
Design Pattern Builder
A Concept for Refinable Reusable Design Pattern Libraries

Tobias Dürschmid
Hasso Plattner Institute, University of Potsdam, Germany

tobias.duerschmid@student.hpi.de

Abstract
Reuse is one of the core principles in professional software
engineering. Design patterns provide a reusable solution for
common design problems. But their implementations are
generally not reusable as they are often well tailored to a
specific context. We introduce a concept, that facilitates the
reuse of their implementations by defining an abstract de-
sign pattern definition that can be instantiated with special-
ized design decisions. This approach is a meta-level Builder
constructing design patterns as first-class citizens. It simpli-
fies the application of design patterns by providing a pattern
library and still being able to adjust it to the concrete con-
text.

Categories and Subject Descriptors D.2.13 [Reusable
Software]: Reuse models; D.2.11 [Software Architectures]:
Patterns

Keywords Design patterns, modularity, reusability, AOP

1. Introduction
The implementation of a design pattern often includes sub-
stantial boiler-plate code that is scattered over multiple
classes. Furthermore the developer can make mistakes while
implementing a design pattern (e.g. forgotten synchroniza-
tion in a multithreaded Singleton implementation). Reusable
implementations of design patterns speedup development by
avoiding faults, focusing on the design decisions instead of
implementation details and better standardization of the vo-
cabulary. But the reuse of their implementations can cause
some challenges motivated by the following example: A de-
veloper wants to apply the Observer design pattern [1] to
a virtual monopoly game. The Player object has the role
of the Subject and the Display object the role of the Ob-

server interested in the current balance of the corresponding
Player object.

Crosscutting concerns. In order to archive reuseability,
modularizing design patterns is an essential step. But the Ob-
server code is scattered over the domain classes Player
and Display. Hence the introduced superimposed roles
Observer and Subject can crosscut the behavior of the in-
volved classes [3]. This tends to lead to poor modularity and
less reusability [3].

Context tailoring. Design patterns have to be tailored to
their concrete context by making individual design decisions
like using the push or pull model, defining the collection type
for managing the observers for a subject or using publisher-
subscriber-middleware.This makes each design pattern im-
plementation unique and makes it unlikely that one config-
urable generic implementation of a design pattern can fit all
variations of the context.

We argue that context tailoring can be archived by sepa-
rating the design decisions from the structural design pattern
definition and the option of refining these variation points.
In order to modularize the design patterns, it is desirable
to have languages constructs which treat design patterns as
first-class citizens of the programming languagelike classes,
methods or aspects in AOP.

2. Concept
If design patterns are first-class citizens on the same level
of abstraction as classes, it is possible to apply design pat-
terns to design pattern implementations. Our concept uses
the Bridge to separate the design pattern definition from the
design pattern instantiation and the Builder to simplify the
construction of a concrete design pattern instance. Listing 1
shows one possible application of the concept to the Ob-
server example.

Design pattern definition. The generic part of a design
pattern consists of the definition of roles (e.g. Observer and
Subject), their responsibilities (e.g. managing a list of Ob-
servers, calling notify on all Observers when the Subject
has changed) and the collaboration between the roles. The

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
ACM. 978-1-4503-4437-1/16/10...$15.00
http://dx.doi.org/10.1145/2984043.2998537

45

roles can be played by classes, objects, methods, attributes
or values according to the type of concern. In our concept,
the design pattern definition may delegate responsibilities to
variation points similar to object-based inheritance (delega-
tion). This variation points are design decisions to be made
in order to configure the design pattern. Refining a design
pattern implementation to a new context can be done by im-
plementing one of these variation points or by overriding
some parts of the base-design-pattern, similar to the Bridge
design pattern [1] with the design pattern definition as Ab-
straction and the design decisions as Implementations.

Design pattern instantiation. In order to simplify the con-
struction of one concrete design pattern instance, we apply
the Builder design pattern [1] on a meta-level to design pat-
tern implementations. The developer configures the Pattern
Builder with a specification that chooses one implementa-
tion for each design decision, e.g. use a linked list as data
structure for managing the registered observers and the push
model without publisher-subscriber-middleware. In order to
decouple the client from the concrete implementations, the
specification can consist of functional and non-functional re-
quirements the implementations should have.

Furthermore, the design pattern instatiation assigns the
roles of the pattern definition (e.g. Observer and Subject) to
the concrete entities in the domain code (e.g. Display ob-
jects and Player objects). The events, the observer should
watch for (e.g. setting the balance) can be defined using a
pointcut that is passed to the Pattern Builder.

Through design pattern instantiation, the participating do-
main classes are linked together. The domain code should
have no dependencies to the instantiation code in order to
allow easy changes of the architecture. The dynamic weav-
ing of the pattern code together with the domain code can be
done using AOP.The instantiation code could look like this:

1 PatternBuilder<DPObserver> builder = new PatternBuilder;
2
3 builder.setRole(Subject, player); //methods for configuring

the Subject role are injected into player
4 player.setCollectionType(ArrayList); //class as parameter
5 PushModel model = new PushModel(builder); //instantiate the

design decision
6 player.setModel(model);
7 model.setChanged(set(player.balance)); //pointcut as parameter
8
9 builder.setRole(Observer, display);

10 display.setNotify(display.showText(newValue)); //method as
parameter

Listing 1. Design pattern instantiation of the Observer

3. Related Work
Since the publication of design patterns [1], many researchers
tried to find a way to reuse their implementations.

One approach to modularize design patterns is AOP.
Hannemann and Kiczales [3] describe design pattern im-

plementations in AspectJ.Some of their implementations
(e.g. Observer, Composite, Iterator) could be reused, but
they do not provide the ability of specialization or configu-
ration of the design pattern implementations.

Automatic code generation for design patterns simplifies
the implementation and allows refining, but produces more
code that has to be maintained. This can lead to the round-
trip problem:modified code will be overriden by regenera-
tion. In contrast, our concept uses the weaving of aspect-
oriented programmingin order to keep the pattern code out
of the domain code.

The concept of Object Teams [4] facilitates refinable
reusable implementations of multi-object collaborations. It
modularizes crosscutting collaborations by introducing a
”team” as new refinable first-class language construct. We
apply a similiar concept focusing on design pattern im-
plementations. The application of Builder and Bridge on a
meta-level to design patterns has not been done in this field.

4. Discussion
A quantitative study of Hannemanns implementation [3]
measuring separation of concerns, coupling, cohesion, and
size, shows improvements in separation of concerns but an
increase in complexity [2]. This also applies to our solution
because of the similarities to AOP solutions.

Our concept allows to fit the concrete context by refining.
Unlike code generation, these refinements can be reused in
similar contexts because of the separation of the implemen-
tation of the design decisions and their composition. Fur-
thermore the refactoring between patterns is easier because
most of the changes only happen in the design pattern instan-
tiation that can the adapted quickly. Furthermore, software
product line developmentcan benefit from this concept by
easily changing quality attributes of the system by choosing
appropriate design decisions.

The downside is that there is more coding effort for
the design pattern definition because of the more com-
plex architecture. But usually there are many use cases for
one reusable implementation. Hence the additional effort
charges off quite fast if the library is used in many projects.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[2] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena,
and A. von Staa. Modularizing design patterns with aspects:
a quantitative study. In Proceedings of the Conference on
Aspect-oriented software development, AOSD 2005, pages 3–
14. ACM, 2005.

[3] J. Hannemann and G. Kiczales. Design Pattern Implementation
in Java and AspectJ. In Proceedings of the ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages,
and applications, OOPSLA 2002, pages 161–173. ACM, 2002.

[4] S. Herrmann. Object teams: Improving modularity for cross-
cutting collaborations. In Proceedings of the Conference on
Object-Oriented and Internet-Based Technologies, Concepts,
and Applications for a Networked World, Net. ObjectDays
2002, pages 248–264. Springer, 2002.

46

