
Technische Berichte Nr. 135

des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

Fast Packrat Parsing
in a Live Programming
Environment:
Improving Left-
recursion in Parsing
Expression Grammars
Friedrich Eichenroth, Patrick Rein, Robert Hirschfeld

Technische Berichte des Hasso-Plattner-Instituts für
 Digital Engineering an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam | 135

Friedrich Schöne | Patrick Rein | Robert Hirschfeld

Fast Packrat Parsing in a
Live Programming Environment

Improving Left-recursion in Parsing Expression Grammars

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2022
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering
an der Universität Potsdam wird herausgegeben von den Professoren des Hasso-Plattner-
Instituts für Digital Engineering an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
https://doi.org/10.25932/publishup-49124
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-491242

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-503-3

Language developers who design domain-specific languages or new language
features need a way to make fast changes to language definitions. Those fast
changes require immediate feedback. Also, it should be possible to parse the
developed languages quickly to handle extensive sets of code.

Parsing expression grammars provides an easy to understand method for lan-
guage definitions. Packrat parsing is a method to parse grammars of this kind,
but this method is unable to handle left-recursion properly. Existing solutions ei-
ther partially rewrite left-recursive rules and partly forbid them, or use complex
extensions to packrat parsing that are hard to understand and cost-intensive.

We investigated methods to make parsing as fast as possible, using easy to follow
algorithms while not losing the ability to make fast changes to grammars.

We focused our efforts on two approaches. One is to start from an existing
technique for limited left-recursion rewriting and enhance it to work for general
left-recursive grammars. The second approach is to design a grammar compilation
process to find left-recursion before parsing, and in this way, reduce computational
costs wherever possible and generate ready to use parser classes.

Rewriting parsing expression grammars is a task that, if done in a general way,
unveils a large number of cases such that any rewriting algorithm surpasses the
complexity of other left-recursive parsing algorithms. Lookahead operators intro-
duce this complexity. However, most languages have only little portions that are
left-recursive and in virtually all cases, have no indirect or hidden left-recursion.
This means that the distinction of left-recursive parts of grammars from compo-
nents that are non-left-recursive holds great improvement potential for existing
parsers.

In this report, we list all the required steps for grammar rewriting to handle
left-recursion, including grammar analysis, grammar rewriting itself, and syntax
tree restructuring.

Also, we describe the implementation of a parsing expression grammar frame-
work in Squeak/Smalltalk and the possible interactions with the already existing
parser Ohm/S. We quantitatively benchmarked this framework directing our focus
on parsing time and the ability to use it in a live programming context. Compared
with Ohm, we achieved massive parsing time improvements while preserving the
ability to use our parser it as a live programming tool.

The work is essential because, for one, we outlined the difficulties and complexity
that come with grammar rewriting. Also, we removed the existing limitations that
came with left-recursion by eliminating them before parsing.

5

Contents

1 Introduction & Motivation 11
1.1 Contributions . 11

1.2 Structure of this Report . 12

2 Background 13
2.1 Parsing Expression Grammar . 13

2.2 Packrat Parsing . 15

2.3 Existing Parsers in Squeak/Smalltalk 20

2.4 Fast and Slow Parts of Existing Parsers 22

2.5 Liveness . 24

3 Rewriting Parsing Expression Grammars 25
3.1 The Idea . 25

3.2 Rewriting Criteria . 26

3.3 Rewriting Different Types of Left-recursion 26

3.4 Syntax Tree Rewriting . 39

3.5 Conclusion . 42

4 Parser Generator Approach 45
4.1 Compatibility with Ohm . 45

4.2 Left-recursive Rules . 45

4.3 Detecting Left-recursive Rules . 46

4.4 Tree Flattening . 47

4.5 Failure Reporting . 49

4.6 Memoization . 49

5 Parser Generator Implementation 50
5.1 Parser . 50

5.2 Parser Generator . 56

5.3 Ohm Grammar Converter . 62

6 Evaluation 64
6.1 Benchmarking . 64

6.2 Discussion . 70

7 Related Work 72
7.1 Modifying PEG Capabilities . 72

7.2 Restricting PEG Capabilities . 73

7

Contents

8 Conclusion 74
8.1 Conclusion . 74

8.2 Future Work . 75

8.3 Summary . 76

8

Listings

2.1 Simple Math Grammar . 16

2.2 No-hierarchy Math Grammar . 16

2.3 Non Left-recursive Math Grammar . 17

2.4 Indirect Left-recursive Grammar . 19

2.5 Hidden Left-recursive Grammar . 19

2.6 Super-linear Parse Time Grammar . 21

2.7 Identifier Grammar . 23

3.1 Simple Left-recursive Grammar . 25

3.2 Simple Non Left-recursive Grammar 25

3.3 Generic Direct Left-recursive Grammar 27

3.4 Generic Rewritten Direct Left-recursive Grammar 27

3.5 Minimal Cycle Detection Pseudocode 30

3.6 Generic Indirect Left-recursive Grammar 30

3.7 Generic Rewritten Indirect Left-recursive Grammar 31

3.8 Multiple Minimal Cycles Grammar . 31

3.9 Potentially Hidden Left-recursive Grammar 32

3.10 Rewritten Simple Hidden Left-recursive Grammar for Case 34

3.11 Rewritten Simple Hidden Left-recursive Grammar for Case ε 35

3.12 Rewritten Simple Hidden Left-recursive Grammar for Case .ε . . . 36

3.13 Rewritten Simple Hidden Left-recursive Grammar for Case .�ε . . . 36

3.14 Rewritten Simple Hidden Left-recursive Grammar for Case ε�ε 37

3.15 Rewritten Simple Hidden Left-recursive Grammar for Case .ε�ε . . . 38

3.16 Rewritten Simple Math Grammar . 40

3.17 Indirect Left-recursive Example Grammar 41

3.18 Rewritten Indirect Left-recursive Example Grammar 41

3.19 Hidden Left-recursive Example Grammar 42

3.20 Rewritten Hidden Left-recursive Example Grammar 43

4.1 Inheritance Parent Grammar A . 47

4.2 Inheritance Child Grammar A . 47

4.3 Inheritance Parent Grammar B . 47

4.4 Inheritance Child Grammar B . 48

5.1 simpleIdent Method Heads . 52

5.2 literal Method Heads . 52

5.3 simpleIdent Apply Wrapper Method 53

5.4 simpleIdent Apply Method . 53

9

Listings

5.5 exp Parse Method . 54

5.6 Exp Parse Method . 55

5.7 Simple Math Grammar Parser Generation 57

5.8 String Expression Method Template 59

5.9 Optional Expression Method Template 60

5.10 Lexical Apply Wrapper Method Template 60

6.1 Smalltalk Benchmark Parser Invocation 66

6.2 Math Grammar . 68

10

1 Introduction & Motivation

Language scientists and developers want to explore and test experimental language
features. Besides the use case for those language experts, some applications require
domain-specific languages (DSLs) that have the benefit of serving one specific purpose.
Non-experts often develop these.

To meet the needs of those user groups, they need a fast and straightforward way
to create languages. It should be easy to create or modify new languages because
some design requirements can only become apparent when testing them out.

Any language tool should have a very short runtime to be useful and should
be usable in a live environment. Fast parsing is helpful for tools that do syntax
highlighting or code hinting. Also, it is mandatory when we need to parse large sets
of source codes. Having a parser that we can consider live is significant because,
during the construction of a language, a developer wants to add and test a lot of
minor changes fast without any delays.

Our goal should be to define languages using grammars in an easy and fast man-
ner. Grammars should be able to describe all aspects of programming languages
and easily human-readable. Based on those language defining grammars, we want
to parse strings using an easy to understand algorithm to eliminate sources of error
and to be accessible. Also, we want to be able to make changes to grammars that
get applied quickly.

1.1 Contributions

In this report, we establish what is necessary to rewrite arbitrary grammars to
make them easily parsable. For this purpose, we provide several algorithms that
outline the necessary steps during rewriting. Altogether, we show that rewriting
grammars is a non-trivial problem that requires considering numerous cases.

Furthermore, we describe a grammar parsing framework that uses a combination
of existing algorithms and careful preprocessing to make parsing faster without
limiting users in their use of grammars. We implement the framework in Squeak/S-
malltalk. At last, we show that our framework is usable in a live environment and
benchmark it against existing parsing algorithms.

11

1 Introduction & Motivation

1.2 Structure of this Report

First, we lay out the essential foundations for this report in chapter 2. We outline
the general direction, draft a problem statement, and define underlying formalisms.

The significant portion of this work consists of two mostly independent parts. In
chapter 3, we discuss the necessary steps and aspects one needs to consider when
rewriting parsing expression grammars. In chapter 4 and chapter 5, we describe a
parser generator framework in its design and the resulting implementation.

We conduct a quantitative evaluation of our implementation in the form of
benchmarks and report this in chapter 6. Also, we discuss various aspects of the
implementation there.

We give an overview of similar approaches and other solutions to our problem
statement in chapter 7. Chapter 8 concludes the report, re-examines our problem
statement, and points to possible future work.

12

2 Background

In this chapter, we lay the foundations for the following chapters. We give an
overview of language parsing and grammar formalisms. Using parsing expression
grammars, we introduce the theoretical basis and definitions for this report. We also
describe the challenges that occur while parsing and why individual parsers are
fast or slow.

2.1 Parsing Expression Grammar

Parsing Expression Grammars (PEGs) were first introduced in 2002 [4] and accu-
rately defined in “Parsing Expression Grammars: A Recognition-Based Syntactic
Foundation” [6]. They have the purpose of providing a recognition-based formal
foundation for describing programming languages in a human-readable manner.

Furthermore, they have the benefit that it is possible to parse any string in linear
time, except in some well-known cases using a method, called packrat parsing.

2.1.1 Features

The syntax of PEGs is similar to Extended Backus-Naur Form (EBNF) [1, 24]. Like
EBNF, it is possible to denote unbounded repetitions of expressions and optional
expressions.

What makes PEGs different from EBNF is the possibility to use the lookahead
operators & and ! The operator & denotes that a specific part of a string should
be parsable by the annotated expression without actually going forward within
the input string, meaning consuming no characters. The operator ! excludes the
ability to parse a string by an annotated expression. Like EBNF grammars, PEGs
contain prioritized alternatives-expressions. Those alternatives are exclusive and
prioritized in descending order from left to right.

The language class corresponding to PEG is similar to the language class corre-
sponding to Context-Free Grammars (CFGs). However, it is neither a superset nor a
subset. Most languages that can be parsed by CFGs can be parsed by PEGs, as well.
There is still a difference since CFG parsing has a worst-case runtime of O(n3) [3,
10] compared to the linear runtime we can achieve with PEGs.

Also, parsing using PEGs results in a single unambiguous syntax tree. That is
due to the use of prioritized alternatives instead of unordered choice in CFGs.

13

2 Background

2.1.2 Formal Definition of Parsing Expression Grammars

Each PEG consists of combined parsing expressions that define a set of rules which
describes the parsing possibilities of that grammar. We have the following three
definitions.

Definition 2.1 (Expression). An expression is a parse instruction that can be primi-
tive, created by modifying another expression or created by combining a collection
of expressions. Primitive expressions can match strings directly. The suffix- and
prefix-expressions modify their encapsulated expression. Collection-expressions
combine expressions of their encapsulated expressions.

In Table 2.1 we show all available expressions.

Table 2.1: Expressions syntax used by a
PEG

Expression Syntax Type

String "abc" primitive
Character class [A-Z] primitive
Any . primitive
Optional e? suffix
Zero or more e* suffix
One or more e+ suffix
Lookahead (And) &e prefix
Not !e prefix
Sequence e1 e2 collection
Alternatives e1 | e2 collection
Apply a apply

e, e1 and e2 are expressions.

Definition 2.2 (Rule). A rule is a named expression that can be referenced through
its identifier. To reference those rules within expressions, we use the apply-expression
that can reference the name of a rule. We can use apply-expressions similar to non-
terminals in CFGs.

We denote a rule definition like the following.

ruleName := [A-Z] | "abc" | b

This definition describes a rule named ruleName consisting of three choices,
namely a character class expression, a string expression, and an apply-expression.

Definition 2.3 (Grammar). A set of rules where each apply-expression points to a
rule within this set is called a grammar.

14

2.2 Packrat Parsing

2.2 Packrat Parsing

Packrat parsing was first described in “Packrat Parsing: Simple, Powerful, Lazy,
Linear Time” [5]. The author designed it for lazy programming languages, but the
technique is not limited to those.

Packrat parsing is a top-down parsing algorithm with backtracking that achieves
linear time. Packrat parsing uses a dynamic programming approach. That means it
recursively matches the expressions of a grammar and creates a memoization data
structure that allows storing results of every rule invocation for every position of
a parsed string. That way, the algorithm only needs to invoke every rule once per
position in the string. That results in a time and space complexity of O(nm), with
n being the string length and m being the total rule count of the used grammar.

A packrat parser returns for every successful parse a syntax tree which follows
the invocation tree of successfully matched expressions.

2.2.1 Limitations of Packrat Parsing

Despite the algorithms’ elegance and simplicity, it has a few shortcomings. One is
its inability to parse left-recursive grammars. Another is the performance decrease
that memoization can introduce in some cases. We take a closer look at those issues
in this section.

2.2.1.1 Left-recursion
Left-recursion is a problem that has its origin in the prioritization in the alternatives-
expression of PEGs. Since alternatives are parsed by priority, the algorithm can fall
into a recursive invocation loop without making any progress on parsing the input
string.

The following rule illustrates the problem.

a := a "b" | "a"

A packrat parser that invokes the parse of rule a would select the first choice of
the expression and again parse rule a, resulting in an infinite call stack.

Banning left-recursive rules from PEGs is not an option, as we demonstrate in
the following example.

Example 2.1 (Necessity of Left-recursion and Hierarchy). Listing 2.1 contains a
simple math grammar for arithmetical formulas.

In the grammar, the precedence of operators is incorporated using hierarchically
ordered rules, and the left-associativity of operators is incorporated using left-
recursive rules. Both precedence and left-associativity are necessary. To see why,
we can use the grammar to construct the syntax tree for the string "1-2*3+4"
depicted in Figure 2.1.

If we evaluate the tree bottom-up, we recognize that the tree represents the correct
arithmetical semantics. The operations are left-associative, meaning operations that
come earlier in the string are lower in the syntax tree. Also, operations with higher

15

2 Background

Listing 2.1: Simple Math Grammar

expr := addexpr
addexpr := addexpr "+" mulexpr |

addexpr "-" mulexpr |
mulexpr

mulexpr := mulexpr "*" digit |
mulexpr "/" digit |
digit

digit := [0-9]

precedence are lower in the syntax tree than operations with lower precedence.
This leads to the correct order of evaluation of operations.

Let us construct two more grammars that do not incorporate precedence and
left-associativity, respectively.

Listing 2.2: No-hierarchy Math Grammar

expr := expr "+" digit | expr "-" digit |
expr "*" digit | expr "/" digit |
digit

digit := [0-9]

If we parse the string "1-2*3+4" according to the grammar in Listing 2.2 not
incorporating precedence, we get the parse tree in Figure 2.2.

If we evaluate this tree the same way as the previous tree, we get the same
semantics as for the formula ((1− 2) ∗ 3) + 4, which is not our goal.

If we use the grammar in Listing 2.3, we get the syntax tree in Figure 2.3, which
has the same semantics as the formula 1− ((2 ∗ 3) + 4) if we evaluate it bottom up.

As we can see, hierarchy is necessary to represent the precedence of mathematical
operations. Left-recursiveness is needed to evaluate left-associative formulas in the
correct order.

2.2.1.2 Types of Left-recursion
There are multiple types of left-recursion that need to be addressed in order to im-
plement parsers that support left-recursion. We have direct left-recursion, indirect-
left recursion, and hidden left-recursion, which we show in the following three
examples. We forego on an example of hidden indirect left-recursion, and note that
this case can also exist.

16

2.2 Packrat Parsing

expr

addexpr

addexpr

addexpr

mulexpr

digit

[1]

"-" mulexpr

mulexpr

digit

[2]

"*" digit

[3]

"+" mulexpr

digit

[4]

Figure 2.1: The syntax tree for the Simple Math Grammar

Listing 2.3: Non Left-recursive Math Grammar

expr := addexpr
addexpr := mulexpr "+" addexpr |

mulexpr "-" addexpr |
mulexpr

mulexpr := digit "*" mulexpr |
digit "/" mulexpr |
digit

digit := [0-9]

17

2 Background

expr

expr

expr

expr

digit

[1]

"-" digit

[2]

"*" digit

[3]

"+" digit

[4]

Figure 2.2: The syntax tree for the No-hierarchy Math Grammar

expr

addexpr

mulexpr

digit

[1]

"-" addexpr

mulexpr

digit

[2]

"*" mulexpr

digit

[3]

"+" addexpr

mulexpr

digit

[4]

Figure 2.3: The syntax tree for the Non Left-recursive Math Grammar

18

2.2 Packrat Parsing

Direct Left-recursion Direct left-recursion is the simplest form of left-recursion.
It occurs when a rule contains an apply-expression that references the rule itself.

Example 2.2 (Direct Left-recursion). We assume that we have a grammar with the
following rule.

a := a "b" | "a"

The rule contains said apply-expression named a, which invokes the rule itself
without consuming any characters resulting in an infinite call loop.

Indirect Left-recursion Indirect left-recursion occurs when a rule does not invoke
itself directly but is part of a larger cycle that does not consume any characters
while cycling.

Example 2.3 (Indirect Left-recursion). The grammar shown in Listing 2.4 is indirect
left-recursive. Rule a invokes rule b, rule b invokes rule c, which invokes rule a
closing the cycle without consuming any characters.

Listing 2.4: Indirect Left-recursive Grammar

a := b "b" | "a"
b := c "c" | "b"
c := a "a" | "c"

Hidden Left-recursion Hidden left-recursion can be much harder to detect. Until
now, we only considered left-recursion when the cycling apply-expressions were
invoked first in their sequence-expression. Hidden left-recursion happens when not
all apply-expressions are the first to invoke in their respective sequence-expression.

Example 2.4 (Hidden Left-recursion). When we use the grammar in Listing 2.5 to
parse a string with the suffix "b" by starting with rule a we can get an infinite call
loop. Rule a invokes rule b which results in a parse success without consuming
any characters. That leads to the invocation of rule a again. Therefore, this rule is
left-recursive.

Listing 2.5: Hidden Left-recursive Grammar

a := &b a "a" | "a"
b := "b"

19

2 Background

2.2.1.3 Performance
Despite linear runtime through memoization, the memoization component can
slow down the parser more than it improves its performance in real use cases. The
authors of the paper “DCGs + Memoing = Packrat Parsing - But is it worth it” [2]
showed that memoization almost always leads to a performance loss. Also, they
state that using no memoization is very close to optimum performance.

They found out that memoizing only a few rules can gain a significant speedup.
Finding those good memoization candidates, however, is difficult. Rules that are
higher up in a grammar hierarchy could be appropriate because they have the
potential to prevent parsing of large subtrees twice and, therefore, prevent a lot
of extra invocations. Rules that are lower in the grammar hierarchy could also
be good candidates because they have a much higher chance of getting invoked
multiple times.

To address the vast amount of allocated memory, in “Packrat parsing with Elastic
Sliding Window” [11], the authors present an approach to minimize the allocation
memory size for memoization. Their allocation size depends on the backtracking
activity.

2.2.2 Left-recursive Packrat Parsing

The Warth-algorithm is an extension to regular packrat parsing. First described in
“Packrat Parsers Can Support Left Recursion” [22], this algorithm can parse left-
recursive grammars but has no guaranteed linear runtime anymore. The asymptotic
worst-case runtime is O(n2), as we demonstrate in example 2.5.

The algorithm detects if it enters a cycle without consuming any characters of
the input string. As soon as the algorithm detects such cycles, it tries to invoke
other rules than the already chosen path. After getting a successful parse, the
algorithm reapplies the result for the rule that starts the cycle on the rule itself. The
change in rule invocation order results in the parse tree growing upward instead
of downwards for the duration of left-recursive parses.

This method requires a lot of additional parser state that it continually edits.
That means that the extension complicates the algorithm, and the method loses the
elegance of the regular packrat parsing algorithm.

Example 2.5 (Super-linear Parse Time Grammar). The authors of the Warth-algorithm
gave this example [22].

We consider the grammar in Listing 2.6. Using this grammar and the Warth-
algorithm we can parse strings of "1"s in O(n2) time. This is because, after every
"1", the parser reenters a cycle and again parses the whole remaining string.

2.3 Existing Parsers in Squeak/Smalltalk

We choose Squeak/Smalltalk as our implementation environment. Squeak is a live
programming environment using the Smalltalk language. To have a baseline for

20

2.3 Existing Parsers in Squeak/Smalltalk

Listing 2.6: Super-linear Parse Time Grammar

start := ones "2" | "1" start | ""
ones := ones "1" | "1"

later evaluation and to analyze what makes specific parsers slow or fast, we give
an overview of some existing parsers.

2.3.1 Ohm

Ohm is a feature-rich parsing framework that is intended to be an interface defini-
tion that can be implemented in multiple programming languages [23].

All Ohm features can be accessed over its grammar definition language. Ohm
supports inheritance, including overriding and extending rules. It allows the use of
left-recursive rules by implementing the Warth-algorithm. To allow an easy higher-
level language description, it enables the differentiation of lexical and syntactical
rules. The difference between those two is that syntactical rules try to parse spaces
in between expressions without adding them to the resulting syntax tree. That
allows specifying lexing and hierarchical parsing using the same grammar while
not worrying about delimiting when describing the hierarchical structure.

There currently exist two implementations of Ohm. Ohm/JS is the original
implementation [23] and Ohm/S is the Squeak/Smalltalk reimplementation [17].
The Ohm package for Squeak contains an unofficial Squeak/Smalltalk grammar.

The rich feature set of Ohm has adverse effects on the practical runtime. The cost-
intensiveness differs between features; we have a closer look at those in section 2.4.

2.3.2 Squeak Parser

The Squeak compiler uses the class Parser to transform source code to traversable
ASTs to generate bytecode later on.

This parser is handwritten and is only able to parse Smalltalk code in the Squeak
dialect, which is not left-recursive; therefore, Squeak does not handle left-recursive
rules. There exists no official Squeak/Smalltalk grammar, but there is an official
Smalltalk-80 grammar [8], which has fewer features than the Squeak dialect.

The parser isolates syntactical parsing from lexing and uses a character array for
the lookup of character categories. It is at least two orders of magnitude faster than
Ohm for parsing Smalltalk code.

2.3.3 Pharo RBParser

Pharo is a Squeak fork using the class RBParser for compilation. It has comparable
parse times as the Squeak parser and uses a similar parsing strategy compared to

21

2 Background

its counterpart. It tokenizes the string before syntactical parsing using a lookup
array.

2.4 Fast and Slow Parts of Existing Parsers

As mentioned above, the compiler parser is around two orders of magnitude faster
than the Ohm parser. We have a closer look at the reasons for that. Since the Squeak
and the Pharo parser are so similar, we focus on the Squeak parser.

2.4.1 Left-recursion Handling

One particular performance costly feature is left-recursion handling. The Squeak
parser class does not include it, but Ohm does. Experiments show that deactivating
it for non-left-recursive grammars in Ohm by modifying the parsing code results
in an improvement of the parsing speed by around 30%.

The reason for the slowness of left-recursion handling is the constant modifica-
tion of parse state and the checks on the rule invocation stack to detect invocation
cycles.

This slowdown holds massive potential for improvement since most grammars
only have a few small or no parts that are left-recursive. Mostly these parts are the
rules that describe arithmetic, algebraic, or similar operations.

2.4.2 Apply Expression Processing

In the grammars of the Ohm package, the most frequent expressions are apply-
expressions by far. They hold another chance for improvement.

In Ohm, apply-expressions for the same rule are different objects. They cache
the invoked rule after looking it up. Still, caching does only really help if the same
apply expression gets invoked from the same parent expression using the same
object pointer.

To minimize lookups, one could replace all apply-expression objects that refer-
ence the same rule by one single object. One could also do the lookup before the
parsing, for example, while editing, to minimize parsing runtime even more.

2.4.3 Separation of Syntactical Parsing and Lexing

The Squeak parser uses a lookup table in which it can check the category of every
character fastly. This check can be done because there is a guarantee that any
character is part of a distinct character group.

Ohm is unable to do this because characters can be part of multiple lexical rules
in arbitrary grammars. We have no certainty that any character is just part of one
specific group. Grammars can even have significant intersections between lexical
rules.

22

2.4 Fast and Slow Parts of Existing Parsers

This lookup step improves parsing speed because, during parsing, it can walk
forward in the input string until the category of a character changes. Ohm has to
build multiple parse trees that identify the lexical group for every character. We
show the significance of this in the following example.

Example 2.6 (Parsing with Different Strategies). We assume that we want to parse
the identifier string "nameOfMethod123". We can define typical rules that can be
of use to parse identifiers as in the grammar in Listing 2.7.

Listing 2.7: Identifier Grammar

identifier := letter alnum*
letter := [A-Z] | [a-z]
alnum := letter | digit
digit := [0-9]

alnum

Alternatives

letter

Alternatives

[A-Z] [a-z]

(a) Parsing "a"

alnum

Alternatives

letter

Alternatives

[A-Z] [a-z]

digit

[0-9]

(b) Parsing "1"

Figure 2.4: Rule parse invocation trees for the Identifier Grammar

In Figure 2.4 we see the parse invocation trees for a letter and a digit using the
identifier grammar. Parts of the trees that a parser discards during the process are
gray. The Squeak parser can look up any character in the lookup array, and as soon
as it knows it is in the state of parsing an identifier, it can skip all characters that
have the letter or the digit category. It does not need to create and remove tree node
instances, and it does not require such a significant number of rule invocations.

23

2 Background

2.5 Liveness

Immediate feedback is a beneficial property of software systems. This property
requires liveness. Following the definition in “A Perspective on the Evolution of
Live Programming” [20], we can define liveness as the permission for a programmer
to edit a program while it is running as well that execution is continued right after
editing without noticeable interruption.

24

3 Rewriting Parsing Expression
Grammars

We identified left-recursion as a performance-wise costly part of parsers. We now
pursue a theoretical approach to eliminate left-recursion.

We try to analyze and rewrite arbitrary grammars in such a way that we do
not have to change the simple packrat parsing algorithm, which does not allow
left-recursion. This algorithm has the advantage that it is easy to understand, fast,
and grammar-based; therefore, it would be beneficial if it could be used it for any
grammar.

We want to work out the challenges of this problem in this chapter. We build
up techniques to rewrite left-recursion in PEGs and finally layout a conclusion for
rewriting rules.

3.1 The Idea

Algorithms for CFGs that remove left-recursion already exist [7, 15]. Since PEGs
and CFGs are very similar in their expressiveness [13], it could be possible to do
the same for PEGs. When we rewrite an arbitrary grammar to a non-left-recursive
grammar, it means that the new grammar contains no set of rules that constitute a
left-recursive cycle in any way.

Let us consider a simple grammar that only consists of one rule.

Listing 3.1: Simple Left-recursive Grammar

A := A α1 | A α2 | β1 | β2

Let us also consider the following simple non-left-recursive grammar.

Listing 3.2: Simple Non Left-recursive Grammar

A := β1 A′? | β2 A′?
A′ := α1 A′? | α2 A′?

25

3 Rewriting Parsing Expression Grammars

Both grammars are able to parse all strings that have a prefix that matches
the expressions β1 or β2, followed by a string that matches any number of the
expressions α1 or α2.

In contrast to the first one, the second grammar is non-left-recursive, and there-
fore, an original packrat parser could be used to parse it. Due to the different
grammar structures, however, the resulting syntax tree for the second grammar
would not match the rules of the first grammar. That is why we need to rewrite the
syntax tree such that it matches the original grammar.

3.2 Rewriting Criteria

The resulting syntax trees must match the original grammar rules in such a way
that we can map every syntax tree node to a rule from the original grammar. Also,
any resulting syntax tree should equal its corresponding syntax tree of existing
methods to parse left-recursive PEGs [12, 22].

That means that if we get any intermediate trees that result from a parse of a
rewritten grammar, which we need to rewrite to match the original grammar, they
should be unambiguous. In other words, there should be an injective function that
assigns a final tree to every intermediate tree.

We use the packrat parsing algorithm due to its simplicity; therefore, the rewrit-
ing algorithm should not exceed the parsing algorithms complexity by a large scale,
meaning they should not be overly difficult to understand. Otherwise, it would be
desirable to use existing left-recursive parsing methods, and the rewriting approach
would be useless.

3.3 Rewriting Different Types of Left-recursion

We can split the general problem of left-recursion rewriting into multiple, more
specific problem statements. The different problems partly create new issues we
need to describe and solve as well.

First, we develop a generalized schema for direct-left recursion rewriting. To
rewrite indirect left-recursion, we first need to find an algorithmic way to detect
them, which we will explain before describing the rewriting technique. Lastly, we
will describe the necessary steps to rewrite hidden left-recursion, including the
detection of it.

3.3.1 Direct Left-recursion

We define a generic direct left-recursive grammar in the subsequent Listing 3.3.
We need to note that the order of choices plays a significant role here. We can

determine that parsing βk excludes any α` with ` > k from the parsing possibilities
that follow. This fact can be demonstrated using the following counterexample.

26

3.3 Rewriting Different Types of Left-recursion

Listing 3.3: Generic Direct Left-recursive Grammar

A := A α1 | β1 | A α2 | β2 | . . . | A αn | βn

Example 3.1 (Counterexample Expression Order). Let S be a string that matches
the sequence-expression β2α3α1. The parse tree in Figure 3.1 is not valid. At the
beginning of the string, a parser can choose β2. The parse tree includes the choice (A
α3), which matched at the beginning. A parser would only choose (A α3) if choice
β2 had been checked earlier because of its higher priority. Therefore (A α3) cannot
be applied here.

A

A

A

β2

α3

α1

Figure 3.1: Example Syntax Tree that is Impossible

To get a non-left-recursive grammar that represents the same language as our
Generic Direct Left-recursive Grammar, we need to combine every non-left-recursive
choice with all left-recursive expressions that have a higher priority. We demon-
strate this in Listing 3.4.

Listing 3.4: Generic Rewritten Direct Left-recursive Grammar

A := β1 A′1? | β2 A′2? | . . . | βn A′n?
A′1 := α1 A′1?
A′2 := α1 A′2? | α2 A′2?
A′3 := α1 A′3? | α2 A′3? | α3 A′3?
...

A′n := α1 A′n? | α2 A′n? | . . . | αn A′n?

27

3 Rewriting Parsing Expression Grammars

We start with a grammar with just one rule that is an alternatives-expression
with 2n choices from which n choices are left-recursive, and n choices are not. We
get a resulting grammar with n + 1 rules and a total of O(n2) choices.

3.3.2 Finding Indirect Left-recursive Cycles

We speak of a left-recursive cycle when invoking a rule twice without making any
progress within the parsed string, which means that there is a reference cycle in
the involved rules.

To find indirect left-recursion of a grammar, we need to detect cycles in a graph
generated from this grammar, as we describe later.

Definition 3.1 (Cycle). Given a graph G = (V, E). An ordered list of nodes
n1n2 . . . nk with n1, n2, . . . , nk ∈ V is a cycle if, and only if for any pair ni, ni+1

it holds, that (ni, ni+1) ∈ E, and (nk, n1) ∈ E.

We only consider cycles that do not consist of smaller cycles. That means, here,
all cycles contain any node at most once.

Definition 3.2 (Minimal Cycle). Given a cycle c = n1n2 . . . nk. c is minimal if for
any pair ni, nj with i 6= j it holds, that ni 6= nj.

A non-minimal cycle is the concatenation of multiple minimal cycles. Therefore,
only considering minimal cycles during rewriting is enough. We can build all other
cycles in rewritten grammars using the rules from minimal cycles.

3.3.2.1 Transform the Grammar to a Graph
To find cycles, we need to transform a grammar into a graph, and this way, use
existing graph algorithms. To do that, we use expressions as nodes and add directed
edges between those. We only create edges between nodes if the corresponding
expressions have a referencing relationship between them. The edge creation rules
depend on the expression types according to Table 3.1.

Table 3.1: Grammar Graph Edge Creation Rules

Expression node Adjacent expressions nodes

Optional e? the wrapped expression
Zero or more e* the wrapped expression
One or more e+ the wrapped expression
Lookahead And &e the wrapped expression
Lookahead Not !e the wrapped expression
Sequence e1 e2 the first wrapped expression
Alternatives e1 | e2 every wrapped expression
Apply A the referenced rule expression

28

3.3 Rewriting Different Types of Left-recursion

3.3.2.2 Algorithm
We can use a depth-first search (DFS) to traverse the graph and mark visited nodes
to prevent recursive cycles. On every cycle detection, we copy the cycle from the
expression invocation stack to a result set.

Using this simple approach, multiple results for cycles that have various entry
points can be generated. Therefore we need to normalize every cycle deterministi-
cally to detect possible cycle duplicates. We opted to rewrite every cycle such that
the node with the lowest index is the first node. Since nodes only occur once in a
minimal cycle, this method provides unambiguous normalization results.

With DFS, we cannot be sure to reach every node from any node. The trivial
approach would be to start the DFS from any node, which could be time expensive.
We can optimize our algorithm by first finding all strongly connected components
with Tarjan’s algorithm [21]. That would make it possible to start the DFS just
once in every component. Also, we can add a recursion abortion if the recursive
call leaves the strongly connected component. We provide a pseudocode for this
algorithm in Listing 3.5.

3.3.3 Indirect Left-recursion

We are now able to detect any minimal cycles in graphs and, therefore, any indirect
left-recursive cycles in grammars. To demonstrate how to rewrite those grammars,
we define an indirect left-recursive grammar with m rules, each rule consisting of
one alternatives-expression with two choices in Listing 3.6.

As an example, we transform the first rule of the grammar, which results in the
grammar in Listing 3.7. Since every rule is a potential entry for the cycle, we need
to rewrite every rule using this schema. It might happen that we never use most of
the new rules to enter the cycle. In that case, the additional rules would not affect
method invocations or runtime.

Starting with a cycle of m rules, each consisting of an alternatives expression with
one indirect left-recursive and one non-left-recursive choice, we would get m + m2

rules from which m rules have m choices, and m2 rules have one choice. Thus
the total number of choices would be O(m2). Here, the exemplary introduction
to this new rewriting schema shall suffice. For a complete and formal rewriting
schema, we would need to define a universal grammar. If for any rule, more than
two choices exist, we would need to combine the rules similar to the combinations
in subsection 3.3.1, resulting in an even higher number of choices.

Furthermore, we need to rewrite all minimal cycles, which can potentially result
in an even more complex grammar with a huge rule count. The next example
outlines that fact.

Example 3.2 (Rewriting Multiple Minimal Cycles). We define the grammar in
Listing 3.8 with six indirect left-recursive rules, and Figure 3.2 displays the four
minimal cycles that result from the grammar definition. When rewriting this spe-
cific grammar, the result is a large number of new rules. Four minimal cycles, each
consisting of three rules, results in 4 · 4 · 4 = 64 new rules.

29

3 Rewriting Parsing Expression Grammars

Listing 3.5: Minimal Cycle Detection Pseudocode

Input: Graph G = (V, E)
Output: List of minimal cycles

C := G.components // tarjans algorithm
R := {} // result set
S := [] // initialize the stack
for c ∈ C do

n := C.any // random node in C
visit(n)

end for

R.remove_duplicates() // normalize cycles and
// remove duplicates

return R

function visit(n)
S.push(n)
for n' ∈ n.neighbors do

if n'.component = n.component then
if n' ∈ S then

R.add(S.top_until(n') // write top of S into R
// until n' appears

else
visit(n')

end if
end if

end for
S.pop()

end function

Listing 3.6: Generic Indirect Left-recursive Grammar

A1 := A2 α1 | β1

A2 := A3 α2 | β2

A3 := A4 α3 | β3
...

Am := A1 αm | βm

30

3.3 Rewriting Different Types of Left-recursion

Listing 3.7: Generic Rewritten Indirect Left-recursive Grammar

A1 := βm A1
m−1 | βm−1 A1

m−2 | . . . | β1 A1
m

A1
1 := α1 A1

m?
A1

2 := α2 A1
1?

A1
3 := α3 A1

2?
...

A1
m := αm A1

m−1?
...

Listing 3.8: Multiple Minimal Cycles Grammar

a := b "a" | . . .
b := c "b" | d "b" | . . .
c := e "c" | . . .
d := a "d" | e "d" | . . .
e := b "e" | f "e" | . . .
f := d "f" | . . .

a b c

d e

f

	
� �

�

Figure 3.2: Example for a Left-recursive Grammar Graph

31

3 Rewriting Parsing Expression Grammars

3.3.4 Finding Hidden Left-recursive Cycles

To describe the difficulty of finding hidden left-recursion, consider the simple
potentially hidden left-recursive grammar in Listing 3.9.

Listing 3.9: Potentially Hidden Left-recursive Grammar

A := B A α | β

B := . . .
...

If, somehow, evaluating rule B consumes no characters, the evaluation of rule
A would result in a left-recursive invocation. The algorithm described in subsec-
tion 3.3.2 does not take such hidden left-recursive rules into account.

To find out if invoking rule B can result in a parse success without consuming
any characters, we can again create an expression graph with edges between nodes
representing wrapping relationships between these expressions. Starting at the
nodes without outgoing edges of this graph and reducing it successively, we can
specify for every node whether it can parse an empty string or not. For this process,
we use the reduce rules specified in Table 3.2.

Table 3.2: Specifications if Expressions can Parse Successfully by Consum-
ing ε

Expression can parse by consuming ε

String "abc" if length = 0
Character class [A-Z] ×
Any . ×
Optional e? X
Zero or more e* X
One or more e+ if child can parse by consuming ε

Lookahead And &e X
Lookahead Not !e X
Sequence e1 e2 if all children can parse by consuming ε

Alternatives e1 | e2 if any child can parse by consuming ε

Apply A if referenced rule can parse by consuming ε

When we know for each expression if it can parse successfully without consum-
ing any characters, we can build a new graph using a similar algorithm than the

32

3.3 Rewriting Different Types of Left-recursion

graph creation algorithm specified in subsection 3.3.2. The only edge creation case
that changes is the one for sequence-expressions:

e = e1|e2| . . . |en

For this expression, we add an edge to the graph from e to ek for all k, which
satisfy that e` can parse successfully without consuming any characters for every
` < k. With this modification of the graph in place, using the algorithm in Listing 3.5
we again can detect all left-recursive cycles in the grammar.

3.3.5 Hidden Left-recursion

Hidden left-recursive cycles can be found as described in the previous section. To
rewrite hidden left-recursive rules, it is necessary to extend the detection of rules
that can parse successfully without consuming characters, even more, to make it
more differentiated.

To motivate this extension, consider the following example.

Example 3.3 (Motivate Hidden Left-recursion Detection Algorithm). Again, con-
sider the grammar in Listing 3.9. If rule B can only parse ε and does not contain any
lookahead, we could just let go of the apply-expression in rule A. If, however, this
rule contains a lookahead, it could parse successfully by consuming no characters
but is still critical at this place of the grammar, and thus cannot be removed. If the
rule can both parse successfully by consuming nonempty strings and parse suc-
cessfully by consuming ε, we need to make sure any rewritten grammar consumes
those nonempty strings as well.

We extend Table 3.2 to determine if an expression contains a lookahead, can
parse empty strings, and can parse nonempty strings. The reducing rules of this
extension are visible in Table 3.3.

To demonstrate which cases are needed to distinguish between, again, take the
grammar from Listing 3.9 with the unspecified rule B. Depending on whether or
not B can parse epsilon or can derive a lookahead rule, we need to use different
rewriting strategies.

We use the markers ., ε, and �ε to mark the properties contains lookahead, can
parse ε, and can parse �ε, respectively. Since every rule has at least one of the three

properties, we have the cases
.
B,

ε
B, �εB,

.ε
B ,

. �εB ,
ε �εB and

.ε �εB . We describe the essential
rewriting measures for each of those cases.

3.3.5.1 B only contains lookahead (
.
B)

In this case, we can not parse an empty string using B, but still, B does not consume
any characters. The choice (B A α) needs to start with B even when the rule is
rewritten since the lookahead at this very position is necessary. We, therefore,
rewrite the rule as if it is direct left-recursive and prepend the lookahead rule after
rewriting.

33

3 Rewriting Parsing Expression Grammars

Table 3.3: Specifications what Expressions can Consume

Expression contains lookahead can parse ε can parse �ε

String × if length = 0 if length 6= 0
Character class × × X
Any × × X
Optional wrapped X wrapped
Zero or more wrapped X wrapped
One or more wrapped wrapped wrapped
Lookahead And X × ×
Lookahead Not X × ×
Sequence any wrapped all wrapped any wrapped
Alternatives any wrapped any wrapped any wrapped
Apply referenced rule referenced rule referenced rule

“wrapped” means true, if and only if the attribute is true for the wrapped
expressions.

Listing 3.10: Rewritten Simple Hidden Left-recursive Grammar for Case .

A :=
.
B β A′ | β

A′ := α A′?
.
B := . . .

34

3.3 Rewriting Different Types of Left-recursion

Starting with the rule

A :=
.
B A α | β

we build the following new grammar.

3.3.5.2 B can only parse empty strings (
ε
B)

We have rule

A :=
ε
B A α | β

with the choice (
ε
B A α) being effectively the same as (A α). To get a syntax tree

that matches the original grammar, we cannot just remove
ε
B from the rule, but still,

need to handle the rule like a left-recursive one.
We rewrite the rule resulting in the grammar in Listing 3.11. B below A denotes

that the node representing rule A in the syntax tree needs a node representing rule
B as left sibling even though it is not part of the rewritten rule anymore.

Listing 3.11: Rewritten Simple Hidden Left-recursive Grammar for Case ε

A := β A
B
′ | β

A′ := α A
B
′?

B := . . .

3.3.5.3 B can only parse nonempty strings (�
ε
B)

In this case, �εB cannot parse anything resulting in no consumption of characters.
Therefore this case is not left-recursive. We do not rewrite the rules.

3.3.5.4 B contains lookahead and can parse empty strings (
.ε
B)

There is no way that the rule consumes any characters. This combined characteristic
leads to the need for us to create multiple choices for different parse trees B can
derive, each parse tree only having one of both properties.

Let
.
B denote the rule

.ε
B without the choice that leads to parsing ε as well as no

choices with lower priority. This rule split transformation might make it necessary
to transform multiple indirect connected rules.

Note that a parsing path that is resulting in no character consumption always
has the smallest priority from all parsing paths. That holds since a parser would
not check any other parsing paths once a successful parse consumes no characters.

35

3 Rewriting Parsing Expression Grammars

To rewrite the grammar, we combine the rewriting of the cases
.
B and

ε
B. We

introduce new choices to A, resulting in rule

A :=
.
B A α |

ε
B A α | β

Using this rule, we get the following rewritten grammar.

Listing 3.12: Rewritten Simple Hidden Left-recursive Grammar for Case .ε

A :=
.
B β A′ | β A

B
′′ | β

A′ := α A′?
A′′ := α A

B
′′?

.
B := . . .
ε
B := . . .

3.3.5.5 B contains lookahead and can parse nonempty strings (
. �εB)

This case allows no possible parse for an empty input string. We again split the
choices resulting in a rule that can have the following format.

A :=
.
B A α | �εB A α | β

This rule is only exemplary since there can occur much more choices depending
on how mixed up the possible parse paths for rule B are that derive lookahead and
nonempty parses. We again combine the rewriting schemes of the previous cases
and get the following grammar.

Listing 3.13: Rewritten Simple Hidden Left-recursive Grammar for Case .�ε

A :=
.
B β A′ | �εB A α | β

A′ := α A′?
.
B := . . .
�εB := . . .

36

3.3 Rewriting Different Types of Left-recursion

3.3.5.6 B contains no lookahead and can parse empty and nonempty strings (
ε �εB)

This one is similar to the case
ε
B with the difference that this case is more generalized.

Having still no lookahead, the parse result for B can be both empty and not empty.
In the previous case, we were able to remove Bε and annotate A such that we

know to modify the syntax tree later. Here we again need to create multiple choices
for different parse trees that B can derive.

The new split up rule is

A := �εB A α |
ε
B A α | β

Rewriting the rules and annotating A results in the following grammar.

Listing 3.14: Rewritten Simple Hidden Left-recursive Grammar for Case ε�ε

A := �εB A α | β A
B
′ | β

A′ := α A
B
′?

ε
B := . . .
�εB := . . .

3.3.5.7 B contains lookahead and can parse empty and nonempty strings (
.ε �εB)

The last case is the combination of all previous ones. It is similar to the case
. �εB with

the difference that there is an additional choice with the lowest priority of the split
choices resulting in an empty string parse. We can now get a rule

A :=
.
B A α | �εB A α |

ε
B A α | β

Like in the case for
. �εB , the first two choices are not necessarily in order, and we

could have even more choices after splitting. When rewriting the grammar using
our split rule, we get the grammar in Listing 3.15.

3.3.5.8 Overview
We give an overview of all different cases for the hidden left-recursive rules in
Table 3.4.

37

3 Rewriting Parsing Expression Grammars

Listing 3.15: Rewritten Simple Hidden Left-recursive Grammar for Case .ε�ε

A :=
.
B β A′ | �εB β A | β A

B
′′ | β

A′ := α A′?
A′′ := α A

B
′′?

.
B := . . .
ε
B := . . .
�εB := . . .

Table 3.4: Overview of Hidden Left-recursive Rewrites for
A := B A α | β

Case Split rule New rules
.
B A :=

.
B A α | β A :=

.
B β A′ | β

A′ := α A′?
ε
B A :=

ε
B A α | β A := β A

B
′ | β

A′ := α A
B
′?

�εB A := �εB A α | β A := �εB A α | β
.ε
B A :=

.
B A α |

ε
B A α | β A :=

.
B β A′ | β A

B
′′ | β

A’ := α A′?

A” := α A
B
′′?

. �εB A :=
.
B A α | �εB A α | β A :=

.
B β A′ | �εB A α | β

A′ := α A′?
ε �εB A := �εB A α |

ε
B A α | β A := �εB A α | β A

B
′ | β

A′ := α A
B
′?

.ε �εB A :=
.
B A α | �εB A α |

ε
B A α | β A :=

.
B β A′ | �εB β A | β A

B
′′ | β

A’ := α A′?

A” := α A
B
′′?

38

3.4 Syntax Tree Rewriting

3.4 Syntax Tree Rewriting

To create a syntax tree that matches the rules of an original grammar we need to
restructure the syntax tree of a rewritten grammar.

We modify left-recursive rules to be non-left-recursive, but they remain recur-
sive in some way. Those rewritten rules result in recursion paths that differ from
recursion paths in syntax trees derived from the original grammar. All rules that
were not left-recursive do not lead to different tree structures and, therefore, do
not need to be rewritten.

We mark those rewritten rules with an upper dash or with a superscript number,
for example, A′ or A1.

Using these marks we can identify the rewritten rule paths because they consist
of directly connected marked nodes with the same base rule identifier and one
unmarked node as their parent. Such paths will be presented in example 3.4,
example 3.5, and example 3.6.

To recreate a syntax tree in which the nodes match the rules of the original gram-
mar, we need to rotate the recursive paths that resulted from rewritten rules while
preserving additional connected nodes. The rewriting for indirect left-recursions,
already incorporates the change of rule order for the rewritten grammar.

However, we need to fix the node names so that they match the rule names of the
original grammar. Furthermore, we need to fix the entry-point node of any rotated
path. Also, we need to reinsert missing apply-expressions that we remove during
rewriting.

We have the following steps for syntax tree modification.

1. Find paths in the syntax tree that are non-left-recursive but should be left-
recursive.

2. Rotate the paths, so they become left-recursive.

3. Fix the node names of the paths.

4. Insert missing subtrees.

Processing those rule modification steps results in linear runtime since each of
those steps needs only a constant number of tree traversals.

We demonstrate the tree-rewriting steps by walking through several examples.

Example 3.4 (Simple Math Grammar Rewriting). We use the math grammar in
Listing 2.1. Using the rewriting schema for direct left-recursive grammars we get
the non-left-recursive grammar in Listing 3.16.

Parsing the input string "1-2*3+4" according to this grammar, we get the syntax
tree in Figure 3.3.

In the tree, we have two paths that we need to rotate. Both are marked with out-
lined nodes and dotted edges. After rotation, we do not need to do any additional
steps. In this case, we do not need to fix any rule names, and we do not need to
reinsert missing parse trees. We get in fact the tree in Figure 2.1.

39

3 Rewriting Parsing Expression Grammars

Listing 3.16: Rewritten Simple Math Grammar

expr := addexpr
addexpr := mulexpr addexpr′?
addexpr′ := "+" mulexpr addexpr′? |

"-" mulexpr addexpr′?
mulexpr := digit mulexpr′?
mulexpr′ := "*" digit mulexpr′? |

"/" digit mulexpr′?
digit := [0-9]

expr

addexpr

mulexpr

digit

[1]

addexpr′

"-" mulexpr

digit

[2]

mulexpr′

"*" digit

[3]

addexpr′

"+" mulexpr

digit

[4]

Figure 3.3: The parse tree for the Rewritten Simple Math Grammar

40

3.4 Syntax Tree Rewriting

Example 3.5 (Indirect Left-recursion Rewriting). To find a real use case for an
indirect left-recursive grammar poses a quite hard problem, even though we need
to cover this case. To have an example, regardless, we use a generalized grammar.

We consider the grammar in Listing 3.17.

Listing 3.17: Indirect Left-recursive Example Grammar

A1 := A2 α1 | β1

A2 := A3 α2 | β2

A3 := A1 α3 | β3

Following our rewriting specifications for indirect left-recursions, we get the
following non-left-recursive grammar.

Listing 3.18: Rewritten Indirect Left-recursive Example Grammar

A1 := β3 A1
2 | β2 A1

1 | β1 A1
3

A1
1 := α1 A1

3?
A1

2 := α2 A1
1?

A1
3 := α3 A1

2?

A2 := β1 A2
3 | β3 A2

2 | β2 A2
1

A2
1 := α1 A2

3?
A2

2 := α2 A2
1?

A2
3 := α3 A2

2?

A3 := β2 A3
1 | β1 A3

3 | β3 A3
2

A3
1 := α1 A3

3?
A3

2 := α2 A3
1?

A3
3 := α3 A3

2?

We assume that we want to parse a string that matches the sequence-expression
(β3 α2 α1). By using the rewritten grammar, we get the syntax tree in Figure 3.4a
with the recursive-path marked with outlined nodes and dotted edges. We need
to restructure the tree by rotating that path, which results in the tree shown in
Figure 3.4b. At last, we fix the node names and change the name of the path’s lowest
node to match the original grammar. It is required that the rule corresponding to
the node is A1 in the rewritten grammar so that the parser can find the correct entry
point for this subtree.

41

3 Rewriting Parsing Expression Grammars

A1

β3 A1
2

α2 A1
1

α1

(a) Syntax tree

A1
1

A1
2

A1

β3

α2

α1

(b) Reordered tree

A1

A2

A3

β3

α2

α1

(c) Fixed nodes

Figure 3.4: The parse tree for the Rewritten Indirect Left-recursive Example Gram-
mar

Example 3.6 (Hidden Left-recursion Rewriting). Again we construct an arbitrary
example because it is quite hard to find a real grammar that covers all cases.
Consider the grammar in Listing 3.19.

Listing 3.19: Hidden Left-recursive Example Grammar

A := B A α1 | α2

B := β! | !β2 B β2 | β3 | ""

Applying our rewriting schema for hidden left-recursion results in the grammar
in Listing 3.20.

With both grammars, one is able to parse a string that matches the sequence-
expression !β2β3β2α2α1α1. Using the rewritten grammar results in the syntax tree
in Figure 3.5a. Rotating both left-recursive paths, results in the second tree of
Figure 3.5. At the node A

B
, it is essential to insert the absent parse tree for rule B and

at last, fix the rule names, so they match the first grammar. We get the resulting
rewritten syntax tree in Figure 3.5d.

3.5 Conclusion

At this point, the report takes a turn. By outlining the required rewriting steps and
algorithms, we established that rewriting PGEs is not trivial, and we can state that
the complexity exceeds the complexity of already existing parsing solutions for

42

3.5 Conclusion

Listing 3.20: Rewritten Hidden Left-recursive Example Grammar

A := �εB A α1 | α2 A
B
′ | α2

A′ := α1 A
B
′?

�εB := β1 | !β2 β3
�εB′ | β3

�εB′ := β2
�εB′?

ε
B := ""

A

�εB

!β2 β3
�εB′

β2

A

α2 A
B
′

α1

α1

(a) Syntax tree

A

�εB

!β2
�εB

β3

β2

A
B

A

α2

α1

α1

(b) Reordered tree

A

�εB

!β2
�εB

β3

β2

A

ε
B

""

A

α2

α1

α1

(c) Inserted subtree

A

B

!β2 B

β3

β2

A

B

""

A

α2

α1

α1

(d) Finished syntax tree

Figure 3.5: The parse tree for the Rewritten Hidden Left-recursive Example Gram-
mar

43

3 Rewriting Parsing Expression Grammars

left-recursive grammars. That is due to the number of cases we need to take into
account for any parse on arbitrary grammars, and the difficulty of finding those
cases beforehand.

The complexity gets introduced because of PEGs’ lookahead operators. Those
are indispensable since they are necessary for the elegant expressiveness of PEGs.

Rewriting grammar seems not to be feasible since it is way too complex to do in
a general way. We now will shift our focus to a more practical approach.

44

4 Parser Generator Approach

We shift our attention towards an engineering-focused approach. We try to elim-
inate elements of Ohm/S that we consider slow and make use of aspects of the
Squeak parser class that are fast. We also aim to do as much computing before
the parsing process, even when more expensive, to make the parsing as fast as
possible. This shift of computing is advantageous as we assume that we use parsers
for parsing much more often than we edit the underlying grammar.

The intention is to generate a function object class from a grammar that does
the parsing. We want to convert every expression and, therefore, every rule into a
parsing method of the generated class. A generated class has no expensive lookups
for values, objects, or rules. It only consists of static code that we compile.

4.1 Compatibility with Ohm

We want to achieve compatibility with Ohm as much as possible to use existing
tooling for live language development, including the grammars provided by the
Ohm package.

Some of Ohm’s features, like rule-extensions, can be simulated by transforming
them during generation. Other features, such as inheritance and the difference
between syntactical and lexical rules, need to be incorporated into the generated
classes to work correctly. To support inheritance of grammars, we can make use of
inheritance of classes. Any class that extends a parent class can use inherited rules
by calling the corresponding methods. To cover the distinction between syntactical
and lexical expressions, we use different generators for each of them. Syntactical
expression methods need to call a spacing method without adding space-nodes
to the resulting syntax tree. The expressions that are affected by this distinction
of syntaxtical and lexical expressions are the apply-expression, the zero-or-more-
expression, the one-or-more-expression, and the sequence-expression.

4.2 Left-recursive Rules

As we established before, the handling of left-recursion is expensive since a lot of
additional computing is necessary to handle cycle detection and cycle handling.

We also stated that typically, by far, not all rules are left-recursive. We only
need to handle left-recursion while parsing left-recursive rules; that is why we
need a way to distinguish non-left-recursive rules from left-recursive rules. We

45

4 Parser Generator Approach

have a closer look at this distinction in section 4.3. When categorizing rules into
left-recursive and non-left-recursive ones, we can handle left-recursive rules by
using the Warth-algorithm and non-left-recursive rules like the original packrat
parser handles them. We need to incorporate the different handling modes into
the generated code, so we use different generators for left-recursive rules than for
non-left-recursive rules.

The Warth-algorithm requires multiple data structures holding some state during
the parse. Those are part of the parser instance, and the parser initializes them at
the beginning of a parse, just like the memoization data structure.

4.3 Detecting Left-recursive Rules

We can detect rules that potentially cause left-recursion as described in section 3.3.
We depict the single steps that we need to carry out in Figure 4.1.

The first step is to build a derivation graph from the set of rule definitions. Note
that we need to incorporate all rule definitions, including rule definitions from
grammars the current grammar inherited from, to precisely detect all potential
cycles. We explain why in example 4.1 and example 4.2. With a derivation graph,
we need to reduce it to know which expressions can parse successfully without
consuming any characters. Using the resulting reduced graph, it is possible to
build the left-recursion graph. From the left-recursion graph, we extract strongly
connected components using Tarjan’s algorithm [21]. Every rule expression that
is now in a connected component with a size larger than one is potentially left-
recursive.

Rule Definitions

Rule Definitions

Rule Definitions

D
er

iv
at

io
n

G
ra

ph

R
ed

uc
ed

D
er

iv
at

io
n

G
ra

ph

L
ef

t-
re

cu
rs

io
n

G
ra

ph

L
ef

t-
re

cu
rs

iv
e

R
ul

es

Figure 4.1: The procedure to extract all left-recursive rules from rule definitions

We might need to generate rules in parser classes despite them being already
part of an ancestor class. We show within two examples why this is unavoidable.

Example 4.1 (The Necessity of Incorporating Parent Rule Definitions). Consider
the following two grammars and assume that the class implementing the second
grammar inherits from the class implementing first grammar.

46

4.4 Tree Flattening

Listing 4.1: Inheritance Parent Grammar A

a := b | "a"
b := a "b"

Listing 4.2: Inheritance Child Grammar A

b := "b"

We notice that in the parent grammar, both rules are left-recursive. Considering
the child grammar that inherits rule a and overrides rule b, we notice that neither of
these rules is left-recursive anymore, and the implementing classes need to handle
them differently.

Example 4.2 (The Necessity of Incorporating Parent Rule Definitions). We take the
following two grammars and again assume that the class implementing the second
grammar inherits from the class implementing the first.

Listing 4.3: Inheritance Parent Grammar B

a := b | "a"
b := "b"

Neither of the rules in the parent grammar is left-recursive; however, in the child
grammar, both rules become left-recursive due to the overridden rule b. We need
to handle both rules with different methods in both parsers.

4.4 Tree Flattening

A straightforward approach to build a parser is to generate a syntax tree node for
every expression. We, however, want the syntax trees flattened for two reasons.

First, the traversal through a tree that has fewer nodes and only named nodes is
more comfortable. We illustrate that in the following example.

Example 4.3 (Flattened Tree). We again use the math grammar from Listing 2.1.
The natural parse tree that we want to get from our parser using that grammar
is visible in Figure 2.1. A tree having a node for every expression is depicted in
Figure 4.2. This tree contains nodes that are of no use for us and have no semantic
meaning, for example the Alternatives-node.

47

4 Parser Generator Approach

Listing 4.4: Inheritance Child Grammar B

b := a "b"

Figure 4.2: The unflattened parse tree of the Simple Math Grammar

expr

addexpr

Alternatives

Sequence

addexpr

...

"+" mulexpr

...

The second reason is compatibility with Ohm. Since we want to make use of
Ohm tooling and grammars, it is helpful to generate parsing trees that have the
same structure as Ohm parsing trees, which are flattened as well.

We choose to flatten the tree during parsing; this has the advantage that we can
memoize parts of a tree that are already flattened, and we do not have to flatten
multiple times when the identical subtrees occur at two points in the syntax tree.

To realize this flattening while parsing, we use shadow nodes. These nodes are,
in contrast to ordinary nodes, intermediate and undesired in our final syntax tree.
Node objects and shadow node objects differ in their implementation as they both
have a differently implemented method nodeList. For ordinary nodes, this method
returns a list containing just the node itself. For shadow nodes, this method returns
the child list of the node. When the parser creates a new node with children, it
calls nodeList on all its children and concatenates the resulting lists. This way,
the parser shadow nodes reach their children through to their parents and vanish
during the parsing process.

48

4.5 Failure Reporting

4.5 Failure Reporting

For failure reporting, we want to use the same strategy as Ohm. We report the set of
failures that occur farthest to the right because they are probably close to the actual
failure [4]. We know that only leaf expressions throw failures because all other fail-
ing expressions derive from failing leaf-expression. These leaf-expressions are prim-
itive expressions; in other words: string-expressions, character-class-expressions, or
any-expressions.

There are three options to do failure reporting. For one, we could add the failures
to the return statements of parsed expressions. This way, they traverse the parse
invocation tree until they reach the initial parse invocation. The second option is
to throw exceptions for failed parse invocations. The third option would be to save
failures globally in the parser object.

The last option seems more feasible since the first two options introduce the
need for failure handling in every expression method template instead of only in
the templates for primitive expression methods.

4.6 Memoization

Memoization can be expensive due to the allocation of a large portion of heap
memory, sometimes being even more expensive than not memoizing [2].

Experiments show that in the case of parsing Smalltalk, using a generated packrat
parser class leads to an apparent performance gain of at least 25% and therefore
we will incorporate memoization into our parser generator.

49

5 Parser Generator Implementation

The implementation of the parser generator consists of multiple parts. We discuss
the most critical generator parts in this chapter.

We start with the parser class itself, which is generated for every grammar. We
present such a parser in a general way so we can apply it on arbitrary grammars.
Next, we describe the generation process of this parser, especially the use of the
generator and which decisions the generator has to make.

Compatibility with Ohm introduces the need for a converter from Ohm gram-
mars to make use of them.

5.1 Parser

To give an understanding of the parser, we describe its usage, functionality, and fea-
tures. Those include control flow description and implementation detail decisions
as well as supported capabilities of the parser.

5.1.1 Interface

Any parser class provides an entry point method that triggers parsing:

parse: <string> startingFrom: <ruleIdent>

This method invokes the parse of the given string using the starting rule that is
referenced by the rule identifier.

The method returns a match result object that contains information if the parse
succeeded or failed. For successful parses, it also includes the syntax tree in the
form of a root node. For failed parses, it contains a failure object representing the
rightmost failure set, which is a list of elements that would lead to a further right
parse as described in section 4.5.

5.1.2 Structure

While parsing, several different rule types are involved, and multiple methods of
the parser object call each other. We give an overview of the order of method calls
and the motivation for this implementation approach.

50

5.1 Parser

5.1.2.1 Method Names
Each expression has a corresponding method in its analogous parser class. Those
expression methods are named depending on their containing rule.

To explain how we name expression methods, we note that expressions always
follow a tree-like structure. The expression that is the rule itself gets the rule name.
Subexpression names consist of two parts, their parent expression name and a
number that refers to its position within its sibling expressions. That means that
expression method names indicate all their ancestor expressions and the level in
the expression hierarchy. For an expression method that is named <name> its k
children are named <name>_1, <name>_2, . . . , and <name>_<k>.

Using this naming schema, one can generate all subexpression names recursively
by only knowing the parent expression name, and it does not create any naming
conflicts.

Expression method names also get the prefix "parse_" to indicate that they are
not auxiliary methods. Expression methods get the position in the parse string as
argument, so they have the information where in the string they have to invoke the
rule.

Example 5.1 (Expression Method Naming). We assume that we have a grammar
with the rule

simpleIdent := [a-z] ([a-z] | [0-9] | "_")*

Sequence

[a-z] Zero or more

Alternatives

[a-z] [0-9] "_"

Figure 5.1: The expression tree of the simpleIdent rule

The tree structure of this rule is visible in Figure 5.1. Using this rule we get the
method names in Listing 5.1.

Apply-expressions follow a different naming schema since they are just refer-
encing rules by name. We generate a corresponding apply-expression method for
every rule. These apply-expression methods have the prefix "apply_". We will
now have a closer look at the combination of apply-expression methods and other
expression methods.

51

5 Parser Generator Implementation

Listing 5.1: simpleIdent Method Heads

1 parse_simpleIdent: <pos>
2 parse_simpleIdent_1: <pos>
3 parse_simpleIdent_2: <pos>
4 parse_simpleIdent_2_1: <pos>
5 parse_simpleIdent_2_1_1: <pos>
6 parse_simpleIdent_2_1_2: <pos>
7 parse_simpleIdent_2_1_3: <pos>

5.1.2.2 Apply
As stated above, apply-expression methods follow a different naming convention
than other expressions. To keep the recursive naming convention of rules consistent,
we introduce a new method. Apply wrapper methods follow the naming schema
of the other expressions and only call their corresponding apply-expression.

This has the advantage that they are easy to generate because we can produce
apply wrapper methods and apply methods independently.

We can use an apply wrapper method to call the corresponding apply-expression
method, which does the memoization and, if necessary, left-recursion handling and
calls the actual parse method of its rule expression.

Example 5.2 (Apply Methods and Apply Wrapper Methods). Consider the follow-
ing rule.

literal := simpleIdent | number

This rule results in the corresponding expression method names, as shown in
the following listing.

Listing 5.2: literal Method Heads

1 parse_literal: <pos>
2 parse_literal_1: <pos>
3 parse_literal_2: <pos>

Both subexpression methods parse_literal_1 and parse_literal_2 are apply
wrappers calling their actual apply method, respectively. The source codes of the
first apply wrapper method and its corresponding apply-expression method are
given in Listing 5.3 and Listing 5.4.

The apply method accesses the memoization data structure at line 2 and parses
the simpleIdent rule at line 5 in case no memoization entry is found.

52

5.1 Parser

Listing 5.3: simpleIdent Apply Wrapper Method

1 parse_literal_1: pos
2 ↑ self apply_simpleIdent: pos

Listing 5.4: simpleIdent Apply Method

1 apply_simpleIdent: pos
2 ↑ (memoization at: pos ifAbsent: [↑ nil])
3 at: #parse_simpleIdent ifAbsentPut: [
4 | childResult |
5 childResult := self parse_simpleIdent: pos.
6 childResult
7 ifNil: [nil]
8 ifNotNil: [
9 PEGNode

10 newOn: #simpleIdent
11 from: pos
12 to: childResult endPos
13 children: childResult nodeList]]

If simpleIdent would be involved in a left-recursive cycle, we would generate
a different method for the apply, independently from the apply wrapper method.
The generated method would have a different code invoking the methods that
handle left-recursion according to Warths’ algorithm.

5.1.2.3 Lexical and Syntactical Rules
As mentioned in section 4.1, we want the ability to differentiate between lexical and
syntactical expressions. Lexical expression methods should parse the expressions
according to their definitions. Syntactical rule methods, on the other hand, need to
try to parse spaces in between their subexpressions without including them in the
syntax tree. We show the distinction with the following example for two zero or
more expressions.

Example 5.3 (Lexical vs. Syntactical Expression Methods). We have the following
lexical rule definition.

exp := subexp*

We also have the same rule definitions with the difference that it is syntactical.

Exp := subexp*

53

5 Parser Generator Implementation

The parse methods for both the lexical and the syntactical rule parse methods
are in Listing 5.5 and Listing 5.6 respectively.

Listing 5.5: exp Parse Method

1 parse_exp: pos
2 | currentPos currentResult children |
3 currentPos := pos.
4 children := OrderedCollection new.
5 [
6 currentResult := self parse_exp_1: currentPos.
7 currentResult ifNotNil: [
8 currentPos := currentResult endPos.
9 children add: currentResult]

10] doWhileTrue: [(currentResult == nil) not].
11

12 ↑ PEGNode
13 newOn: #_list
14 from: pos
15 to: currentPos
16 children: (children collect: #nodeList) flatten

As we can see, line 6 of the Exp parse method contains the method call to skip
any spaces. The skip spaces method calls the method called apply_spaces, which
means that the grammar needs to have a rule named spaces.

5.1.2.4 Superclass
To provide certain functionality like an entry point method, space skipping, left-
recursion, and failure handling, we use a superclass that holds the necessary aux-
iliary methods. This superclass is given by the class PEGParser from which all
parser classes inherit directly or indirectly. This class also provides data structures
necessary during parsing and sets them up at parse begin.

5.1.3 State

To be able to parse, the parser needs to keep some data structures that are provided
by a superclass. It generates them on the invocation of the parse method. We will
describe them one at a time.

5.1.3.1 Memoization
For memoization, we use an array of identity dictionaries called memoization.
Identity dictionaries are dictionaries that reference by the identity of a key instead

54

5.1 Parser

Listing 5.6: Exp Parse Method

1 parse_Exp: pos
2 | skipPos currentPos currentResult children |
3 currentPos := pos.
4 children := OrderedCollection new.
5 [
6 skipPos := self skipSpaces: currentPos.
7 currentResult := self parse_exp_1: skipPos.
8 currentResult ifNotNil: [
9 currentPos := currentResult endPos.

10 children add: currentResult]
11] doWhileTrue: [(currentResult == nil) not].
12

13 ↑ PEGNode
14 newOn: #_list
15 from: pos
16 to: currentPos
17 children: (children collect: #nodeList) flatten

of the value of a key. The array has the size of the parsed string, so for each position,
the parser can store parse results for every rule identifier. For example, it would
store the result for parsing the rule simpleIdent at a position p under the key
#parse_simpleIdent in the p-th identity dictionary.

In theory, it would have also been possible to use an identity dictionary contain-
ing arrays. However, experiments have shown that this is slower than the method
we use.

5.1.3.2 Left-recursion
Handling left-recursion requires two data structures, as described by the authors
of the Warth-algorithm [22]. Those data structures are named heads and leftRe-
cursionStack. heads is an array with the size of the parse string, containing head
objects that mark the beginnings of left-recursion cycles. leftRecursionStack is a
list containing the left-recursion objects ordered by invocation time.

5.1.3.3 Failure Reporting
The object rightmostFailure contains a set of failures that are farthest to the right
at any given moment during the parse. The set can contain more than one failure
because it is possible to have multiple unsuccessful parse paths that end at the
same position in the string. The parser overrides it if a failure occurs that has a
higher position in the string than the current failure set.

55

5 Parser Generator Implementation

5.1.4 Thread Safety

The parser classes that we generate are not thread-safe in their current state. That
is due to the multiple data structures that introduce state to the parse. To make
a parser instance thread-safe, we could create a state class that wraps those data
structures. However, it is not necessary because, for thread safety, we can also
create multiple instances of the same parser class, which has the same effect as
having various state objects.

5.2 Parser Generator

The generator is the main component of our software. It does the essential comput-
ing steps for our parsers and is the part that differs from other PEG parsers.

In this section, we describe the necessary steps and nuances of the parser gener-
ation process.

5.2.1 Interface

A parser generator object is an instance of the class PEGParserGenerator. To
generate a parser, we need to add rules that are part of the grammar. We add those
rules by calling the following method.

defineRule: <ruleName> withExpr: <exprGenerator>

The expressions that we add come in the form of expression generator objects. To
receive these expression generator objects, we can use methods of the parser genera-
tor object providing them. A list of all methods that return an expression generator
is depicted in Table 5.1. We explain expression generators in subsection 5.2.2.

We can generate the entire parser class by calling the following method.

generate: <grammarName> inheritFrom: <parentClass>

To demonstrate the usage of the parser generator, we generate a parser that
can parse the math grammar defined in Listing 2.1 by using the parser generator
interface as follows.

We define a parser generator object in line 1. After that, we successively add
expressions with identifiers at lines 3, 4, 10, and 16. We use the expression methods
that return expression method generators between lines 3 and 16.

At line 18, we generate a parser class with the name SimpleMath.

5.2.2 Expression Generators

Expression generator instances generate single expression methods. Those are
generator objects that hold none, one or more generators as children. The generators
without children generate expression methods for primitive expressions. Those

56

5.2 Parser Generator

Listing 5.7: Simple Math Grammar Parser Generation

1 g := PEGParserGenerator new.
2

3 g defineRule: #expr withExpr: (g apply: #addexpr).
4 g defineRule: #addexpr withExpr: (
5 g alt: {
6 g seq: {g apply: #addexpr . g string: '+' . g apply: #

mulexpr} .
7 g seq: {g apply: #addexpr . g string: '-' . g apply: #

mulexpr} .
8 g apply: #mulexpr
9 }).

10 g defineRule: #mulexpr withExpr: (
11 g alt: {
12 g seq: {g apply: #mulexpr . g string: '*' . g apply: #digit

} .
13 g seq: {g apply: #mulexpr . g string: '/' . g apply: #digit

} .
14 g apply: #digit
15 }).
16 g defineRule: #digit withExpr: (g range: 0to :9).
17

18 g generate: #SimpleMath inheritFrom: PEGParser.

57

5 Parser Generator Implementation

Table 5.1: Expression Generator Methods of the Parser Generator

Expression Lexical Methods Syntactical Methods

String string: <string>,
str: <string>

Character class range: <start> to: <end>
Any any
Optional opt: <generator>
Zero or more lexstar: <generator>, synstar: <generator>

star: <generator>
One or more lexplus: <generator>, synplus: <generator>

plus: <generator>
Lookahead And and: <generator>
Lookahead Not not: <generator>
Sequence lexseq: <generators>, synseq: <generators>

seq: <generators>
Alternatives lexalt: <generators>, synalt: <generators>

alt: <generators>
Apply lexapply: <ruleName>, synapply: <ruleName>

apply: <ruleName>

with one child are prefix- and suffix-expression generators. Collection-expression
methods have generators that hold multiple children. Apply and apply wrapper
expression generators have no children as well.

Each generator has the method

compile: <name> into: <class>

This method calls the same method on all its child generators recursively. This
recursive approach requires that each generator object itself generates the method
names for its children using its method name, adding suffixes. Each generator also
generates the source code for the corresponding expression method and compiles
it into the parser class.

The generation of source code works in different ways, depending on the type
of expression that we generate.

5.2.2.1 Primitive Expressions
Primitive expression methods need to compare individual values against char-
acters in the string to parse. It is helpful if those values are directly part of the
method object. We generate the method string from a source code template. The
template contains symbols, which are singleton objects in Squeak, that we use
as placeholders for the actual expression attributes. After compiling said method
template strings into method objects, we can check the method objects literals for
the symbols and replace the actual values directly in the method object.

58

5.2 Parser Generator

Example 5.4 (String Expression Generator). In Listing 5.8, there is the method
template for a rule named string.

Listing 5.8: String Expression Method Template

1 parse_string: pos
2 #matchString withIndexDo: [:character :index |
3 (character == (string at: (pos + index - 1) ifAbsent: [nil

]))
4 ifFalse: [
5 self reportFailureOf: #matchString atPos: pos.
6 ↑ nil]].
7 ↑ PEGNode newOn: #_terminal from: pos to: (pos + #matchString

size)

After compilation of the method, the literal #matchString is replaced by the
actual match string in the method object.

5.2.2.2 Prefix- and Suffix-expressions
In the case of the prefix- and suffix-expressions, we use a method string template
again.

In contrast to the previous case, we do not replace values after the compilation
but before it. The placeholders come in the form of format string markers. It is
necessary to fill in the child-expression name of each prefix- and suffix-expression
method to call the child method.

We demonstrate such a code generation in the following example.

Example 5.5 (Optional Expression Generator). Listing 5.9 contains the method
template for an optional rule.

We replace placeholder {1} by the actual name of the child-expression method
before the compilation of the method.

5.2.2.3 Collection-expressions
Collection-expression methods are a little more complicated to generate than the
previous ones. For those, we need to concatenate the method source string using
multiple template strings depending on the number of child expressions. In the
concatenated string, we format the child-expression method names similar to the
replacement for prefix- and suffix-expressions.

5.2.2.4 Apply and Apply Wrapper Expressions
We generate apply and apply wrapper methods very similarly to prefix- and suffix-
expression methods. The difference is that we do not have child-expression genera-

59

5 Parser Generator Implementation

Listing 5.9: Optional Expression Method Template

1 parse_opt: pos
2 | childResult |
3 childResult := self {1}: pos.
4 ↑ childResult
5 ifNil: [
6 PEGNode
7 newOn: #_terminal
8 from: pos
9 to: pos

10 children: OrderedCollection new]
11 ifNotNil: [
12 PEGShadowNode
13 newOn: #optional
14 from: pos
15 to: childResult endPos
16 children: childResult nodeList]

tors that need a generated name. Instead, we have rule name references. We format
these rule names into the method template, as well.

Example 5.6 (Apply Wrapper Generator). In Listing 5.10, find the simple method
source code template before replacing the name of the actual rule.

Listing 5.10: Lexical Apply Wrapper Method Template

1 parse_someRule_1: pos
2 ↑ self {1}: pos

We replace {1} by apply_<ruleName> with <ruleName> being the identifier
for the rule method the apply wrapper expression references. We independently
generate the apply-expression method.

5.2.2.5 List of Generators
To give an overview of all available generators, we provide a list in Table 5.2.

60

5.2 Parser Generator

Table 5.2: Complete List of all Expression Method Generators

Type Generator Name

primitive PEGExprStringGenerator
PEGExprRangeGenerator
PEGExprAnyGenerator

suffix PEGExprOptionalGenerator
PEGExprLexicalZeroOrMoreGenerator
PEGExprSyntacticalZeroOrMoreGenerator
PEGExprLexicalOneOrMoreGenerator
PEGExprSyntacticalOneOrMoreGenerator

prefix PEGExprLookaheadGenerator
PEGExprNotGenerator

collection PEGExprLexicalSequenceGenerator
PEGExprSyntacticalSequenceGenerator
PEGExprAlternativesGenerator

apply & apply wrapper PEGExprApplyGenerator
PEGExprLeftRecursiveApplyGenerator
PEGExprLexicalApplyWrapperGenerator
PEGExprSyntacticalApplyWrapperGenerator

5.2.3 Generation

The generator uses a method object for the generation of the actual parser. The
method object class name is PEGBuildParser; we will refer to it as the parser
builder.

We give a visual overview of the parser generation process in Figure 5.2. At first,
the parser builder creates an empty parser class to which it can add the generated
methods. After creating the class, it uses the rule definitions to build a derivation
graph to find left-recursive rules. As described in section 4.3, this process also needs
to take into account the rules of all ancestor grammars. Therefore we need a system
to associate the parent classes with the respective rules. That is why we add a class
instance variable ruleDefinitions that is a set of all rules of the corresponding
grammar. On class generation, we add the set of those rules as static variable
value to the class instance. From the derivation graph, the method extracts the
left-recursive rule identifiers and the non-left-recursive rule identifiers and stores
them in class instance variables as well, as it did for all superclass parsers.

The parser generator creates a left-recursive apply-expression method for each
left-recursive identifier of a parser class that is not part of the parent class left-
recursive identifier set. It also creates a non-left-recursive apply-expression method
for each non-left-recursive identifier of a parser class that is not part of the non-left-
recursive identifier set of the parent class.

61

5 Parser Generator Implementation

If a parser class identifies a rule as left-recursive, but the parent class does not,
that means that either the related rule is new or the inheritance changed the left-
recursiveness of it. Either way, we need to generate a new left-recursive apply
method.

The generation of all other expression methods, including the apply wrapper
methods, happens by recursively calling the expression method generators and
passing the parser class as a parameter.

Parser Class

Ancestor Class

Ancestor Class

Rule Definitions

Rule Definitions

Rule Definitions

D
er

iv
at

io
n

G
ra

ph

R
ed

uc
ed

D
er

iv
at

io
n

G
ra

ph

L
ef

t-
re

cu
rs

io
n

G
ra

ph

L
ef

t-
re

cu
rs

iv
e

R
ul

es

N
on

-l
ef

t-
re

cu
rs

iv
e

ru
le

s

Parse Methods

A
pp

ly
M

et
ho

ds

Figure 5.2: Overview of the Parser Generation Process

5.3 Ohm Grammar Converter

To make use of already existing Ohm grammars, we need to translate Ohm gram-
mar objects to parser generators that again generate parser classes.

For that, we use the interface of the parser generator class. We can incorporate
the inheritance of Ohm grammars by always generating the whole superclass stack
for any Ohm grammar object to make sure it exists. We can do this by recur-
sively converting the respective parent grammars before converting the grammar

62

5.3 Ohm Grammar Converter

itself. The grammar converter walks through the rules and expressions of an Ohm
grammar and converts them recursively to expression method generators. Walking
recursively through them works because there are no reference cycles of object
pointers in Ohm expressions. For each rule, the converter processes, whether the
rule is syntactical or lexical, and generates the subexpression method generators
according to the stored type.

Ohm has four kinds of rules: OhmRuleDefine, OhmRuleOverride, OhmRuleIn-
line and OhmRuleExtend. We consider the first three kinds of rules to be equal
for the translation process. They only handle checks for intentional overrides.
The fourth kind of rule is different. It creates an extra alternative for an existing
rule, meaning that we need to prepend the expression to an existing alternatives-
expression or create a new alternatives-expression with two options.

63

6 Evaluation

To evaluate the parser generator, we conduct multiple benchmarks. In the first part
of this chapter, we describe and motivate our benchmark setups and document the
results. In the second part, we discuss the comparability of our benchmarks and
have a brief look at the shortcomings and weaknesses of the generated parser.

6.1 Benchmarking

We benchmark using different grammars, focusing on two aspects: We perform non-
left-recursive parsing by using a grammar without left-recursive rules. Additionally,
we parse a left-recursive grammar that contains a lot of left-recursive rules.

As the non-left-recursive grammar, we choose the Smalltalk grammar from the
Ohm/S package and parse typical Smalltalk methods. To handle the most typical
methods, we parse all method source strings within the clear Squeak image.

To benchmark a left-recursive grammar, we define a grammar that can parse
arithmetical formulas. For the dataset of strings to parse, we generate formula
strings using this grammar to parse them afterward with the same grammar.

We choose these datasets so that parses would take at least several seconds to
run to minimize the error produced by the Squeak virtual machine. We also choose
them to mimic real use cases for the parser.

We also need to evaluate the duration of the generation and compilation of a
parser to get an estimation if our grammar tooling is useful in a live programming
environment. In this case, we choose to convert the Smalltalk grammar that is part
of the Ohm package, as well.

We measured all times without garbage collection and conducted all experi-
ments 20 times to minimize random variable influence. We calculate the mean and
standard deviation for the measurement results.

6.1.1 System Description

We conduct all our experiments on a Windows 10 machine with an Intel i5-6299U
processor, running a Squeak image in the Squeak virtual machine.

A comprehensive list of system specifications is available in Table 6.1.
For the experiments, we stopped all other user-invoked processes in the operat-

ing system and deactivated Windows virus protection. Also, we deactivated the
network connection of the machine to eliminate background computation related
to network activity.

64

6.1 Benchmarking

Table 6.1: System and Environment Specs

Hardware Attribute

CPU Vendor Intel
Model i5-6299U
Clock rate 2.30Ghz
Number of cores 4

RAM Memory 8GB
Type DDR3

Speed 1600 MHz
Mainboard Vendor Lenovo

Productno. 20FNCTO1WW

Software Attribute

OS Name Windows 10

Version 1903

Build 18362.418

Architecture x64

Environment Name Squeak/Smalltalk
Version 5.2-18229

Architecture x64

Ohm/S Repository https://github.com/hpi-swa/Ohm-S
Commit 3fc87d7

65

6 Evaluation

To get inline-compilation for the loop inside the benchmark block, we use the
method to:do: of the Number class.

6.1.2 Non-Left-recursive Grammar

As mentioned above, we use a Smalltalk grammar to parse all method source
strings of all classes in a plain Squeak image build 5.2-18229. The image consists of
2713 classes with a total of 50697 methods. With this benchmark, we mimic the use
case of recompiling the whole Squeak image during development.

As a benchmark preparation step, we extract all method strings and add them
into a list of tuples in which each tuple consists of a class reference and a method
string. The preparation should minimize the lookup times for method source
strings during parse time measurements.

In Listing 6.1, we show as an example the parsing invocation to get one of the
twenty results for the Squeak parser class.

Listing 6.1: Smalltalk Benchmark Parser Invocation

1 [1 to: methodStrings size do: [:i |
2 | parser item |
3 parser := Parser new.
4 item := methodStrings at: i.
5 parser parse: (item at: 2) class: (item at: 1)
6]] timeToRunWithoutGC

The results for all three parsers are reported in Table 6.2 as well as in Figure 6.1.

Table 6.2: Non-left-recursive Parse Times

Parser Mean Standard Deviation

Squeak Parser 4007.6 ms 42.7 ms
Ohm 800230.5 ms 2358.8 ms
Generated Parser 83083.0 ms 389.1 ms

The figure shows the average parse times in milliseconds as well as the standard
deviation intervals.

66

6.1 Benchmarking

Squea
k Par

se
r

Ohm

Gen
er

ate
d

Par
se

r
0

2 · 105

4 · 105

6 · 105

8 · 105

Pa
rs

e
ti

m
e

(m
s)

(a) All Parsers

Squea
k Par

se
r

Gen
er

ate
d

Par
se

r
0

20 000

40 000

60 000

80 000

Pa
rs

e
ti

m
e

(m
s)

(b) Parsers without Ohm

Figure 6.1: Non-left-recursive Benchmark with Smalltalk Grammar

6.1.3 Left-recursive Grammar

To benchmark left-recursion, we define the following highly left-recursive mathe-
matical grammar. It supports the semantics of the arithmetic operations addition,
subtraction, multiplication, and division as well as exponentiation.

We generated 100,000 mathematical formulas randomly. We produced them by
using the grammar to be benchmarked as a generative grammar. Starting with rule
expr, we built a tree top-down. Sequence-expression generators generated the con-
catenation of the generation of all their subexpressions. Zero-or-more-expressions
used their subexpressions for every additional iteration with a 2

3 chance. One-or-
more-expressions did the same with the difference that they used the subexpression
at least once. String-expressions generated just their match string. Range-expression
generation resulted in a character picked uniformly at random from all characters
within the range. Alternatives-expressions could not choose an option uniformly at
random due to the recursive nature of the grammar; this would have resulted in in-
finitely large trees. For alternative-expressions, we picked the last option, which in
our case is always a hierarchy jump, with a 2

3 chance, and another option uniformly
at random for the remaining 1

3 cases.
We got strings with an average size of around 30.8 and a median size of 15, for

example, the following formula string.

"2/.8675583/-(19.08806)/29/9231^-8*900542*.9659627"

67

6 Evaluation

Listing 6.2: Math Grammar

expr := addexpr

addexpr := addexpr_plus | addexpr_minus |
mulexpr

addexpr_plus := addexpr '+' mulexpr
addexpr_minus := addexpr '-' mulexpr

mulexpr := mulexpr_times | mulexpr_divide |
expexpr

mulexpr_times := mulexpr '*' expexpr
mulexpr_divide := mulexpr '/' expexpr

expexpr := expexpr_power | priexpr
expexpr_power := priexpr '^' expexpr

priexpr := priexpr_paren | priexpr_pos |
priexpr_neg | number

priexpr_paren := '(' expr ')'
priexpr_pos := '+' priexpr
priexpr_neg := '-' priexpr

number := number_frac | number_int
number_frac := digit* '.' digit+
number_int := digit+

digit := [0-9]

68

6.1 Benchmarking

We present the results in Table 6.3.
In Figure 6.2, you can see the average parse times in milliseconds as well as

standard deviation.

Table 6.3: Left-recursive Parse Times

Parser Mean Standard Deviation

Ohm 80731.6 ms 548.8 ms
Generated Parser 18558.3 ms 732.6 ms

Ohm

Gen
er

ate
d

Par
se

r
0

20 000

40 000

60 000

80 000

Pa
rs

e
ti

m
e

(m
s)

Figure 6.2: Math Benchmark

6.1.4 Grammar Generation

To check if our grammar generation is viable for a live programming environment,
we need to get a perception of the timeframe of grammar generation.

During the development of custom grammars, one does change the grammar
quite often. As described in section 4.3, any rule can influence the left-recursiveness
of all other rules. Therefore, the whole left-recursion detection pipeline needs to

69

6 Evaluation

run for every change. To have an instantly available parser, we always need to
compile the parser class as well.

To test the runtime of grammar conversion, we choose to convert the moderately
sized Smalltalk grammar provided by Ohm. The grammar incorporates inheritance
with two ancestor grammars, which we include in our measurements. That means
that all parser generation steps are executed for all three involved classes.

After 20 runs, we achieved a mean conversion time of 162.5 ms and a standard
deviation of 7.1 ms.

6.2 Discussion

In this section, we discuss the decisions we had to make for the benchmark setups.
We go into the used grammars and our methodology, including possible errors and
shortcomings. We also motivate our decisions despite those issues. Furthermore,
we describe potential improvements for our parser generator implementation.

6.2.1 Data

We tested one non-left-recursive grammar in the form of the Smalltalk grammar
parsing the methods of the Squeak image and one highly left-recursive grammar
by means of a self-defined math grammar that incorporates arithmetic operations.

We could have used more non-left-recursive grammars of other programming
languages, but parsing Smalltalk is the closest use case and most practical within
Squeak.

For the highly left-recursive language, we constructed arbitrary strings to parse.
The strings might be too long to represent real used formulas. We could have
used a large dataset like GitHub repositories to extract real used formulas; this,
however, would have come with two downsides. First, there is the possibility
that we could not have been able to parse all extracted formulas with our self-
constructed grammar. Second, it is very context-dependent, and therefore hardly
generalizable how long and how complex formulas are.

We also did not test a grammar that has only left-recursive rules, because those
have no real use case for formal language descriptions.

We also have no grammar that incorporates hidden left-recursion or big indirect
left-recursive cycles because they are hard to find and to construct. Also, most
programming language definitions do not have indirect or hidden left-recursion.

6.2.2 Methodology

In addition to measuring the actual parsing algorithm times, our measurements
include the overhead times each parser needs to set up at the beginning of a parse.
For the generated parsers and the Ohm parsers, that is the time it takes to set
up the data structures for the memoization and left-recursion handling. For the

70

6.2 Discussion

Squeak parser, it is the time to initiate a new instance because the parser generates
state during parses but does not remove it.

We measured all times while excluding the times that the garbage collector needs.
That is not entirely representative because some parse strategies might require more
garbage collector time than others due to the different amounts of temporary data
that we gather during parsing.

We calculated the standard deviation for all measurements but no confidence in-
tervals; this is because the standard deviation is microscopic, and the measurement
results for different parsers are very far apart. We measured each case 20 times on
one machine. That should be enough, considering the small standard deviation.
The number of runs should be high enough to eliminate random, non-controllable
variables mostly.

We also can not rule out that just-in-time compilation altered the measured
results partially. A large number of runs with different data should have proactively
eliminated that problem because, after a short time, any code should reach a
state that is close to a stable state. Also, experiments showed that there where no
performance increases using any of the three parsers even when parsing the same
input a couple of thousand times consecutively.

We also did not measure the performance of the grammars themselves. The
grammars are not optimized for the fastest parsing. It might be possible to parse
the same languages with different grammars faster. That would, on the other hand,
result in different syntax trees and change the semantic meaning of nodes.

6.2.3 Potential Parser Shortcomings

Despite putting much effort into the parser generator, there remain potential down-
sides.

Flattening the syntax trees can be expensive for large expressions with deep
nesting of subexpressions. For those expressions, the parser flattens the arrays
multiple times resulting in a large number of memory allocations and list traversals.
A possible solution for this issue could be to flatten the tree post parsing. This
would allow for allocating memory only once while flattening and moving every
object only once.

We also did not address name conflicts with the named subexpressions. Creating
two rules, named myrule and myrule_1 can lead to a name conflict within the
generated parser. The parser generator does not check this case, which can lead to
unexpected behavior of generated parsers.

71

7 Related Work

The main challenge for creating a PEG parser is to make the parsing process as fast
as possible while handling left-recursion correctly. There are different approaches.
Some eliminate left-recursion entirely while relying on some assumptions about
the input grammar. Others use different algorithms or grammar specifications. We
present the approaches closest to our problem statement.

7.1 Modifying PEG Capabilities

All the following papers emphasized that left-recursion is a desirable feature for
PEGs and therefore try to handle it as well as possible. In contrast to our gener-
ated parsers, however, they modified the input grammar semantics to have more
accessible parsing instructions.

Parsing Expression Grammars Made Practical The authors of this paper pro-
pose a PEG library that supports all left-recursion types. [12] They introduce an
annotation to mark left-recursion and precedence of rules in PEGs. Furthermore,
they use a concept called expression cluster to parse the annotated left-recursive
rules. The core of their method includes reapplying rules on themselves, just like
the Warth-algorithm.

One can argue that this method of additional annotations creates a very human-
readable form of grammars, and the creators can gain a thorough understanding of
their grammars. Unfortunately, the users need to make the annotations manually
instead of generating them automatically.

A Programming Language Where the Syntax and Semantics Are Mutable at
Runtime In this thesis, the author develops a programming language called
Kathadin. [19] The Kathadin interpreter executes programs according to the language
specification, which can be modified during runtime. The interpreter only defines a
minimal language, which allows the definition of more complex language features.

The created parser uses longest-match parsing instead of prioritized alternatives
like PEG specifies. The author argues that the PEG parse strategy is greedy and
that longest-match conforms to this strategy.

Kathadin uses annotations as well for left-recursive, right-recursive, and non-
recursive definitions. The parser is a modified packrat parser that uses these anno-
tations. It stores annotated rules in a data structure during parsing. This way, it can
abort the non-recursive rule-applies. For left-recursive rules, the parser also uses a
seed growing approach by reapplying the parsed rule to itself until it fails.

72

7.2 Restricting PEG Capabilities

Left Recursion in Parsing Expression Grammars In this paper, the idea of bounded
left-recursion is presented. [14] The authors propose to limit the left-recursion rule
invocations for every single rule and therefore forcing a guaranteed termination.
They also find for every number of left-recursive invocations the invocation number
that is lowest with the longest match. This approach solves left-recursion on the
one hand but limits the expressiveness of the grammar on the other hand.

Practical Dynamic Grammars for Dynamic Languages The author presents the
PEG parsing framework PetitParser. It is a parser generator framework for Pharo/S-
malltalk. [18] It uses the packrat parsing algorithm to parse PEGs. It allows one
to reuse, compose, and transform grammars while utilizing the existing Smalltalk
language for grammar definition.

The author states that the performance of PetitParser is better than table-based
parsers for carefully written grammars. Its performance comes from memoizing
only selected rules which the user has to choose.

7.2 Restricting PEG Capabilities

The following two works use the approach to rewrite PEGs. As we showed, direct
left-recursive rewriting, in contrast to indirect and hidden left-recursion rewriting,
is a manageable task. Therefore the authors decided on limiting their parsing
frameworks to these limited grammars, which they can rewrite.

Better Extensibility through Modular Syntax In this work, the parser generator
Rats! is presented. [9] It supports all PEG capabilities of the original definition
and implements packrat parsing using memoization, ensuring linear parse time.
The parser allows direct left-recursive rules, which it automatically transforms
into right-iterative production rules. However, it restricts the use of arbitrary left-
recursion. Therefore it has the same expressiveness as any PEG but cannot represent
arbitrary semantic information.

Adaptive LL(*) Parsing: The Power of Dynamic Analysis In this paper, the au-
thors describe the parser generator ANTLR that uses CFGs with a syntax similar
to BNF and EBNF as input. [16] Like Rats!, it forbids indirect and hidden left-
recursion. It also eliminates direct left-recursion by rule rewriting, which can lead
to grammars that are exponential in size.

While restricting their grammar definition capabilities, they allow boolean evalu-
ation using the host language to determine the semantic viability of productions.

73

8 Conclusion

In this chapter, we describe the achievements of this report. In particular, we
highlight the benefits of our parser generator in contrast to other approaches. Also,
we describe further research topics that can be of interest to improve PGE parser
in the future.

8.1 Conclusion

Even though a lot of effort went into PEG parsing, it is still not a completely
solved problem. Parsing of left-recursion constitutes a difficulty with the potential
for improvement. Although we were able to narrow the problem of left-recursive
parsing down a bit.

8.1.1 Rewriting Parsing Expression Grammars

We depicted the problems that occur when trying to rewrite arbitrary left-recursive
PEGs. We developed a method to find any potential left-recursive cycles and de-
scribed an algorithm that can find all expressions causing left-recursion. We showed
that rewriting arbitrary left-recursive grammars can result in vast and convoluted
rule sets, which reduces the comprehensibility of those grammars very much.

8.1.2 Constructing a Parser Generator

As a practical approach, we designed and implemented a PEG parser generator that
creates parser classes. Generated parser class instances can handle left-recursion,
which they can detect during their generation process. This way, users of this parser
generator do not need to worry about left-recursive rules and use them without
being aware of their left-recursiveness.

8.1.2.1 Performance
We benchmarked the parser for two contrasting cases. The standard deviations for
the benchmark results were pretty small, which gives us high confidence in the
validity of our measurements.

For the non-left-recursive Smalltalk grammar, we benchmarked against Ohm and
the handwritten Squeak parser by parsing all methods in a clear Squeak image. Our
parser was 9.6 times faster than Ohm and, therefore, nearly one order of magnitude
better. Testing against the very efficient Squeak parser, we were 20.7 times slower.

74

8.2 Future Work

Problematic for our parser is the use of grammars as we established early on;
this can result in large parse trees for lexing alone as well as parse trees that it has
to discard during parsing.

For the highly left-recursive self-defined math grammar that represents arith-
metic expressions, we benchmarked the parse of a large number of generated
strings. We achieved a 4.4 times better parsing speed than Ohm using the same
grammar. In this case, preprocessing did not add that much value due to the high
number of left-recursive rules. These could not be excluded from left-recursion
handling, which is time expensive.

8.1.2.2 Liveness
We tested if we can use our tool in a live programming environment. According
to our adopted definition in section 2.5, there should not be any noticeable inter-
ruption. The conversion of a more extensive Ohm grammar to a parser generator
takes far less than half a second, and we can, therefore, consider it as immediate.
Note that, in fact, during this process, we converted three grammars including
their inheritance chain, and all constant overheads of graph setup and analytics
happened three times.

In our liveness definition, we also speak of the necessity to permit editing the
program while it is running and the execution continuing right after editing. All our
parses of single strings happen in the timeframe of milliseconds; therefore, there is
no real need to modify the parser during parses. It would even be possible to halt
the program during parsing and apply changes to its generating grammar. This,
however, would lead to unexpected behavior, and therefore should be avoided.

We consider the parser generator, and with it, the generated parsers as suitable
for live programming.

8.2 Future Work

Although we were able to create a fast parser generator; there is remaining work
to do, and new research opportunities open up, which could furthermore increase
a parser generator’s performance.

In this section, we discuss some of those potential improvements.

8.2.1 Memoization

We discovered that for the case of parsing Smalltalk methods, memoization could
improve the performance, although some research states that it often leads to a
performance decrease. To find out when exactly memoization is desirable holds
potential for improvement.

The challenge is to find out which rules are worth memoizing. It is necessary to
find metrics that measure the probability a parser invokes a rule multiple times
at the same position. Existing probability graph models like the Page-algorithm

75

8 Conclusion

or Markov-chains or more extensive grammar graph analytics could be useful to
solve this problem.

8.2.2 Grammar Analysis

We established that lexing using a lookup table for character grouping is a rapid
method. To incorporate this into a grammar-based parser, one could perform
grammar analysis to find out which leaf nodes are in unambiguous categories and
use those categories to lookup characters faster instead of building syntax subtrees
for single characters. The parser could precalculate the subtrees for every character,
just adding them to the syntax tree when needed.

This method potentially saves calculation time for whole lexing subtrees, and
leaves us only with parsing the syntactical part of any grammar using the Warth-
algorithm.

8.2.3 Memoization Datastructure

Currently, our parser generator memoizes via a lookup in an array of identity
dictionaries. This method proved to be the most efficient for looking up entries
with integer-string-tuples in Squeak.

In the original packrat parsing paper, a two-dimensional array was used [5]. Our
parser could also use a bidirectional mapping between natural numbers and rule
identifiers such that we can look up the rules in a two-dimensional array. This
could be implemented by creating a mapping before the conversion such that we
can integrate the mapped numbers into our compilation process.

This method would also be inheritance stable since, for every child class, we only
would need to increase the range of mapped integers depending on the new rule
count.

8.3 Summary

We showed that grammar rewriting is impractical when reducing parse times due
to the high complexity of required rules.

We managed to design and implement a parser generator that uses left-recursion
detection before parsing, and we showed that it increases parsing speed. The
required preprocessing is efficient enough that the generator can be used in a live
programming environment.

76

Bibliography

[1] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H.
Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden,
and M. Woodger. “Report on the Algorithmic Language ALGOL 60”. In:
Communications of the ACM 3.5 (May 1960). Edited by P. Naur, pages 299–314.
issn: 0001-0782. doi: 10.1145/367236.367262.

[2] R. Becket and Z. Somogyi. “DCGs + Memoing = Packrat Parsing but is It
Worth It?” In: volume 4902. Springer. 2008, pages 182–196. doi: 10.1007/
978-3-540-77442-6_13.

[3] J. Earley. “An Efficient Context-free Parsing Algorithm”. In: Communications
of the ACM 13.2 (Feb. 1970), pages 94–102. issn: 0001-0782. doi: 10.1145/
362007.362035.

[4] B. Ford. “Packrat Parsing: a Practical Linear-Time Algorithm with Backtrack-
ing”. Master’s thesis. Massachusetts Institute of Technology, 2002.

[5] B. Ford. “Packrat Parsing: Simple, Powerful, Lazy, Linear Time, Functional
Pearl”. In: Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming. ICFP ’02. Pittsburgh, PA, USA: ACM, 2002, pages 36–
47. isbn: 1-58113-487-8. doi: 10.1145/581478.581483.

[6] B. Ford. “Parsing Expression Grammars: A Recognition-based Syntactic Foun-
dation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’04. Venice, Italy: ACM, 2004,
pages 111–122. isbn: 1-58113-729-X. doi: 10.1145/964001.964011.

[7] R. Frost, R. Hafiz, and P. Callaghan. “Parser Combinators for Ambiguous
Left-Recursive Grammars”. In: volume 4902. Springer. 2008, pages 167–181.
doi: 10.1007/978-3-540-77442-6_12.

[8] A. Goldberg and D. Robson. Smalltalk-80. The Language and Its Implementation.
Addison-Wesley Longman Publishing Co., Inc., 1983. isbn: 0-201-11371-6.

[9] R. Grimm. “Better Extensibility Through Modular Syntax”. In: Proceedings
of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’06. Ottawa, Ontario, Canada: ACM, 2006, pages 38–51.
isbn: 1-59593-320-4. doi: 10.1145/1133981.1133987.

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. 3rd edition. Pearson Education India, July 2008.
isbn: 978-0321462251.

[11] K. Kuramitsu. “Packrat Parsing with Elastic Sliding Window”. In: Journal of
Information Processing 23.4 (July 2015), pages 505–512. doi: 10.2197/ipsjjip.
23.505.

77

https://doi.org/10.1145/367236.367262
https://doi.org/10.1007/978-3-540-77442-6_13
https://doi.org/10.1007/978-3-540-77442-6_13
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
https://doi.org/10.1007/978-3-540-77442-6_12
https://doi.org/10.1145/1133981.1133987
https://doi.org/10.2197/ipsjjip.23.505
https://doi.org/10.2197/ipsjjip.23.505

Bibliography

[12] N. Laurent and K. Mens. “Parsing Expression Grammars Made Practical”.
In: Proceedings of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering. SLE 2015. Pittsburgh, PA, USA: ACM, 2015, pages 167–
172. isbn: 978-1-4503-3686-4. doi: 10.1145/2814251.2814265.

[13] F. Mascarenhas, S. Medeiros, and R. Ierusalimschy. “On the Relation between
Context-Free Grammars and Parsing Expression Grammars”. In: Science of
Computer Programming 89 (Apr. 2013). doi: 10.1016/j.scico.2014.01.012.

[14] S. Medeiros, F. Mascarenhas, and R. Ierusalimschy. “Left recursion in pars-
ing expression grammars”. In: Science of Computer Programming 96 (2014),
pages 177–190.

[15] R. C. Moore. “Removing Left Recursion from Context-free Grammars”. In:
Proceedings of the 1st North American Chapter of the Association for Computational
Linguistics Conference. NAACL 2000. Seattle, Washington: Association for
Computational Linguistics, 2000, pages 249–255.

[16] T. Parr, S. Harwell, and K. Fisher. “Adaptive LL(*) Parsing: The Power of
Dynamic Analysis”. In: Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications. OOPSLA ’14.
Portland, Oregon, USA: ACM, 2014, pages 579–598. isbn: 978-1-4503-2585-1.
doi: 10.1145/2660193.2660202.

[17] P. Rein, R. Hirschfeld, and M. Taeumel. “Gramada: Immediacy in Program-
ming Language Development”. In: Proceedings of the 2016 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. Onward! 2016. Amsterdam, Netherlands: ACM, 2016, pages 165–179.
isbn: 978-1-4503-4076-2. doi: 10.1145/2986012.2986022.

[18] L. Renggli, S. Ducasse, T. Gîrba, and O. Nierstrasz. “Practical Dynamic Gram-
mars for Dynamic Languages”. In: (2010).

[19] C. Seaton. “A Programming Language Where the Syntax and Semantics Are
Mutable at Runtime”. Master’s thesis. University of Bristol, 2007.

[20] S. L. Tanimoto. “A Perspective on the Evolution of Live Programming”. In:
Proceedings of the 1st International Workshop on Live Programming. LIVE ’13. San
Francisco, California: IEEE Press, 2013, pages 31–34. isbn: 978-1-4673-6265-8.

[21] R. Tarjan. “Depth-First Search and Linear Graph Algorithms”. In: Foundations
of Computer Science, IEEE Annual Symposium on 0 (Nov. 1971), pages 114–121.
doi: 10.1109/SWAT.1971.10.

[22] A. Warth, J. R. Douglass, and T. Millstein. “Packrat Parsers Can Support Left
Recursion”. In: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation. PEPM ’08. San Francisco,
California, USA: ACM, 2008, pages 103–110. isbn: 978-1-59593-977-7. doi:
10.1145/1328408.1328424.

78

https://doi.org/10.1145/2814251.2814265
https://doi.org/10.1016/j.scico.2014.01.012
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1145/2986012.2986022
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1145/1328408.1328424

Bibliography

[23] A. Warth, P. Dubroy, and T. Garnock-Jones. “Modular Semantic Actions”. In:
Proceedings of the 12th Symposium on Dynamic Languages. DLS 2016. Amster-
dam, Netherlands: ACM, 2016, pages 108–119. isbn: 978-1-4503-4445-6. doi:
10.1145/2989225.2989231.

[24] N. Wirth. “What Can We Do about the Unnecessary Diversity of Notation
for Syntactic Definitions?” In: Communications of the ACM 20.11 (Nov. 1977),
pages 822–823. issn: 0001-0782. doi: 10.1145/359863.359883.

79

https://doi.org/10.1145/2989225.2989231
https://doi.org/10.1145/359863.359883

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

134

978-3-86956-502-6

Interval probabilistic timed
graph transformation systems

Maria Maximova, Sven
Schneider, Holger Giese

133

978-3-86956-501-9

Fast packrat parsing in a live
programming environment :
improving left-recursion in
parsing expression grammars

Friedrich Schöne, Patrick Rein,
Robert Hirschfeld

132

978-3-86956-482-1

SandBlocks : Integration
visueller und textueller
Programmelemente in Live-
Programmiersysteme

Leon Bein, Tom Braun, Björn
Daase, Elina Emsbach, Leon
Matthes, Maximilian Stiede,
Marcel Taeumel, Toni Mattis,
Stefan Ramson, Patrick Rein,
Robert Hirschfeld, Jens Mönig

131

978-3-86956-481-4

Was macht das Hasso-Plattner-
Institut für Digital Engineering
zu einer Besonderheit?

August-Wilhelm Scheer

130

978-3-86956-475-3

HPI Future SOC Lab :
Proceedings 2017

Christoph Meinel, Andreas
Polze, Karsten Beins, Rolf
Strotmann, Ulrich Seibold,
Kurt Rödszus, Jürgen Müller

129

978-3-86956-465-4

Technical report : Fall Retreat
2018

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch, Tobias
Friedrich, Erwin Böttinger,
Christoph Lippert

128

978-3-86956-464-7

The font engineering platform :
collaborative font creation in a
self-supporting programming
environment

Tom Beckmann, Justus
Hildebrand, Corinna Jaschek,
Eva Krebs, Alexander Löser,
Marcel Taeumel, Tobias Pape,
Lasse Fister, Robert Hirschfeld

127 978-3-86956-463-0

Metric temporal graph logic over
typed attributed graphs :
extended version

Holger Giese, Maria
Maximova, Lucas Sakizloglou,
Sven Schneider

126 978-3-86956-462-3

A logic-based incremental
approach to graph repair

Sven Schneider, Leen
Lambers, Fernando Orejas

125 978-3-86956-453-1

Die HPI Schul-Cloud : Roll-Out
einer Cloud-Architektur für
Schulen in Deutschland

Christoph Meinel, Jan Renz,
Matthias Luderich, Vivien
Malyska, Konstantin Kaiser,
Arne Oberländer

ISBN 978-3-86956-503-3
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Contents
	Listings
	1 Introduction & Motivation
	1.1 Contributions
	1.2 Structure of this Report

	2 Background
	2.1 Parsing Expression Grammar
	2.1.1 Features
	2.1.2 Formal Definition of Parsing Expression Grammars

	2.2 Packrat Parsing
	2.2.1 Limitations of Packrat Parsing
	2.2.1.1 Left-recursion
	2.2.1.2 Types of Left-recursion
	2.2.1.3 Performance

	2.2.2 Left-recursive Packrat Parsing

	2.3 Existing Parsers in Squeak/Smalltalk
	2.3.1 Ohm
	2.3.2 Squeak Parser
	2.3.3 Pharo RBParser

	2.4 Fast and Slow Parts of Existing Parsers
	2.4.1 Left-recursion Handling
	2.4.2 Apply Expression Processing
	2.4.3 Separation of Syntactical Parsing and Lexing

	2.5 Liveness

	3 Rewriting Parsing Expression Grammars
	3.1 The Idea
	3.2 Rewriting Criteria
	3.3 Rewriting Different Types of Left-recursion
	3.3.1 Direct Left-recursion
	3.3.2 Finding Indirect Left-recursive Cycles
	3.3.2.1 Transform the Grammar to a Graph
	3.3.2.2 Algorithm

	3.3.3 Indirect Left-recursion
	3.3.4 Finding Hidden Left-recursive Cycles
	3.3.5 Hidden Left-recursion
	3.3.5.1 B only contains lookahead
	3.3.5.2 B can only parse empty strings
	3.3.5.3 B can only parse nonempty strings
	3.3.5.4 B contains lookahead and can parse empty strings
	3.3.5.5 B contains lookahead and can parse nonempty strings
	3.3.5.6 B contains no lookahead and can parse empty and nonempty strings
	3.3.5.7 B contains lookahead and can parse empty and nonempty strings
	3.3.5.8 Overview

	3.4 Syntax Tree Rewriting
	3.5 Conclusion

	4 Parser Generator Approach
	4.1 Compatibility with Ohm
	4.2 Left-recursive Rules
	4.3 Detecting Left-recursive Rules
	4.4 Tree Flattening
	4.5 Failure Reporting
	4.6 Memoization

	5 Parser Generator Implementation
	5.1 Parser
	5.1.1 Interface
	5.1.2 Structure
	5.1.2.1 Method Names
	5.1.2.2 Apply
	5.1.2.3 Lexical and Syntactical Rules
	5.1.2.4 Superclass

	5.1.3 State
	5.1.3.1 Memoization
	5.1.3.2 Left-recursion
	5.1.3.3 Failure Reporting

	5.1.4 Thread Safety

	5.2 Parser Generator
	5.2.1 Interface
	5.2.2 Expression Generators
	5.2.2.1 Primitive Expressions
	5.2.2.2 Prefix- and Suffix-expressions
	5.2.2.3 Collection-expressions
	5.2.2.4 Apply and Apply Wrapper Expressions
	5.2.2.5 List of Generators

	5.2.3 Generation

	5.3 Ohm Grammar Converter

	6 Evaluation
	6.1 Benchmarking
	6.1.1 System Description
	6.1.2 Non-Left-recursive Grammar
	6.1.3 Left-recursive Grammar
	6.1.4 Grammar Generation

	6.2 Discussion
	6.2.1 Data
	6.2.2 Methodology
	6.2.3 Potential Parser Shortcomings

	7 Related Work
	7.1 Modifying PEG Capabilities
	7.2 Restricting PEG Capabilities

	8 Conclusion
	8.1 Conclusion
	8.1.1 Rewriting Parsing Expression Grammars
	8.1.2 Constructing a Parser Generator
	8.1.2.1 Performance
	8.1.2.2 Liveness

	8.2 Future Work
	8.2.1 Memoization
	8.2.2 Grammar Analysis
	8.2.3 Memoization Datastructure

	8.3 Summary

	Bibliography
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

