hasso Plattner Institute (HPI), Germany
Steven Tanimoto, University of Washington, Seattle, United States
Allen Wirfs-Brock, Wirfs-Brock Associates, United States

Organizers
Luke Church, University of Cambridge & Lund University & Lark Systems, United
Kingdom
Richard P. Gabriel, Dream Songs & Hasso Plattner Institute (HPI), United States
Robert Hirschfeld, Hasso Plattner Institute (HPI), University of Potsdam, Germany
Hidehiko Masuhara, Tokyo Institute of Technology, Japan

x

xi

4th Raincode Labs Compiler Coding Dojo
(CoCoDo 2021)

Welcome from the Chairs
CoCoDo — the Raincode Labs Compiler Coding Dojo — was founded in 2017,
not as a workshop or a mini-conference, but intentionally as a coding dojo. The
intent is that participants enjoy an entire day of hands-on programming, instead
of preparing a paper beforehand and giving a presentation about it on the day
of the event. The topic of CoCoDo is compiler construction: arguably the oldest
branch of computer science, which has been accumulating useful techniques since
at least the 1950s. Compiler construction comprises, but is not limited to, lexical
analysis, syntactic analysis, preprocessing, context handling, code generation, code
optimisation, virtual machines, interpreters, smell detection, clone management,
portability, migration, refactoring, domain-speci�c language design, linking and
loading, assembling and disassembling, generics and re�ection, and so much more.

The idea of CoCoDo came into existence within Raincode Labs, the largest inde-
pendent compiler company in the world, freely (but not always for free) providing
compiler services to anyone interested. Raincode analysts and developers know
better than anyone that compiler construction in practice is far from the boring
by-the-book activity it might seem to the uninitiated. This is because it covers a
wide range of software language engineering activities, from language design [17]
to grammar inference [18], from quality assurance [16, 19] to bad smell elimina-
tion [9, 15], from pattern mining [4, 13] to log di�ng [3], from model-based code
generation [1, 21] to new parsing techniques [18, 20], from live programming [5]
to abstract interpretation [6]. The main objective of CoCoDo was to expose par-
ticipants of ‹Programming›, practitioners and researchers alike, to such realities
and practices of compiler construction. Its intended audience was mixed, only
supposing some passion for programming languages.

xi

xii

Over the years we have observed having three kinds of participants:

1. compiler experts, carefully handpicked and invited by the organisers; some
were serving as overseers of the dojo while others led by example;

2. metagrammarware developers, who were bringing their own language work-
benches, languages, tools and techniques to CoCoDo to demonstrate their
capabilities and to get feedback;

3. software engineers ranging from students to long time hobbyists, all sharing
a casual interest in compiler techniques.

In particular, the �rst instance, CoCoDo 2017, had the following sessions:

• Attribute Grammars for DSLs for Music and 3D Graphics, overseen by Eliza-
beth Scott and Adrian Johnstone with ART [7];

• Metaprogramming in Late Phases of Compilation, overseen by Anya Helene
Bagge with Rascal1;

• Experimenting with Racket as a Language Workbench, overseen by Robby
Findler with Racket2;

• The Future of Compilers: a session consisting of a number of short presen-
tations and pitches, including Rik Arends pitching his MakePad3, Ralf
Lämmel introducing his upcoming Software Languages book [11], Adrian
Johnstone again with his work on FunCons [8], and Nicolas Laurent with
his compiler framework Whimsy4 and parsing framework Autumn5 [12].

In 2018 we have gone for the similar experience with a di�erent lineup of
sessions:

• Peter D. Mosses presented his well-known work on FunCons6 — in fact, this
was the �rst historical public reveal of the newly redesigned CBS7, a frame-
work and meta-language for component-based speci�cation of programming
languages;

1Rascal metaprogramming language: https://www.rascal-mpl.org
2Racket (a Scheme dialect): https://racket-lang.org
3Makepad: https://makepad.nl
4Whimsy compiler framework: https://github.com/ncellar/whimsy
5Autumn parser combinator library: https://github.com/norswap/autumn
6PLanCompS: https://plancomps.csle.cs.rhul.ac.uk
7CBS framework: https://plancomps.github.io/CBS-beta/

xii

xiii

• Jesper Öqvist demonstrated and taught JastAdd8, a metacompilation system
for attribute grammars;

• Anya Helene Bagge returned with Rascal, this time walking the audience
through the language itself instead of showing libraries written in it;

• Johan Fabry gave a pitch on a live programming language for robotics [2],
Friedrich Steimann on dependency grammars [14] and Vadim Zaytsev
on compiler testing [19].

In 2019, we had the following:

• Scrap your DSL Boilerplate with a Universe of Syntaxes, their Programs and
Proofs, a highly interactive session where Guillaume Allais demonstrated
how one can use Agda9 to prove correctness of program properties;

• Language Engineering with Rascal, where Tijs van der Storm, one of the
core designers of the language, gave a full-�edged introductory course into
it;

• A very special Tool Battle sessions where two similar tools were presented
by members of their development team: SmaCC10 by Jason Lecerf and
PetitParser [10] by Andrei Chiş.

The battle of the parsers was a close one, where both parties recognised each
others respective strengths and weaknesses, so it was called a draw.

After the unfortunate decision to cancel (“postpone”) ‹Programming› 2020, we
also had to comply and cancel the already fully prepared dojo. We are still grateful
to Walter Cazzola, Je� Smits and Dimitri Racordon for the e�ort they have
put into the preparation, as well as for their understanding when we were hit by
the �rst conference cancellation in what turned out to be a persistent series of
event cancellations and virtualisations.

8JastAdd: https://jastadd.cs.lth.se/
9Agda: https://agda.readthedocs.io/en/v2.6.0.1/
10SmaCC compiler compiler: https://books.pharo.org/booklet-Smacc/html/

xiii

xiv

In 2021, we have gone for the online setup right away, even though it seemed
like a poor �t for such a highly interactive event as CoCoDo. Following the online
conference format, we could �t three sessions:

• A Tutorial on the Spoofax Language Workbench by Eelco Visser, the main de-
signer of both the workbench and many of the (meta)languages it comprises;

• An Interactive Exploration of a Simple Compiler byMarcus Denker, amazing
us with the internals of Pharo;

• From Abstract Syntax Trees to Machine Code with LLVM with Dimitri Racor-
don providing a comprehensive primer introduction into LLVM11 and Swift12
with a specially designed Cocodol13 language as a running example.

After the event, we also collected submissions from all interested tutorialists of
2021 and provided them with detailed reviews by the members of our programme
committee (see next page), resulting in one �nal tutorial paper suitable for these
post-proceedings. We hope this serves as a good self-archiving point, and hereby
invite all the readers to participate in CoCoDo 2022 and beyond!

May 2021

Johan Fabry, johan@raincode.com
Vadim Zaytsev, vadim@grammarware.net

https://cocodo.github.io

11LLVM compiler infrastructure: https://llvm.org
12Swift programming language https://developer.apple.com/swift/
13Cocodol: https://github.com/kyouko-taiga/Cocodol

xiv

xv

References
[1] V. Blagodarov, Y. Jaradin, and V. Zaytsev. Tool Demo: Raincode Assembler

Compiler. In T. van der Storm, E. Balland, and D. Varró, editors, Proceedings
of the Ninth International Conference on Software Language Engineering (SLE),
pages 221–225, 2016. doi: 10.1145/2997364.2997387.

[2] M. Campusano and J. Fabry. Live Robot Programming: The Language, Its Im-
plementation, and Robot API Independence. Science of Computer Programming,
133:1–19, 2017. doi: 10.1016/j.scico.2016.06.002.

[3] C. Deknop, J. Fabry, K. Mens, and V. Zaytsev. Improving Software Moderni-
sation Process by Di�erencing Migration Logs. In M. Morisio, M. Torchiano,
and A. Jedlitschka, editors, Proceedings of the 21st International Conference
on Product-Focused Software Process Improvement (PROFES), pages 270–286.
Springer, 2020. doi: 10.1007/978-3-030-64148-1_17.

[4] D. Di Nucci, H. S. Pham, J. Fabry, C. De Roover, K. Mens, T. Molderez, S. Nijssen,
and V. Zaytsev. A Language-Parametric Modular Framework for Mining
Idiomatic Code Patterns. In A. Etien, editor, Post-proceedings of the 12th
Seminar on Advanced Techniques and Tools for Software Evolution (SATToSE),
volume 2510 of CEUR Workshop Proceedings, pages 38–44. CEUR-WS.org, 2019.
http://ceur-ws.org/Vol-2510/sattose2019_paper_3.pdf.

[5] J. Fabry. The Meager Validation of Live Programming. In Proceedings of
the Conference Companion of the 3rd International Conference on Art, Sci-
ence, and Engineering of Programming, ‹Programming›’19. ACM, 2019. doi:
10.1145/3328433.3328457.

[6] J. Fabry, Y. Jaradin, and A. Gül. Engineering a Converter Between TwoDomain-
Speci�c Languages for Sorting. In Proceedings of the 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 221–226,
2020. doi: 10.1109/SCAM51674.2020.00030.

[7] A. Johnstone and E. Scott. Translator Generation Using ART. In B. A. Malloy,
S. Staab, and M. van den Brand, editors, Revised Selected Papers of the Third In-
ternational Conference on Software Language Engineering, volume 6563 of LNCS,
pages 306–315. Springer, 2010. doi: 10.1007/978-3-642-19440-5_20.

[8] A. Johnstone and E. Scott. Principled and Pragmatic Speci�cation of Pro-
gramming Languages. In B. Dongol, L. Petre, and G. Smith, editors, Formal

xv

xvi

Methods Teaching Workshop (FMTea), pages 165–180. Springer, 2019. doi:
10.1007/978-3-030-32441-4_11.

[9] J. Kennedy van Dam and V. Zaytsev. Software Language Identi�cation with
Natural Language Classi�ers. In K. Inoue, Y. Kamei, M. Lanza, and N. Yoshida,
editors, Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering: the Early Research Achievements track
(SANER ERA), pages 624–628. IEEE, 2016. doi: 10.1109/SANER.2016.92.

[10] J. Kurš, G. Larcheveque, L. Renggli, A. Bergel, D. Cassou, S. Ducasse, and
J. Laval. Deep into Pharo, chapter 18 PetitParser: Building Modular Parsers,
pages 375–410. Square Bracket Associates, 2013. doi: 10.7892/boris.47152.

[11] R. Lämmel. Software languages: Syntax, Semantics and Metaprogramming.
Springer, 2018. Book’s website: http://www.softlang.org/book, doi:
10.1007/978-3-319-90800-7.

[12] N. Laurent and K. Mens. Taming Context-Sensitive Languages with Prin-
cipled Stateful Parsing. In Proceedings of the Ninth International Confer-
ence on Software Language Engineering, SLE, page 15–27. ACM, 2016. doi:
10.1145/2997364.2997370.

[13] H. S. Pham, S. Nijssen, K. Mens, D. Di Nucci, T. Molderez, C. De Roover,
J. Fabry, and V. Zaytsev. Mining Patterns in Source Code using Tree Mining
Algorithms. In P. K. Novak, T. Šmuc, and S. Džeroski, editors, Proceedings of
the 22nd International Conference on Discovery Science (DS). Springer, 2019.
doi: 10.1007/978-3-030-33778-0_35.

[14] F. Steimann. Replacing Phrase Structure Grammar with Dependency Grammar
in the Design and Implementation of Programming Languages. In Proceed-
ings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Re�ections on Programming and Software, Onward!, page 30–43.
ACM, 2017. doi: 10.1145/3133850.3133859.

[15] M. Stijlaart and V. Zaytsev. Towards a Taxonomy of Grammar Smells. In
B. Combemale, M. Mernik, and B. Rumpe, editors, Proceedings of the 10th
International Conference on Software Language Engineering (SLE), pages 43–54.
ACM, 2017. doi: 10.1145/3136014.3136035.

[16] L. Włodarski, B. Pereira, I. Povazan, J. Fabry, and V. Zaytsev. Quality First! A
Large Scale Modernisation Report. In X. Wang, Z. Chen, and J. Hu, editors,
Proceedings of the 26th IEEE International Conference on Software Analysis,

xvi

xvii

Evolution and Reengineering — Industry Track (SANER IT), pages 569–573, 2019.
doi: 10.1109/SANER.2019.8668006.

[17] V. Zaytsev. Language Design with Intent. In D. Batory, J. Gray, and V. Kulkarni,
editors, Proceedings of the ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MoDELS), pages 45–52. IEEE, 2017.
doi: 10.1109/MODELS.2017.16.

[18] V. Zaytsev. Parser Generation by Example for Legacy Pattern Languages. In
M. Flatt and S. Erdweg, editors, Proceedings of the 16th International Conference
on Generative Programming: Concepts and Experience (GPCE), pages 212–218.
ACM, 2017. doi: 10.1145/3136040.3136058.

[19] V. Zaytsev. An Industrial Case Study in Compiler Testing. In D. J. Pearce,
T. Mayerhofer, and F. Steimann, editors, Proceedings of the 11th International
Conference on Software Language Engineering (SLE), pages 97–102. ACM, 2018.
doi: 10.1145/3276604.3276619.

[20] V. Zaytsev. Event-Based Parsing. In T. Kamina and H. Masuhara, editors,
Proceedings of the Sixth Workshop on Reactive and Event-based Languages and
Systems (REBLS), 2019. doi: 10.1145/3358503.3361275.

[21] V. Zaytsev. Modelling of Language Syntax and Semantics: The Case of the
Assembler Compiler. Journal of Object Technology (ECMFA@JOT), 19, July
2020. doi: 10.5381/jot.2020.19.2.a5.

xvii

xviii

Programme Committee
To process papers for the post-proceedings, we are grateful to have relied on the
following programme committee members:

• Andrei Chiş (feenk, Switzerland)

• Johan Fabry (Raincode Labs, Belgium)

• Adrian Johnstone (Royal Holloway, UK)

• Stefan Marr (University of Kent, UK)

• Fabio Niephaus (Hasso Platner Institut, Germany)

• Elizabeth Scott (Royal Holloway, UK)

• Anthony Sloane (Australia)

• Tijs van der Storm (CWI & University of Groningen, The Netherlands)

• Vadim Zaytsev (University of Twente, The Netherlands)

xviii

xix

Contents
Frontmatter
Welcome from the Chairs .. iii
5th International Workshop on Programming Technology for the Future Web (ProWeb2021) .. vi
7th International Workshop on Programming Experience (PX/21).. viii
4th Raincode Labs Compiler Coding Dojo (CoCoDo 2021) .. xi

ProWeb 2021
Rec.HTML: Declarative HTML

Bob Reynders and Kwanghoon Choi — Chonnam National University, Republic of Korea .. 1
Oron: Towards a Dynamic Analysis Instrumentation Platform for AssemblyScript

Aäron Munsters, Angel Luis Scull Pupo, Jim Bauwens, and Elisa Gonzalez Boix — Vrije Universiteit Brussel, Belgium 6

PX/21
Exploring Modal Locking in Window Manipulation: Why Programmers Should Stash, Duplicate, Split, and Link

Composite Views
Marcel Taeumel and Robert Hirschfeld — University of Potsdam, Germany .. 14

Improving on the Experience of Hand-Assembling Programs for Application-Specific Architectures
Ian Piumarta — Kyoto University of Advanced Science, Japan ... 21

Javardeye: Gaze Input for Cursor Control in a Structured Editor
André L. Santos — Instituto Universitário de Lisboa (ISCTE–IUL), ISTAR-IUL, Portugal ... 31

Studying Programmer Behaviour at Scale: A Case Study using Amazon Mechanical Turk
Jason T. Jacques and Per Ola Kristensson — University of Cambridge, United Kingdom .. 36

Towards End-User Web Scraping for Customization
Kapaya Katongo, Geoffrey Litt, and Daniel Jackson — MIT CSAIL, USA ... 49

Toward Exploratory Understanding of Software using Test Suites
Dominik Meier, Toni Mattis, and Robert Hirschfeld — University of Potsdam, Germany ... 60

CoCoDo 2021
From ASTs to Machine Code with LLVM

Dimitri Racordon — University of Geneva, Switzerland ... 68

Author Index ... 77

