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Abstract
A trait is a unit of behaviour that can be composed with other
traits and used by classes. Traits offer an alternative to mul-
tiple inheritance. Conflict resolution of traits, while flexible,
does not completely handle accidental method name con-
flicts: if a trait with method m is composed with another trait
defining a different method m then resolving the conflict may
prove delicate or infeasible in cases where both versions of
m are still needed. In this paper we present freezeable traits,
which provide an expressive composition mechanism to sup-
port unanticipated method composition conflicts. Our solu-
tion introduces private trait methods and lets the class com-
poser change method visibility at composition time (from
public to private and vice versa). Moreover two class com-
posers may use different composition policies for the same
trait, something which is not possible in mainstream lan-
guages. This approach respects the two main design princi-
ples of traits: the class composer is empowered and traits can
be flattened away. We present an implementation of freez-
able traits in Smalltalk. As a side-effect of this implementa-
tion we introduced private (early-bound and invisible) meth-
ods to Smalltalk by distinguishing object-sends from self-
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sends. Our implementation uses compile-time bytecode ma-
nipulation and, as such, introduces no run-time penalties.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Languages Constructs and Features – Classes
and objects; Inheritance

General Terms Languages

Keywords Dynamic typing, traits, encapsulation, informa-
tion hiding, composition.

1. Introduction
Traits are pure units of reuse consisting only of methods
[SDNB03, DNS+06]. Traits can be composed to form ei-
ther other traits or classes. They are recognised for their
potential in supporting better composition and reuse, hence
their integration in the latest versions of languages such
as Perl 6, Squeak [IKM+97], Scala [sca], Slate [Sla] and
Fortress [for]. Although traits were originally designed for
dynamically-typed languages, there has also been consider-
able interest in applying traits to statically-typed languages
[FR03, SD05, NDS06].

One of the key design principles behind traits is that
they empower the composer of traits. The composer has
the full control of the composition and the conflict resolu-
tion [DNS+06]. The design principle behind traits was to
favor simplicity over completeness [Bra92] or expressive-
ness [Mey97]. In our opinion it is important that language
features stay simple to avoid overwhelming existing devel-
opers, and to ease their introduction in existing languages
when possible. This simplicity-by-design works well in most
cases, but has two drawbacks. First of all there is no notion
of visibility in traits, which may increase the number of con-
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flicting methods that have to be handled at composition time.
This does not pose any conceptual problems, but can become
tedious in practice. But worse, a number of unanticipated
method clash problems are sometimes poorly handled. This
is shown in the contrived but compact example of Figure 1.

 
 
Composer

T1
foo {self x}
x    {^ 'T1'}

T2
bar {self x}
x    {^ 'T2'}

trait trait composition

Figure 1. Name clash with traits: in Composer either T1’s
x, T2’s x or a new method x is called by both foo and bar.

Figure 11 shows a class, Composer, that uses two traits
T1 and T2, each of which introduce a method x. T1 and
T2 are therefore said to be in conflict since both define a
method x. One strong requirement is not to modify T1 or T2
as they might be used by other classes or as part of other
trait compositions. With the original trait conflict resolution,
the conflict may be resolved by either removing one method
x, from the composition or by defining a method x in the
Composer class, essentially overriding both x’s. These two
simple approaches to handle the conflict turned out to be
very practical (as shown by the refactorings of several large
hierarchies [BSD03]2).

However, there are some cases where the conflict reso-
lution of traits is not satisfactory: there is no way to let the
methods foo and bar access the method x contained in their
respective traits. Either T1’s x, T2’s x or a new method x has
to be present in the class Composer. That said, if the x meth-
ods are specific helper methods in their respective trait (i.e.,
the behavior of foo depends on the behavior of T1’s x and
the behavior of bar depends on the behavior of T2’s x), then
the composition and conflict resolution will break foo, bar or
both. This prevents traits from being used in an unanticipated
manner in certain scenarios, and lowers their reusability.

The composition problem we just described with traits is
actually more general and exists in other systems as well,
together with a number of solutions. Eiffel’s key composi-
tion mechanism offers the ability to rename methods to re-
solve method conflicts [Mey97]. Encapsulation policies of-
fer a way to constrain encapsulation interfaces for different

1 Double arrowhead represents trait composition. ∧ indicates a return value.
(cf., Smalltalk syntax)
2 Conflicts did not arise for the simple fact that the code being refactored
came from a single inheritance hierarchy.

users [SBD04]. This approach could be used to solve unan-
ticipated method name clashes in traits (which actually was
the original goal, even if not presented as such in the paper).
While encapsulation policies can be used to deal with unan-
ticipated method name conflicts they introduce an extra con-
cept in the language: the encapsulation policy. Integrating
encapsulation policies in a host language is difficult. This is
why we looked for another solution and arrived at freezable
traits, presented in this paper.

Freezable traits is a composition mechanism that deals
with unanticipated method-name conflicts. It is based on the
ability to have private methods (early bound and non-visible)
within a trait, that can change their visibility at composition
time. Also, two composers of the same trait can have differ-
ent composition concerns. This supports the key principle of
traits: the composer has full control over the composition.
The composer may decide to make a method private or pub-
lic to solve a conflict in a specific composition. Our solution
supports the flattening property of traits [DNS+06, NDS06]
i.e., that traits can be flattened away and do not change the
run-time semantics of method lookup.

A point of vocabulary. A composer is a class or a compos-
ite trait composed from other traits. A client is a class that
sends messages to an instance of a class that may have been
composed from traits (see Figure 2).

T1
foo

 
 
Composer

T2
bar

 
 
Client

 
 

C1

trait trait composition

Figure 2. A Composer (a class or a trait) composes behavior
from existing traits and superclasses. A Client uses the result
of the composition.

In Section 2 we present the original traits design and
identify its limitations for resolving method conflicts. In
Section 3 we describe freezable traits, a minimal extension
of the original traits model in which traits define access
rights for methods, and composers may redefine those rights.
In Section 4 we describe the operator semantics. In Sec-
tion 5 we present the implementation of freezable traits in
a dynamically-typed language. Our implementation is based
on bytecode transformation, is purely static, and does not
introduce any run-time costs. In Section 6 we discuss the
tradeoffs of the various mechanisms for resolving conflicts.
In Section 8 we provide an overview of related work. In Sec-



tion 9 we conclude by summarising the presented work and
outlining future work.

2. Traits and their limitations
This section presents traits in a nutshell [DNS+06]. A reader
already familiar with traits may skip this section and jump
directly to Section 2.2, which describes the limitations of
conflict resolution. These limitations are resolved through
the introduction of freezable traits in Section 3.

2.1 Traits as units of behaviour
Reusable groups of methods. Traits are sets of methods
that serve as the behavioural building block of classes and
primitive units of code reuse [DNS+06]. In addition to of-
fering behaviour, traits also require methods, i.e., methods
that are needed so that trait behaviour is fulfilled. Traits do
not define state, instead they require accessor methods.

lock
lock:
isBusy
hash

lock
SyncStream

TSyncReadWrite
syncRead
syncWrite
hash

read
write
lock:
lock

@{hashFromSync -> hash}

TStream
read
write
hash

@{hashFromStream -> hash}

syncRead
    | value |
    self lock acquire.
    value := self read.
    self lock release.
    ^ value

syncWrite
    | value |
    self lock acquire. 
    value := self write.
    self lock release.
    ^ value

hash
    ^ self hashFromSync
        bitXOr: self hashFromStream

Figure 3. The class SyncStream is composed of the two
traits TSyncReadWrite and TStream.

Figure 3 shows a class SyncStream that uses two
traits, TSyncReadWrite and TStream. The trait TSyn-
cReadWrite provides the methods syncRead, syncWrite
and hash. It requires the methods read and write, and
the two accessor methods lock and lock:. We use an
extension to UML to represent traits (the right col-
umn lists required methods while the left one lists the
provided methods).

Explicit composition. A class contains a super-class ref-
erence, uses a set of traits, defines state (variables) and be-
haviour (methods) that glue the traits together; a class im-
plements the required trait methods and resolves any method
conflicts.

Trait composition respects the following three rules:

• Methods defined in the composer take precedence over
trait methods. This allows the methods defined in a com-

poser to override methods with the same name provided
by the used traits; we call these methods glue methods.
• Flattening property. In any class composer the traits can

be in principle in-lined to give an equivalent class defini-
tion that does not use traits.
• Composition order is irrelevant. All the traits have the

same precedence, and hence conflicting trait methods
must be explicitly disambiguated.

Conflict resolution. While composing traits, method con-
flicts may arise. A conflict arises if we combine two or more
traits that provide identically named methods that do not
originate from the same trait. There are two strategies to
resolve a conflict: by implementing a (glue) method at the
level of the class that overrides the conflicting methods, or
by excluding a method from all but one trait. Traits allow
method aliasing; this makes it possible to introduce an addi-
tional name for a method provided by a trait. The new name
is used to obtain access to a method that would otherwise be
unreachable because it has been overridden [DNS+06].

In Figure 3, the class SyncStream is composed from
TSyncReadWrite and TStream. The trait composition
associated to SyncStream is:

TSyncReadWrite alias hashFromSync → hash
+ TStream alias hashFromStream→ hash

The class SyncStream is composed of (i) the trait
TSyncReadWrite for which the method hash is aliased
to hashFromSync and (ii) the trait TStream for which
the method hash is aliased to hashFromStream.

Method composition operators. The semantics of trait
composition is based on four operators: sum (+), override
(.), exclusion (−) and aliasing (alias→) [DNS+06].

The sum trait TSyncReadWrite + TStream contains all
of the non-conflicting methods of TSyncReadWrite and
TStream. If there is a method conflict, that is, if TSyn-
cReadWrite and TStream both define a method with the
same name, then in TSyncReadWrite + TStream that name
is bound to a known method conflict. The + operator is as-
sociative and commutative.

The override operator (.) constructs a new composition
trait by extending an existing trait composition with some
explicit local definitions. For instance, SyncStream over-
rides the method hash obtained from its trait composition.

A trait can exclude methods from an existing trait using
the exclusion operator −. Thus, for instance, TStream −
{read, write} has a single method hash. Exclusion is used
to avoid conflicts, or if one needs to reuse a trait that is “too
big” for one’s application.

The method aliasing operator alias → creates a new trait
by providing an additional name for an existing method.
For example, if TStream is a trait that defines read, write



and hash, then TStream alias hashFromStream → hash is
a trait that defines read, write, hash and hashFromStream.
The additional method hashFromStream has the same body
as the method hash. Aliases are used to make conflicting
methods available under another name, perhaps to meet the
requirements of some other trait, or to avoid overriding. Note
that since the body of the aliased method is not changed in
any way, an alias to a recursive method is not recursive.

x   {^ 'C'}
 
Composer

T1
foo {self x}
x    {^ 'T1'}

T1 - x

 
 
Composer

Conflict resolution via method 
redefinition in Composer

Excluding x from T1

Composer new foo -> 'C'
Composer new bar -> 'C'
Composer new x -> 'C'

Composer new foo -> 'T2'
Composer new bar -> 'T2'
Composer new x -> 'T2'

T2
bar {self x}
x    {^ 'T2'}

T1
foo {self x}
x    {^ 'T1'}

T2
bar {self x}
x    {^ 'T2'}

Figure 4. Trait conflict resolution strategies: either via
method redefinition or via method exclusion.

In the following section we use the compact example
shown in Figure 4.

Trait Design Principles. Three principles guided the de-
sign of traits: first, traits should represent a minimal pertur-
bation to a classic class-based language. Second, conflicts
are detected automatically and there is no implicit conflict
resolution. When conflicts are detected the composer is re-
sponsible for resolving them explicitly using the available
composition operators. Third, traits can be flattened away
(they do not impose a runtime semantics and can therefore
be compiled away).

stream
openStream
closeStream

SyncStream

TSyncReadWrite
write
syncWrite
read
contents

stream

TStream
write
asFile:

openStream
closeStream

write
    self stream nextPutAll: self 
contents

syncWrite
    | value |
    self lock acquire. 
    value := self write.
    self lock release.
    ^ value

write
    [self openStream] 
          on: Error 
          do: [self closeStream]

asFile: fileName
    | file |
  file := File new.
  file setName: fileName.
  file content: (self write).
  file close

Figure 5. Name clash with traits

2.2 Trait conflict resolution limits
While trait composition lets the class composer resolve con-
flicts by redefining methods in the composer or excluding

them from the composed traits, there are conflicts that are
not well handled by traits. Figure 5 illustrates the problem.
The class SyncStream is composed of two traits TSyncRead-
Write and TStream. Since both traits define the method write,
a conflict arises when composing TSyncReadWrite with
TStream: the two write methods are different, neither being
compatible or composable. They are both used in different
non-composable contexts. The default trait conflict resolu-
tion is of no help since excluding the method write does not
work — each respective trait needs to invoke its specific
write method. Redefining the method write in the class does
not work either because the behaviours of the two methods
are not composable. Even wrapping one of the traits in an-
other trait or class does not solve the problem, as traits can
be flattened away at composition time without any means to
rename a method. The only solution for the developer may
be to rewrite one of the traits which is clearly against the
trait goal to support reusable composable abstractions.

3. Freezable traits: adjusting method
visibility at composition-time

As was discussed in detail in previous section, composing
traits may result in conflicts, and for some compositions the
desired solution cannot be expressed without rewriting some
of the conflicting methods.

3.1 Adjusting visibility
This paper solves the composition problems of the origi-
nal traits by introducing slight changes to the original traits
model. First we consider now that the host language sup-
ports two access modifiers (private and public). Then two
new composition operators let a composer change method
accessibility at composition time.

With freezable traits, a trait developer gives each method
a default access modifier of either private (-) or public (+),
similar to the access modifiers in Java or C++ for example:

• a private method is only accessible from within the defin-
ing trait. It is therefore bound early to the defining trait
and not visible to the client or the composer. Other meth-
ods within the trait referring to the private method will
always refer to it, even when they are composed with an-
other class or trait.
• a public method is dynamically bound and visible to the

client and the composer, behaving as in the original traits
model. The method may be overridden in the composer,
and sends from methods in the trait to a public method
will then result in the execution of the overridden method
in the composer.

Unlike most existing languages, the default access mod-
ifiers can be changed by the composer at composition time
with the help of two new operators: freeze (making a public
method private) and defrost (making a private method pub-
lic).



 
Composer

Freezing T1 x
(a) 

Composer new foo -> 'T1'
Composer new bar -> 'T2'
Composer new x -> 'T2'

T1
+ foo {self x}
+ x { ^ 'T1'}

T2
+ bar {self x}
+ x { ^ 'T2'}

T1 freeze x

 
Composer

Freezing T2 x and T2 x
(b)  

Composer new foo -> 'T1'
Composer new bar -> 'T2'
Composer new x -> Error

T1
+ foo {self x}
+ x { ^ 'T1'}

T2
+ bar {self x}
+ x { ^ 'T2'}

T2 freeze x

+ x {^'C'}
Composer

T1
+ foo {self x}
- x { ^ 'T1'}

T2
+ bar {self x}
- x { ^ 'T2'}

Conflict resolution via method 
redefinition in Composer

(c)

Composer new foo -> 'C'
Composer new bar -> 'C'
Composer new x -> 'C'

 
Composer

Defrosting T1 x and freezing T2 x
(d) 

Composer new foo -> 'T1'
Composer new bar -> 'T2'
Composer new x -> 'T1'

T1
+ foo {self x}
- x { ^ 'T1'}

T2
+ bar {self x}
+ x { ^ 'T2'}

T1 defrost x T2 freeze x

T1 freeze x

T1 defrost xT2 defrost x

Figure 6. Freeze and defrost semantics illustrated.

Access-modifiers are a well-known mainstream lan-
guage feature. They are typically seen as simple and well-
understood mechanisms, but their exact semantics differ
between languages. For example Section 8 shows the se-
mantics of private in Ruby, where private methods can be
overridden in subclasses, while for example, in Java pri-
vate methods are not inherited and may not be overrid-
den [GJSB05] (p. 144, section 6.6.8). With freezable traits
the semantics of public and private combine notions of visi-
bilty and early/late binding, as explained in detail in the fol-
lowing sections. Their implementation is simple as shown in
Section 5.

Note that the client only has access to the public methods
resulting from the composition process. Freezable traits fol-
low the original traits philosophy of having few composition
operators and putting the composer in charge of the conflict
resolution.

Figure 6 shows four often-occurring scenarios when ap-
plying traits in the freezable traits model.

• In (a), the two public methods x conflict. To avoid this
situation, the composer decides to freeze T1 x. Therefore
the x invocation in T1 foo is early bound to T1 x. As a con-
sequence, the method foo always invokes T1 x, regardless
of whether the Composer class is subclassed or not (i.e.,
the dynamic type of self differs from Composer).
In addition T1’s x is not visible in the composer, therefore
invoking x returns the value ’T2’ according to the defini-

stream
openStream
closeStream

SyncStream

TSyncReadWrite
write
syncWrite

stream

TStream
write
asFile:

openStream
closeStream

write
    self stream nextPutAll: self 
contents

syncWrite
    | value |
    self lock acquire. 
    value := self write.
    self lock release.
    ^ value

write
    [self openStream] 
          on: Error 
          do: [self closeStream]

asFile: fileName
    | file |
  file := File new.
  file setName: fileName.
  file content: (self write).
  file close

TSyncReadWrite freeze write 

Figure 7. Conflict resolution with the freeze operator.

tion of T2. Since T2’s x is dynamically bound, bar invokes
it.
• In (b) the two public methods x conflict, and the com-

poser decides to freeze them both. Therefore the invoca-
tion of x in T1 foo is bound to T1 x and the one in T2
bar to T2 x. With none of the methods x being visible for
the client, it cannot send a message x to an instance of
Composer.
• In (c) the two methods x are private. The composer de-

cides to defrost the two methods x. This generates a com-
position conflict that is then handled by defining a new
method x in the class Composer. Invoking x in T1 foo
and in T2 bar results in the execution of this new method
x, since x is dynamically bound.
• In (d) the method T1 x is private while the method T2 x is

public. The composer decides to freeze T2 x and defrost
T1 x. Therefore, we end up with the opposite situation
from (a).

Using freezable traits, the situation we described in Fig-
ure 5 can be easily solved, since the composer can exclude,
redefine or freeze the conflicting method. Figure 7 illustrates
the solution where one of the conflicting methods is frozen.

The fact that the composer decides the final visibility of
methods at composition time implies that a same trait can
have different visibilities for its methods in different compo-
sitions. For example, Figure 8 illustrates how the trait TSyn-
cReadWrite can be used by two classes, SyncStream and Se-
quenceableStream. The former class uses TSyncReadWrite
freeze write, whereas the latter simply uses it. From the point
of view of SyncStream, the method write is frozen. TSyn-
cReadWrite only defines one method, syncWrite. From the
point of view of SequenceableStream, TSyncReadWrite de-
fines two methods, write and syncWrite, each being publicly
accessible from this class.



stream
openStream
closeStream

SyncStream

TSyncReadWrite
write
syncWrite

stream
TStream

write
asFile:

openStream
closeStream

TSyncReadWrite freeze write 

stream

SequenceableStream

Figure 8. Different visibility policies can be applied to the
same trait.

3.2 Freezing in the presence of subtraits
This section extends the notion of freezing to traits that
are themselves composed from other traits (subtraits) and
thus create trait composition hierarchies. A natural question
that arises then is what happens when we start freezing
and defrosting when composing such hierarchies. Since the
response to this question is not as simple as one might
think, this section focusses just on freezing. The next section
tackles defrosting.

 
Composer

T1
+ foo { ^ self x }
+ x { ^ 'T1' }

T2
+ zork { ^ self x }
+ x  { ^ 'T2' }

T0 freeze x

T4
+ blop { ^ self x }
+ x { ^ 'T4' }

T3
+ bar { ^ self x }
- x { ^ 'T3' }

T0

T0-Flattened

+ bar { ^ self T3.x }
- T3.x { ^ 'T3' }
+ blop { ^ self x }
+ foo { ^ self x }
+ x { ^ 'T1' }

(a) Freezing x in T0 (b) The flattened view of trait T0

Figure 9. Freezing a trait composed from subtraits.

The previous section explains the basic mechanism of
freezing, i.e., making a public method private and therefore
making all local calls to this method static. When a trait is
itself composed from other traits (its subtraits), and these
traits again have subtraits, we have to think about exactly
what methods need to be frozen. We present the possible
alternatives for the freezing semantics and then discuss our
choice.

Figure 9(a) pictures a trait composition where we want to
freeze a method x. The result of freezing x could be:

1. All public methods x are frozen, all the way up the trait
composition chain. In the given example this would mean

that the methods x provided from T4 as well as T1 are
made private, and that therefore blop would call x in T4
and foo would call x in T1. There would be no changes
for T3.

2. The public method in the flattened trait that needs to
be frozen is made private, and the callers of this newly
private method become static calls.
Note that in the flattened version of a trait, there is at
most one method with the given name to be frozen. In
the example given, the flattened trait T0, shown in Fig-
ure 9(b), only has one public method x, namely the one
provided by T1, which overrides the method x from T4.
This method is made private, and the dynamic calls to it
in methods blop and foo become static.

3. We could simply disallow freezing a method which is
provided by a subtrait and not provided by the composed
trait itself. In the example this would mean that there is
a composition error since x is not provided by T0 but is
provided by T1, a subtrait of T0.

4. We could decide to add explicit references to indicate the
exact method to be frozen. So instead of saying Com-
poser uses {T0 freeze x} + {T2} we should write Com-
poser uses {T0 freeze T1.x} + {T2} to freeze the public
method x in T1.

We decided in favour of the second option, and say that
freezing a method x in a trait T means making at most the
public method x of the flattened trait T private. This option
respects the principle of least astonishment. The result of
freezing a trait hierarchy and using it in a composition is that
you decide to use it as-is, with all calls going to the methods
as though the trait were not composed. Option 1 completely
changes the composition since suddenly calls that would
result in the invocation of one method suddenly are bound
to another one after the freezing. In our example this would
mean that both the x provided by T1 as the one provided by
T4 would be frozen, and therefore blop would call its private
method x and return ’T4’ when invoked, instead of ’T1’ before
the freezing.

Note that using the flattened trait T implies that only non-
conflicting methods may not be frozen. For example, if in
Figure 6(a) there would be no freeze clause T1 freeze x, then
another trait using Composer could not freeze x.

The second option also respects encapsulation: saying
that method x is frozen in trait T freezes method x in T
regardless of where it comes from. Option 3 is unattractive,
since the composer should not care whether a used trait is
composite or not. Option 4 introduces unwanted fragility,
since aspects of the composition hierarchy are hardcoded
into the freezing expressions.

With the chosen semantics, Figure 10 shows that calls to x
would result in the same method execution in T0 before and
after the composition. The left part shows the composition of



Suppose we could instantiate T0:
T0 new x -> 'T1'

T0 new foo -> 'T1'
T0 new bar -> 'T3'
T0 new blop -> 'T1'

Composer new zork -> 'T2'
Composer new x -> 'T2'

Composer new foo -> 'T1'
Composer new bar -> 'T3'
Composer new blop -> 'T1'

T1
+ foo {self x}
+ x { ^ 'T1'}

T4
+ blop {^ self x}
+ x { ^ 'T4'}

T3
+ bar {self x}
- x { ^ 'T3'}

T0

 
Composer

T1
+ foo { ^self x }
+ x { ^ 'T1' }

T2
+ zork { ^self x }
+ x  {^ 'T2' }

T0 freeze x

T4
+ blop { ^self x }
+ x { ^ 'T4' }

T3
+ bar { ^self x }
- x { ^ 'T3' }

T0

Figure 10. Freezing a trait composed from subtraits results
in the flattened trait being used when freezing.

trait T0 by itself. Let’s suppose for a moment that we could
instantiate a trait and send messages to it, which allows us
to investigate the method lookup results. We observe that
calls in foo and bar are late bound, and would result in the
execution of method x of T1. Method bar is statically bound
to the private method x in T3. When trait T0 is used in a
composition, as shown in the right part of Figure 10, and x
is frozen in T0, the results of sending messages foo, bar and
zork are exactly the same as for trait T0 by itself. This is why
we dubbed the operation freeze in the first place: the existing
behaviour before composing is frozen and used as such in
the composition.

3.3 Defrosting in the presence of subtraits
The defrost operator makes a a previously frozen method
public. This section is dedicated to how this operator be-
haves with a potentially deep hierarchy of composing traits.

Defrost targets private methods, i.e., methods that are not
part of the public interface of a trait. One key semantic point
arises when several private methods x issued from a trait
composition belong to the same composite trait. Defrosting
x in such a situation deserves special attention, as discussed
in this section.

Figure 11 illustrates a situation where several private x
methods are present. Each of T3, T4 and T5 has a private x
present also in T0 as illustrated in the flattened representation
of T0. Note that these methods are present but not reachable
from composers. As in the previous section, we consider
several possible semantics for defrost:

1. All private methods x are defrosted, all the way up the
trait composition chain. In the hierarchy presented in
Figure 11, T0 defrost x results in three public x methods,
obtained respectively from T3, T4 and T5. These three
methods conflict is solved in Composer.

+ x  {^ 'Composer'}
Composer

T1
+ foo {self x}

T2
+ zork {self x}
+ x  {^ 'T2'}

T0 defrost x

T4
+ blop { ^ self x }
- x { ^ 'T4'}

T3
+ bar { ^ self x }
- x { ^ 'T3'}

T0

T0-Flattened

+ foo2 { ^ self T5.x }
- T5.x { ^ 'T5' }
+ bar { ^ self T3.x }
- T3.x { ^ 'T3' }
+ blop { ^ self T4.x }
- T4.x { ^ 'T4' }
+ foo { ^ self x }

(a) Defrosting x in T0

T5
+ foo2 { ^ self x }
- x { ^ 'T5'}

(b) The flattened view of trait T0

Figure 11. Defrosting in a trait composed from subtraits.

2. All private methods x all the way up the trait composition
chain that are not overridden are defrosted. Informally
this means that the ’lowest’ occurrences in the composi-
tion chain of x are made public. If Figure 11 would not
contain T3, then T0 defrost x would make T4.x public but
not T5.x. In the situation depicted by Figure 11, T0 de-
frost x will defrost the two private methods T3.x and T4.x
and reveal two public methods x obtained from T3 and
T4, thereby producing a method conflict. T5.x remains
private.

3. Only private methods from immediate subtraits can be
defrosted by the composer. Since T0 does not freeze any
x, it is an error to attempt to defrost x in T0.

4. We could decide to add explicit references to indicate
which methods to defrost. In that case, in order to defrost
T3’s x method we would have to write T0 defrost T3.x.

T1
+ foo {self x}

T2
+ zork {self x}
+ x  {^ 'T2'}

T0 defrost x

T4
+ blop { ^ self x }
- x { ^ 'T4'}

T3
+ bar { ^ self x }
- x { ^ 'T3'}

T0

Composer new zork -> 'Composer'
Composer new x -> 'Composer'

Composer new bar -> 'Composer'
Composer new blop -> 'Composer'
Composer new foo2 -> 'T5'
Composer new foo -> 'Composer'

T1
+ foo {self x}

T4
+ blop { ^ self x }
- x { ^ 'T4'}

T3
+ bar { ^ self x }
- x { ^ 'T3'}

T0

Suppose we could instantiate T0:
T0 new bar -> 'T3'
T0 new blop -> 'T4'
T0 new foo2 -> 'T5'
T0 new x -> error, x not found
T0 new foo -> error, x not found

T5
+ foo2 { ^ self x }
- x { ^ 'T5'}

T5
+ foo2 { ^ self x }
- x { ^ 'T5'}

+ x  {^ 'Composer'}
Composer

Figure 12. Defrosting in a trait composed from subtraits.



We decided in favour of the second option because it
makes defrost dual to its counterpart, freeze. This means that
freezing and then defrosting the same method x in a trait T is
equivalent to T. In that case, we have the following relation:
T freeze x defrost x = T. It is then possible to deduce T defrost
x freeze x = T.

Option 1 does not offer this duality. Whereas T0 defrost x
freeze x = T0 since all x in T0 are private, (T0 + T2) defrost x
freeze x would not be equal to (T0 + T2) since T2’s x would
be private. This would also break encapsulation.

Option 3 would not allow us to formulate the expression
T freeze x defrost x since T freeze x is a new trait that does
not directly define x (even privately).

Option 4 uses harcoded prefixes that break encapsulation
and would thereby make trait composition fragile with re-
gard to changes in subtrait composition.

It is worth noting that defrosting a method may lead to a
conflict as it happens in T0 defrost x. However this situation
is easily solved as illustrated in Figure 11. Defrosting x in
T0 turns T3 and T4’x public, which results in a conflict. This
conflict is solved in Composer by defining a new x. Note that
this new version of x is the one invoked by zork.

One characteristic of our design decision is that not every
private method is defrosted, only those that are reachable
(e.g. that are not overridden). On the figure, the method x
issued from T5 may not be defrosted.

4. Operator semantics
To specify the semantics of the new operators we define
FREEZABLETRAITS, an extension of SMALLTALKLITE.
SMALLTALKLITE is a dynamic language calculus featur-
ing single inheritance, message-passing, field access and
updates, and self / super sends. SMALLTALKLITE has al-
ready been presented in a previous paper [BDNW07] and
is heavily inspired by CLASSICJAVA defined by Flatt et
al. [FKF98]. We repeated the full description of SMALL-
TALKLITE in the appendix to aid the reader, but we do not
consider it to be a contribution of this paper. We did not use
FEATHERWEIGHTJAVA, as in our previous work [NDS06],
since FEATHERWEIGHTJAVA is purely functional and does
not support super. Moreover, we would like to have a com-
mon calculus to express both stateful traits [BDNW07] and
freezable traits.

The syntax of FREEZABLETRAITS is presented in Fig-
ure 13. Note that we do not provide syntax for declaring
methods public or private, since (i) this is not needed to de-
fine the semantics of the operators, and (ii) this can be sim-
ulated post hoc by defining a new trait in which methods to
be made private are frozen.

The example described in Figure 5 that presents the
stream synchronization problem is written with FREEZ-
ABLETRAITS as follows:

trait TSyncReadWrite {
write () { ”implementation 1” ... }

syncWrite () {
self.lock.acquire()
let value = self.write() in {

self.lock.release()
value }

}
}

trait TStream {
write () { ”implementation2” ... }
asFile (fileName) {

let file = new File () in {
file.setName (fileName)
file.content (self.write())
file.close() }

}
}

}

4.1 Flattening property
A key feature of traits is that they can be flattened [DNS+06].
This means that adding traits to a language does not require
a change to the method lookup semantics. As a direct conse-
quence, traits can be compiled away.

We demonstrate the flattening property for traits with the
freeze and defrost operators by defining a flattening function
from FREEZABLETRAITS to SMALLTALKLITE.

We distinguish a named trait t from a trait expression τ
which may alias, exclude, freeze or defrost methods. A trait t
declares a number of methods, but no fields. A trait or a class
may use any number of traits, possibly modifying them in a
trait expression. A trait expression τ may (i) define an alias
m′ for an existing method m, (ii) exclude a method m, (iii)
freeze a method (i.e., hide a method and statically bind it),
(iv) make a (previously frozen) method publicly visible.

Figure 14 presents the flattening function. The flattening
is expressed by translating an expression defining a class that
references traits to a plain class and method definitions. The
translation expands trait expressions to method declarations
and is valid if the resulting classes contain no conflicts. The
translation is specified in terms of five trait operators (Fig-
ure 15). Trait composition (+) may generate conflicts if two
methods with the same name occur in the composed traits.
Class methods take precedence (.) over any used trait meth-
ods. Aliasing may generate a conflict if a method has already
been defined under the name of the alias. If the method be-
ing aliased does not exist, there is no effect. Exclusion sim-
ply removes the named trait. Freezing a method removes
this method from the interface of a trait, and statically binds
sends to it so that may it occur in other methods. Defrosting
a method makes it publicly visible and causes sends to it to
be dynamically bound.

To be able to fully describe the semantics of the operators
we chose to represent how the method visibility changes
in the context of our implementation, i.e., a dynamically-
typed object-oriented language. Therefore, we represent the
special treatment we perform on self-sends (see Section 5).
The mechanism to decide whether a message send would



P = defn∗e
defn = class c extends c′ { f∗meth∗τ∗ }

| trait t { meth∗τ∗ }
τ = t | τ alias m′ → m | τ minus m
| τ freeze m | τ defrost m

e = new c | x | self | nil
| f | f=e | e.m(e∗)
| super.m(e∗) | let x=e in e

t = a trait name
meth = m(x∗) { e }

c = a class name | Object
f = a field name
m = a method name
x = a variable name

Figure 13. FREEZABLETRAITS syntax.

[[def1 · · · defn]] = [[def1]] · · · [[defn]]
[[trait t { meth∗τ∗ }]] = ∅

[[class c extends c′ { f∗meth∗τ∗ }]] = class c extends c′ { f∗meth∗ . [[τ∗]] }
[[τ1 · · · τk]] = [[τ1]] + · · ·+ [[τk]]

[[t]] =
{

meth∗ if trait t { meth∗} ∈ P
meth∗ . [[τ+]] if trait t { meth∗τ+ } ∈ P

[[τ alias m′ → m]] = [[τ ]][m′ → m]
[[τ minus m]] = [[τ ]]−m
[[τ freeze m]] = [[τ ]][m′/m]self alias m′ → m minus m

where m′ = ρ[τ freeze m](m)
[[τ defrost m]] = [[τ ]][m/m′i]self alias m→ m′i minus m′i

where M = ρ[τ ′](m) and m′i ∈M

Figure 14. Flattening FREEZABLETRAITS to SMALLTALKLITE.

M1 +M2 = · · ·mi(x∗i ){>} · · ·mj(x∗j ){ej} · · · ,
∀mi(· · · ){· · · } occurring in both M1 and M2

∀mj(x∗j ){ej} occurring uniquely in one of M1 or M2,
M1 . M2 = · · ·mi(x∗i ){ei} · · ·mj(x∗j ){ej} · · · ,

∀mi(x∗i ){ei} occurring in M1,
∀mj(x∗j ){ej} occurring only in M2

M [m′ → m] =
{
M + [m′(x∗){e}] if m(x∗){e} ∈M
M otherwise

M −m =
{
· · ·Mj−1 Mj+1 · · · if Mj = m(· · · ){· · · }
M otherwise

M [m′/m]self = · · ·mi(x∗i ){ei[m′/m]self} · · · ,
∀mi(x∗i ){ei} occurring in M

Figure 15. Trait operations

cause (or not) a frozen method to be invoked, would have
to be adapted for a statically-typed language. The operator
semantics should be the same in terms of the results in the
composer and the client visibility.

The expression freeze m renames all the self-sends to m
to m′, where m′ is a new name obtained from the ρ[] hiding
function. The scope of this hiding is per trait. Moreover, ρ[] is
bijective. Detailed information on ρ[] is given in Section 4.3.

Conversely, defrost m renames all the m′ self-sends to
m, where m′ is the “hidden” name for m. It creates a new
alias m for m′, and excludes m′ from the trait. This needs
to be done throughout the composition hierarchy, for all m’s
that are not overridden. Defrosting a method m may reveal
several hidden methods m anchored in the composition.

Flattening occurs at composition time (i.e., during the
compilation). Before being executed, a program needs to be



new c [m′/m]self = new c
x [m′/m]self = x

self.m(e∗i ) [m′/m]self = self.m′(e∗i [m′/m]self)
self.n(e∗i ) [m′/m]self = self.n(e∗i [m

′/m]self), if n 6= m
nil [m′/m]self = nil

f=e [m′/m]self = f=e[m′/m]self

e.m(e∗i ) [m′/m]self = e[m′/m]self.m(e∗i [m
′/m]self)

super.m(e∗i ) [m′/m]self = super.m(e∗i [m
′/m]self)

super.n(e∗i ) [m′/m]self = super.n(e∗i [m
′/m]self), if n 6= m

let x = e in e′ [m′/m]self = let x = e[m′/m]self in e′[m′/m]self

> [m′/m]self = >

Figure 16. Self-send substitution

flattened (i.e., traits compiled away). To solve the method
conflict, the class SyncStream can be written as follows:

class SyncStream extends Object {
TSyncReadWrite freeze write + TStream freeze write
...

}

A flattened version of the SyncStream class is:

class SyncStream extends Object {
writeTSyncReadWrite () { ”implementation 1” }
syncWrite () {

self.lock.acquire()
let value = self.writeTSyncReadWrite() in {

self.lock.release()
value }

}
writeTStream () { ”implementation 2” }
asFile (fileName) {

let file = new File () in {
file.setName (fileName)
file.content (self.writeTStream())
file.close() }

}
}

}

The two methods write have been renamed to writeTSyn-
cReadWrite and writeTStream, respectively (cf Section 4.3).

4.2 Self sends
When a method has to be (un)frozen, sends that may occur
within the same trait have to be renamed. This is achieved
with the [m′/m]self m operator, presented in Figure 16. It
replaces the self.m(· · · ) pattern in self.m′(· · · ) where m′ is
a newly generated method name.

Since the scope of a freeze is the trait to which it is
applied, super-sends are not renamed.

When the expression TSyncReadWrite freeze write is flat-
tened, the call to write() contained in the syncWrite method
is translated into self.writeTSyncReadWrite(). Similarly, for
the TStream trait, the call of write() in asFile (fileName) is
renamed in self.writeTStream().

4.3 The hiding function
Hiding a method could be achieved by either defining a fix-
point [BL91, Section 4.7] or by simply generating a new
name for this method and renaming its invocations. Since the
defrost operation consists of making this method publicly
visible, it requires the original method name, so the hiding
function, ρ[], must be bijective.
ρ[] is an arbitrary bijective function, parameterized by

trait expressions, that maps method names to be frozen to
fresh names. It may make use of any information in the trait
expression to achieve the mapping.

Figure 17 describes the hiding function for freezable
traits. It recurses over the trait composition. Freezing a
method m associates a new name m′ to it, and defrosting it
simply remove this association. We write a hiding function
as a set of bindings, {m → m′, n → n′, . . .}. We assume
the following operations over such functions:

{m→ m′}+ {n→ n′} = {m→ m′, n→ n′}
{m→ m′}+ {m→ m′′} = {m→ m′,m→ m′′}
{m→ m′, n→ n′}\m = {n→ n′}
{m→ m′}\n = {m→ m′}
{m→ m′,m→ m′′, n→ n′}\m = {n→ n′}
{p→ p′,m→ m′} . {m→ m′′, n→ n′} =

{p→ p′,m→ m′, n→ n′}

Application looks up a binding, {m → m′}(m) = m′.
The result of a lookup may be a set of names if a name
is bound more than once, {m → m′,m → m′′}(m) =
{m′,m′′}. Such situation may arise when a name is de-
frosted.

Freezing a method results in renaming it with a fresh
name. Creation of this name occurs in the ρ[τ freeze m]

clause. We assume that a new name m′ is obtained from
m parametrised with τ . This implies that the fresh name is
recoverable in precisely the same context where it has been
originally generated. If we use τ freeze m twice in different



ρ[trait t { meth∗ }] = ∅
ρ[trait t { meth∗τ1···τk }] = ρ[τ1] + · · ·+ ρ[τk]

ρ[t] = ρ[trait t { meth∗τ∗ }]
where trait t { meth∗τ∗ } ∈ P

ρ[τ alias m′→m] = ρ[τ ]

ρ[τ minus m′→m] = ρ[τ ]

ρ[τ freeze m] = {m→ m′} . ρ[τ ]

where m′ is a fresh new name
ρ[τ defrost m] = ρ[τ ]\m

Figure 17. The ρ[] hiding function.

ρ[TSyncReadWrite] = ∅
ρ[TStream] = ∅

ρ[TSyncReadWrite freeze write] = {write→ writeTSyncReadWrite}
ρ[TStream freeze write] = {write→ writeTStream}

ρ[TSyncReadWrite freeze write + TStream freeze write] = {write→ writeTSyncReadWrite, write→ writeTStream}
ρ[TSyncReadWrite freeze write defrost write] = ∅

ρ[TStream freeze write defrost write] = ∅

Figure 18. Hiding function for the stream example.

contexts, then m is mapped to two different names. When
we defrost m, the correct mapped name is recovered.

By construction, we have:

ρ[τ freeze m defrost m] = ρ[τ freeze m]\m
= ({m→ m′} . ρ[τ ])\m
= ρ[τ ]

Generating a new method name could consist in append-
ing the name of a trait to a method name. Figure 18 gives
some definitions based on the stream example. Something
important to keep in mind is the fact that the expression ρ[··· ]
is a function. For instance, we have

ρ[TStream freeze write](write) = writeTStream

The ρ function returns the list of bindings related to non
overridden hidden methods. A hidden method that has been
overridden is not captured by ρ, and cannot be defrosted
therefore. According to the example given in Figure 12, we
have:

ρ[T0] = {x→ xT3, x→ xT4}

According to the semantics of ρ, the binding x→ xT5 is
not part of ρ[T0]: ρ[T5] = {x → xT5} but ρ[T4] = {x →
xT4}.

5. Implementing freezable traits in a
dynamically-typed language

We implemented freezable traits in Smalltalk, a dynamically-
typed language, since the original traits are fully imple-
mented in Squeak Smalltalk [IKM+97].

As is the case with most dynamic languages, Smalltalk
does not provide access modifiers, so our implementation
has to add them. Therefore a problem that had to be solved
in our implementation was how to introduce statically-bound
messages without relying on static types [Wol92, SBD04].
Our solution is based on syntactically distinguishing self-
sends from object-sends [TH05,SBD04] (see below). Before
presenting our approach we want to stress the difficulties
that arise when static types are not available to decide which
methods to invoke.

The challenge of introducing method hiding. Following
the analysis developed in [SBD04], there exist three possi-
bilities to distinguish which method to execute in absence of
static type annotations. We can use:

• the dynamic type (i.e., the class) of the receiver,
• the identity of the receiver, or
• the different kinds of message sends

We chose the third one, and therefore distinguish, self,
super and object-sends. Object-sends are always late-bound
and self-sends may be either early or late-bound [TH05].



Hiding methods in dynamically-typed languages. Our ap-
proach distinguishes between self-sends and object-sends. A
self-send is a message send to the pseudo-variable self (this
in Java). An object-send is a message that is not sent to self
or super.

With this syntactical distinction we have three different
message sends:

• Self-sends may have a visibility. They may be early
bound and not visible to a client or late bound and visible.
• Object-sends (i.e., invocations that syntactically do not

use the keyword self or this) are always late-bound and
public.
• Super-sends are static anyway and we do not change their

status. The lookup starts in the superclass of the class
containing the super expression.

Since our solution is based only on a syntactic distinc-
tion, freezable traits could also be applied to other dynamic
languages (e.g., Python and Ruby).

Note that Ruby [TH05] also distinguishes calls to private
methods syntactically (see Section 8). Syntactically distin-
guishing private calls establishes the following properties
(see [SBD04] for a deeper analysis):

• simple for developers to understand. It is more stable over
code changes and modification.
• more stable when confronted with its reflective be-

haviour.
• easier to implement, since it is based on syntactical dif-

ference. Hence it can be implemented efficiently at trait
composition time. As such it does not break the flattening
property since it does not introduce any run-time penal-
ties.

Implementation. To implement freezable traits we used
ByteSurgeon, a bytecode manipulation framework [DDT06].
Using it at composition time, we do not have to recompile
methods but just transform method bytecode to change se-
lected self-sends to reflect their visibility status. We then
install the resulting method in the class method dictionary of
the composer as shown by Figure 19 and 20.

In Figure 19, the class C considers the x methods to be
private helpers of their respective traits T1 and T2, therefore
it declares them to be frozen. The implementation then:

1. changes all the self-sends to x in the traits to be sent to
uniquely identified methods (e.g.,T2x in T2 and T1x in
T1),

2. copy and install in C the transformed methods containing
self-sends that have changed, and

3. add entries to the method dictionary of C using the new
names and pointing to the trait methods.

C

foo
   self x

x
  ^  'T1'

bar
   self x

x
  ^  'T2'

bar
foo
T2x
T1x

freeze x freeze x

foo
   self T1x

bar
   self T2x

foo
x

bar
x

 T1
+ foo {self x}
+ x  {^ 'T1'}

 T2
+ bar {self x}
+ x {^ 'T2'}

Uses trait

Trait Name
provided 
methods

required
methods

foo
x

Method 
dictionary

Legend

Figure 19. The composer freezes methods at composition
time. The early bound (frozen) methods are not visible to
the client.

In C the method foo is transformed: its self-send to x
now refers to the x method of T1, named T1x which is also
installed in the class C and shares the implementation of x.
The same happens with bar.

With such a mechanism, several composer classes may
use the same traits using different visibility constraints with-
out problem.

C

foo
   self T1x

x
  ^  'T1'

bar
   self x

x
  ^  'T2'

bar
foo
T2x
x

defrost x freeze x

foo
   self x

bar
   self T2x

foo
T1x

bar
x

 T1
+ foo {self x}
- x  {^ 'T1'}

 T2
+ bar {self x}
+ x {^ 'T2'}

Uses trait

Trait Name
provided 
methods

required
methods

foo
x

Method 
dictionary

Legend

Figure 20. The composer changes visibility at composition
time. The early bound (frozen) methods are not visible for
the client.

In Figure 20 the class C makes the frozen method x of
T1 public while at the same time making the method x of T2
private. Here the method x is frozen, and is not present in the
method dictionary of T1 under this name, but is available as
a hidden method T1x to the method foo which is calling x via
a self-send.

Imagine that in T1 we also have the method zork: arg
defined as follows:



zork: arg
arg x

In this method, arg x is a normal send (since it is not
a self-send). In the context of Figure 20, the expression C
new zork: C new will return ’T1’, since there is one method
x visible and the message arg x is late-bound. On the other
hand, if x is frozen or has become frozen as in Figure 19
then the same expression will raise an error since there is no
visible x method in C.

6. Renaming vs. hiding
There are three conflict resolution mechanisms in the freez-
able traits model:

• methods in the composer override methods provided
from traits,
• methods can be excluded, and
• methods can be frozen.

Each of these mechanisms solves the conflict by hiding
one or more methods. It is as though the methods were not
there in the first place, and they are therefore not propagated
in the composition. The composing entity has no knowledge
of frozen or excluded methods and, even more importantly,
neither do its clients or other composing entities.

Conflict resolution mechanisms based on hiding can be
contrasted to those based on renaming, even though at first
glance they look similar. When one or more conflicting
methods are renamed, conflicts are resolved as well.

The key difference between renaming and hiding lies in
the fact that renamed methods are part of the composing
entity, and clients of other composing entities have access
to them, whereas hidden methods are no longer visible. In
a system that makes heavy use of trait composition, the
presence of conflicting names can impede the effective reuse
of traits. Renamed methods will be carried along in the
composition, whether they are wanted or not. Exclusion may
not be an option if these methods are still needed. With
hiding this cannot happen. Methods are never along for the
ride unless the composer explicitly wants them to be.

7. Method conflicts revisited
The stateless traits model states that a conflict arises if two
or more traits are combined that provide identically named
methods that do not originate from the same trait [SDNB03,
DNS+06]. For freezable traits we note that this formulation
is not correct.

To illustrate the problem, Figure 21 shows a trait compo-
sition. Composer is composed from two subtraits, T0 and T1
that both are composing trait T. Note that x is being frozen
in T0 and T1, and unfrozen by Composer.

With the definition of conflicting methods given above
we are in trouble. There are no conflicts between the two
methods x, since they are both frozen. There is also no

 
Composer

T0
x { ^ 'T0'}

T1
x { ^ 'T1'}

freeze x

T
foo {self x}
x { ^ 'T'}

freeze x

unfreeze x

Figure 21. Conflicts between methods obtained via differ-
ent paths.

problem for Composer from the two provided methods foo
(one through T0 and one through T1) since they originate
from the same trait T and are therefore not in conflict. But
with freezable traits this poses problems, since the same
method foo has a static binding to x (due to the freezing
of x when composing T0) but should at the same time have
a dynamic binding to x (due to the unfreezing of x when
composing Composer). Clearly this should not be allowed.

In the discussion section of the seminal traits paper
[SDNB03] (page 15) a differently formulated definition if
conflict is given: there should be no conflict if the same
method is obtained more than once via different paths. This
formulation is correct for the freezable traits model. In the
example given it would mean that method foo obtained
through T0 is different from the one obtained through T1,
because the first has a static binding to x while the second
one is dynamically bound. This conflict can be solved by
the Composer in different ways, for example by excluding
foo from either T0 or T1, and thereby choosing between the
static or dynamically bound x.

8. Related work
Qualifier in Java. The Java programming language [GJSB00]
provides mechanisms for access control, to prevent the users
of a package or class from depending on unnecessary details
of the implementation of that package or class. Each mem-
ber (class, interface, field, or method) may have one of those
four qualified access:

• if the member or construction is declared public, then
access is permitted.
• if declared protected, then access is permitted only if

the access to the member or constructor occurs from
(i) within the package containing the class in which the
protected member or constructor is declared, or from (ii)
within the body of a subclass.



• if declared private, then access is permitted only within
the body of the class that encloses the declaration of the
member.
• otherwise, it uses a default access, which is permitted

only when the access occurs from within the package in
which the type is declared.

At first sight, the public and private qualifiers seem simi-
lar to defrost and freeze in freezable traits. However freeze
and defrost decouple the definition of methods from the
specification of their visibility. The Java private method
qualifier early binds a method call: the corresponding private
method of the message is directly obtained from the class in
which the message is sent and is statically determined. The
public method qualifier makes a method accessible to every
object.

The Java type checker is restrictive, and does not allow
for a method to augment its visibility. For instance, a private
or protected method m() in a class A cannot be made public
when overridden in a subclass B. The main reason for not al-
lowing a private member to become public is security. In this
regard, freezable traits adopt a permissive approach, where
frozen methods can be made public by being defrosted.

C++. As seen and illustrated in Figure 8, each composer
may have a particular view on the traits it uses. For a given
method, its visibility is not stated within the trait in which
it is defined, but on the composer side. When a composer
(i.e., a class or a trait) defines a trait composition, it also
specifies the visibility for each method carried by the trait
composition.

Letting the composer define its own visibility for the com-
position methods is one of the major differences between
freezable traits and most mainstream composition and visi-
bility mechanisms. More specifically, it is typically not pos-
sible that subclasses can inherit a private method, by chang-
ing the access modifier to public. Consider the following ex-
ample program in C++ (the same, minus a number of syn-
tactical differences, holds for Java):

class C1 {
private:

virtual void foo() { };
};

class C2: C1 {
protected:

virtual void foo() {
// C1::foo(); // does not compile when uncommented

};
};

While it looks as though the access modifier has been
widened, and the private method foo becomes protected in
the subclass, this is actually not the case: method foo in
class C2 is a new method, since method foo from class C1
is not visible. This can be seen when uncommenting one
line in the body of C2::foo: the program does not compile

because C1::foo is not visible. Note that the inverse (reducing
access) may (e.g., C++) or may not (e.g., Java) be possible,
depending on the language.

Freezable traits allow the composer (but not the client)
to widen or restrict the default access modifiers of existing
methods.

C#. C# addresses the problem of unintended name capture
in subclasses by early-binding a given method name to a
static scope. C# allows the programmer to assign the key-
word new (rather than override) to a method to declare that
it is used for a different concept than in the superclass and
that all calls in the superclass should therefore be statically
bound to the local method. The only way to protect internal
methods from such unintended name clashes is to explicitly
assign the keyword new to the implementation of each of
these methods.

Ruby. Ruby is one of the few dynamic languages that of-
fers access qualifiers: methods can be qualified as public,
protected and private. Ruby syntactically distinguishes pri-
vate from public methods, however a private method may be
made public in subclasses.

Private methods can only be invoked by sending a mes-
sage to an implicit receiver (i.e., no use of self). However a
call to a private method is not statically bound to the method
defined in the class but can be overriden in subclasses. The
following code illustrates the point: class C defines a private
method x. The method foo does not invoke this method since
it does not use an implicit receiver but sends the message x to
self. This is why C.new.foo raises an error. The method foo2
invokes x with an implicit receiver (i.e., no self). C.new.foo2
executes the private method x and returns 1.

So far this is analogous to the early-binding semantics of
freezable traits. Now this is different if a subclass defines a
public method x returning 2. D.new.foo2 is interesting since
it returns 2 and not 1 even though the method x is private
and the method foo2 calls x with an implicit receiver. This
shows that Ruby’s private methods are dynamically resolved
contrary to freezable traits which are statically bound.

class C
def zork(arg) ; return arg.x ; end
def foo ; self.x end
def foo2 ; x ; end
private
def x ; return 1 ; end

end

class D < C
public
def x ; return 2 ; end

end

Results:
C.new.foo ==> failed
C.new.foo2 ==> 1
D.new.foo ==> 2



D.new.foo2 ==> 2
D.new.zork(D.new) ==> 2
D.new.zork(C.new) ==> failed

Eiffel. Eiffel [Mey92] is a pure object-oriented language
that supports multiple inheritance. Features, i.e., methods or
instance variables, may be multiply inherited along different
paths. Eiffel provides the programmer mechanisms that of-
fer a fine degree of control over whether such features are
shared or replicated. In particular, features may be renamed
by the inheriting class. It is also possible to select a particu-
lar feature in the case of naming conflicts. Selecting a feature
means that from the context of the composing subclass, the
selected feature takes precedence over the possibly conflict-
ing ones.

Eiffel supports a feature adaptation clause, export, which
allows for an inherited feature to change its export status.
A set of features may be exported to a list of classes as
illustrated in the following piece of code:

class D inherit
A

export {X, Y} feature1, feature2 end
...

The two features, feature1 and feature2, may be invoked
by instances of classes X and Y.

Since we defined the semantics of method hiding by re-
naming self message sends, one might wonder how freez-
able traits relate to the rename operator of Eiffel. First, a
class hierarchy cannot be flattened in Eiffel as the multiple
inheritance and the static type check prevent methods from
being linearly ordered. Second, the renaming does not actu-
ally hide a method, but renames it and all its references.

Jigsaw. In his PhD thesis, Bracha [Bra92] defined Jigsaw
as a minimal programming language in which packages and
classes are unified under the notion of a module. A module in
Jigsaw is a self-referential scope that binds names to values
(i.e., constants and functions). It acts as a class (i.e., an object
generator) and as a coarse-grained structural software unit.
Modules can be nested, therefore a module can define a set
of classes. A number of operators is provided to compose
modules. These operators are instantiation, merge, override,
rename, restrict, and freeze.

The freeze operator of Jigsaw has the same intent as that
of freezable traits, which is to add some privacy to a module
or a trait. Despite their similar semantics, two major differ-
ences exist. First, in Jigsaw the semantics of freeze is de-
scribed by means of the Y fix-point operator. This prevents
a composition of modules to be flattened. Second, a frozen
method cannot be defrosted. In Jigsaw, the interface of a
module cannot be widened, whereas with freezable traits,
trait interfaces may be narrowed and widened by means of
freeze and defrost.

Mixin composition. Van Limberghen and Mens formally
describe a mixin model where encapsulation is orthogonal
to mixin composition [MvL96]. Their model unifies meth-
ods and variables. They propose an operator to encapsulate
methods and state locally to the mixin that defines it. When
encapsulated, self-sends are early bound. All of this is fairly
similar to our model. What is lacking is an inverse operator
such as defrost. They do not mention an implementation that
would explain how state is represented.

Visibility of modules and packages. In his comparison of
module systems, Calliss [Cal91] argues that the name clash-
ing problem (“two same named entities exist in the same re-
gion”) can be solved either by employing aliasing (which the
author refers to “renaming” in his work), or qualified refer-
ences. With freezable traits, we show that changing visibility
is a third option.

One major difference between visibility mechanisms in
Java, C#, Ada and freezable traits, is the fact that a visibility
policy of a given modular unit is fixed and may not vary
in any unanticipated way. With freezable traits, a composer
decides which visibility policy to adopt when using a trait.

Object-Oriented Encapsulation. Schaerli et al. proposed
encapsulation policies as a way to constrain the interface
of an object [SBD04]. With Object-Oriented Encapsulation
(OOE), two cases are distinguished: (1) an inheritance per-
spective where a class can change the way the superclass
methods are bound from the subclass perspective and (2) an
object perspective where the interface of an object itself may
be changed by associating encapsulation policies with object
references.

From the inheritance perspective, an encapsulation pol-
icy associated with a subclass may be defined to change how
methods in the superclass are bound. If a subclass inherits
from its superclass using an encapsulation policy that for-
bids overriding, the subclass may nevertheless re-implement
the method with the same name as that in the superclass. In
that case, a new method is defined that has the same name
as a method in its superclass. OOE is based on the syntactic
distinction of three different messages: super-sends, self-
send and object-send. Only self-sends can be early bound.
This means that for both object-sends and super-sends, the
method lookup is the same as in Smalltalk-80 and entirely
independent of encapsulation policies. Freezable traits ex-
ploit the same syntactic difference between messages and
share the same design principle in the sense that the com-
poser controls composition. Contrary to Object-Oriented
Encapsulation, we did not introduce new byte-codes and
did not change the virtual machine but use compiled method
copying and bytecode rewriting. Introducing a new byte-
code was not necessary since the goal of OOE was to control
object-references and attach to them interfaces (encapsula-
tion policies), therefore it is necessary to distinguish between
object-sends and self-sends. The goal of OOE is broader



than that of freezable traits: encapsulation policies could be
used to control the visibility of conflicting trait methods but
encapsulation policies are more general in terms of provid-
ing visibility control in the context of inheritance and for
object references. Neither of these issues is a concern for
freezable traits.

Scala. Scala [sca, Ode07] is a statically typed program-
ming language integrating object-oriented and functional
concepts. It supports classes, traits and mixins. In Scala, a
trait is a class that is meant to be added to some other class
as a mixin. Classes inherit from other classes and can be
composed using mixin composition. This is similar to our
approach, with only minor differences (traits in Scala can
contain variables and are therefore more similar to stateful
traits [BDNW07] than to the stateless traits of this paper).

The major difference regarding conflict resolution be-
tween Scala and traits is in the mechanism used. In Scala
member resolution is handled by class linearization, and
composition conflicts never occur (the automatic lineariza-
tion takes care of them). In freezable traits method conflicts
are automatically triggered at composition time and need to
be resolved manually by the composer. A detailed discussion
between linearization approaches from different languages
and our approach can be found in [DNS+06].

Scala has a number of modifiers that can be used with
methods. Methods can be declared private or protected, ei-
ther on an object basis (object-private or object-protected),
or on the more common class basis. There is also the option
of declaring methods qualified private or qualified protected,
which means that they are accessible only from code within
the denoted class or package.

On the other hand Scala does not permit subclasses to
change the modifiers of inherited methods, as is possible
with freezable traits.

Fortress. The Fortress Programming Language is a general-
purpose, statically typed, component-based programming
language for producing high-performance software [for].
Functions and methods (collectively called known as func-
tionals) may be overloaded. Within a trait, multiple declara-
tions for the same functional name may coexist in the same
scope. In addition several of these may be applied to any
particular functional call. Calls to overloaded functionals are
resolved by determining the most-specific applicable decla-
ration. Fortress allows functional declarations to be over-
loaded while ensuring the uniqueness of call declarations
for each send. Fortress does not offer visibility qualifiers for
methods which are public.

Trait-based metaprogramming. Reppy and Turon have
proposed a new trait system [RT06, RT07] called trait-based
metaprogramming. Based on the Fisher-Reppy trait calcu-
lus [FR03], it adds deep operations such as method hiding

and renaming to extend the range of conflicts that are solv-
able by traits.

Hide and rename are the deep variants of exclude and
alias. The hide operation permanently binds a provided
method to a trait, while hiding the method’s name. A new
method with the same name can be introduced as a new pro-
vided or required method of the trait, but existing references
to the method from other provided methods are statically
bound to its implementation at the time of hiding. The re-
name operation changes the name of a method and all its
reference in calling methods.

The effect of hide is identical to that of freeze: both
remove a method from a trait’s interface and statically binds
a method with its invocations on a caller side. However,
contrary to our proposal, no counterpart of hide is offered.

The use of a type system constitutes the main difference
between trait-based metaprogramming and freezable traits.
The main issue that has to be adresssed when hide is intro-
duced is to keep the type system sound: the requirements of a
trait should remain identical before and after method hiding.
To accomplish this, Reppy and Turon “transitively record re-
quirements in the inlining assumptions of any other provided
method.” The challenge tackled by freeze is to be reversible,
with the defrost operation.

The semantics of trait-based metaprogramming is based
on dictionaries (a kind of method dispatch tables) to promote
type soundness [RS02]. However, with this design decision
the flattening property is sacrificed.

9. Conclusion and future work
In this paper we have presented two new composition op-
erators to define a visibility mechanism for composable be-
havioural units. Those operators are applied to support unan-
ticipated method conflicts that cannot be resolved with more
traditional composition operators such as aliasing and over-
riding.

After having identified limitations when composing traits,
we formulated freezable traits which are traits augmented
with two operators, freeze and defrost. A public method
may be made private with freeze. The dual operation, de-
frost widens the visibility of a method by making a private
method public. We demonstrated that freezable traits can be
flattened away, preventing any kind of “diamond” situations
which multiple inheritance has to deal with. Our proposal
includes an implementation suitable for dynamic program-
ming languages such as Ruby, Python and Smalltalk.

In this work, traits do not define variables. A trait is a
group of methods that define a behaviour. In our previous
work [BDNW07] we augmented a trait with a state declara-
tion. As future work, we plan to combine variable definition
with the visibility model described in this paper.

We also plan to use freezable traits in a real-world appli-
cation, and compare the results with the stateless and stateful
trait models. A possible candidate would be the Collection



hierarchy, since it was previously refactored using stateless
traits [BSD03].

Composition of modular units that may conflict in an
unanticipated way has been the focus of years of research
ranging from classes, modules, and packages just to name a
few. Currently, the aspect-oriented community is facing the
difficult problem of composing cross-cutting concerns. This
paper suggests the use of a visibility mechanism to deal with
those situations.
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A. SMALLTALKLITE

We present SMALLTALKLITE, a Smalltalk-like dynamic
language featuring single inheritance, message-passing,
field access and update, and self and super sends. SMALL-
TALKLITE is similar to CLASSICJAVA, but removes inter-
faces and static types. Fields are private in SMALLTALKLI-
TE, so only local or inherited fields may be accessed.

We base our approach on the object model used by Flatt et
al. [FKF98] to give a semantics for mixins for Java-like lan-
guages. We adapt the CLASSICJAVA model they introduce to
develop SMALLTALKLITE, a simple calculus that captures
the key features of Smalltalk-like dynamic languages.

A.1 SMALLTALKLITE reduction semantics
The syntax of SMALLTALKLITE is shown in Figure 23.
SMALLTALKLITE is similar to CLASSICJAVA, while eliding
the features related to static typing. We similarly ignore
features that are not relevant to a discussion of traits, such
as reflection or class-side methods.

In order to simplify the reduction semantics of SMALL-
TALKLITE, we adopt an approach similar to that used by
Flatt et al. [FKF98], namely we annotate field accesses and
super sends with additional static information that is needed
at “run-time”. This extended redex syntax is shown in Fig-
ure 22. The figure also specifies the evaluation contexts for
the extended redex syntax in Felleisen and Hieb’s notation
[FH92].

Predicates and relations used by the semantic reductions
are listed in Figure 25. (The predicates CLASSESONCE(P )
etc are assumed to be preconditions for valid programs,
and are not otherwise explicitly mentioned in the reduction
rules.)
P ` 〈ε,S〉 ↪→ 〈ε′,S ′〉 means that we reduce an expres-

sion (redex) ε in the context of a (static) program P and a
(dynamic) store of objects S to a new expression ε′ and (pos-

ε = v | new c | x | self | ε.f | ε.f=ε
| ε.m(ε∗) | super〈o, c〉.m(ε∗) | let x=ε in ε

E = [ ] | o.f=E | E.m(ε∗) | o.m(v∗ E ε∗)
| super〈o, c〉.m(v∗ E ε∗) | let x=E in ε

v, o = nil | oid

Figure 22. Redex syntax

P = defn∗e
defn = class c extends c { f∗meth∗ }
e = new c | x | self | nil
| f | f=e | e.m(e∗)
| super.m(e∗) | let x=e in e

meth = m(x∗) { e }
c = a class name | Object
f = a field name
m = a method name
x = a variable name

Figure 23. SMALLTALKLITE syntax

sibly) updated store S ′. A redex ε is essentially an expression
e in which field names are decorated with their object con-
texts, i.e., f is translated to o.f , and super sends are deco-
rated with their object and class contexts. Redexes and their
subexpressions reduce to a value, which is either an object
identifier or nil. Subexpressions may be evaluated within an
expression context E.

The store consists of a set of mappings from object iden-
tifiers oid ∈ dom(S) to tuples 〈c, {f 7→ v}〉 representing the
class c of an object and the set of its field values. The initial
value of the store is S = {}.

Translation from the main expression to an initial redex
is specified out by the o[[e]]c function (see Figure 24). This
binds fields to their enclosing object context and binds self
to the oid of the receiver. The initial object context for a
program is nil. (i.e., there are no global fields accessible
to the main expression). So if e is the main expression
associated to a program P , then nil[[e]]Object is the initial
redex.

The reductions are summarised in Figure 26.
new c [new] reduces to a fresh oid, bound in the store

to an object whose class is c and whose fields are all nil.
A (local) field access [get] reduces to the value of the field.
Note that it is syntactically impossible to access a field of
another object. The redex notation o.f is only generated in



≺P Direct subclass
c ≺P c′ ⇐⇒ class c extends c′ · · · {· · · } ∈ P

≤P Indirect subclass
c ≤P c′ ≡ transitive, reflexive closure of ≺P

∈P Field defined in class
f ∈P c ⇐⇒ class · · · {· · · f · · · } ∈ P

∈P Method defined in class
〈m, x∗, e〉 ∈P c ⇐⇒ class · · · {· · ·m(x∗){e} · · · } ∈ P

∈∗P Field defined in c
f ∈∗P c ⇐⇒ ∃c′, c ≤P c′, f ∈P c′

∈∗P Method lookup starting from c
〈c, m, x∗, e〉 ∈∗P c′ ⇐⇒ c′ = min{c′′ | 〈m, x∗, e〉 ∈P c′′, c ≤P c′′}

CLASSESONCE(P ) Each class name is declared only once
∀c, c′, class c · · · class c′ · · · is in P ⇒ c 6= c′

FIELDONCEPERCLASS(P ) Field names are unique within a class declaration
∀f, f ′, class c · · · {· · · f · · · f ′ · · · } is in P ⇒ f 6= f ′

FIELDSUNIQUELYDEFINED(P ) Fields cannot be overridden
f ∈P c, c ≤P c′ =⇒ f 6∈P c′

METHODONCEPERCLASS(P ) Method names are unique within a class declaration
∀m, m′, class c · · · {· · ·m(· · · ){· · · } · · ·m′(· · · ){· · · } · · · } is in P ⇒ m 6= m′

COMPLETECLASSES(P ) Classes that are extended are defined
range(≺P ) ⊆ dom(≺P ) ∪ {Object}

WELLFOUNDEDCLASSES(P ) Class hierarchy is an order
≤P is antisymmetric

CLASSMETHODSOK(P ) Method overriding preserves arity
∀m, m′, 〈m, x1 · · · xj , e〉 ∈P c, 〈m, x′1 · · · x′k, e′〉 ∈P c′, c ≤P c′ =⇒ j = k

Figure 25. Relations and predicates for SMALLTALKLITE

P ` 〈E[new c],S〉 ↪→ 〈E[oid],S[oid 7→ 〈c, {f 7→ nil | ∀f, f ∈∗P c}〉]〉 [new]
where oid 6∈ dom(S)

P ` 〈E[o.f ],S〉 ↪→ 〈E[v],S〉 [get]
where S(o) = 〈c,F〉 and F(f) = v

P ` 〈E[o.f=v],S〉 ↪→ 〈E[v],S[o 7→ 〈c,F [f 7→ v]〉]〉 [set]
where S(o) = 〈c,F〉

P ` 〈E[o.m(v∗)],S〉 ↪→ 〈E[o[[e[v∗/x∗]]]c′ ],S〉 [send]
where S[o] = 〈c,F〉 and 〈c,m, x∗, e〉 ∈∗P c′

P ` 〈E[super〈o, c〉.m(v∗)],S〉 ↪→ 〈E[o[[e[v∗/x∗]]]c′′ ],S〉 [super]
where c ≺P c′ and 〈c′,m, x∗, e〉 ∈∗P c′′ and c′ ≤P c′′

P ` 〈E[let x=v in ε],S〉 ↪→ 〈E[ε[v/x]],S〉 [let]

Figure 26. Reductions for SMALLTALKLITE

the context of the object o. Field update [set] simply updates
the corresponding binding of the field in the store.

When we send a message [send], we must look up the cor-
responding method body e, starting from the class c of the
receiver o. The method body is then evaluated in the context
of the receiver o, binding self to the receiver’s oid. Formal
parameters to the method are substituted by the actual ar-
guments (see Figure 27). We also pass in the actual class
in which the method is found, so that super sends have the
right context to start their method lookup.

super sends [super] are similar to regular message sends,
except that the method lookup must start in the superclass of
class of the method in which the super send was declared.
When we reduce the super send, we must take care to
pass on the class c′′ of the method in which the super
method was found, since that method may make further
super sends. let in expressions [let] simply represent local
variable bindings.

Errors occur if an expression gets “stuck” and does not
reduce to an oid or to nil. This may occur if a non-existent



o[[new c′]]c = new c′

o[[x]]c = x
o[[self]]c = o
o[[nil]]c = nil
o[[f ]]c = o.f

o[[f=e]]c = o.f=o[[e]]c
o[[e.m(e∗i )]]c = o[[e]]c.m(o[[ei]]

∗
c)

o[[super.m(e∗i )]]c = super〈o, c〉.m(o[[ei]]
∗
c)

o[[let x=e in e′]]c = let x=o[[e]]c in o[[e′]]c

Figure 24. Translating expressions to redexes

new c [v/x] = new c
x [v/x] = v

x′ [v/x] = x′

self [v/x] = self
nil [v/x] = nil
f [v/x] = f

f=e [v/x] = f=e[v/x]
e.m(e∗i ) [v/x] = e[v/x].m(e∗i [v/x])

super.m(e∗i ) [v/x] = super.m(e∗i [v/x])
let x=e in e′ [v/x] = let x=e[v/x] in e′

let x′=e in e′ [v/x] = let x′=e[v/x] in e′[v/x]

Figure 27. Variable substitution

variable, field or method is referenced (for example, when
sending any message to nil). For the purpose of this paper
we are not concerned with errors, so we do not introduce
any special rules to generate an error value in these cases.
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