2009 Seventh International Conference on Creating, Connecting and Collaborating through Computing

Pitsupai - Collaborative Scripting in a Distributed, Persistent 3D World

Philipp Engelhard

Robert Hirschfeld

Jens Lincke

Hasso-Plattner-Institut, University of Potsdam
philippengelhard @ gmail.com
{jens.lincke, hirschfeld} @ hpi.uni-potsdam.de

Abstract

In this paper we present an authoring tool and an ac-
companying workflow to create interactive scenarios in a
distributed 3D environment by multiple users. With Pitsupai
we designed an environment that allows to create collabo-
ratively simple games or game prototypes with a minimal
effort, without the need to be a professional game developer.
To facilitate collaborative work, our authoring tool uses a
scripting language for easy programming and animation in
the virtual world and provides awareness aspects - infor-
mation regarding the whereabouts and current activities of
the other participants. Scripts can be edited from within
the running virtual world without the need for stopping or
restarting it.

1 Introduction

The immense gain in computing power over the last
decade led to the development of online, 3D worlds that
many people can visit and explore. Virtual worlds offer user
experiences that are not found in real life and they also of-
fer the chance for people from all over the world to meet.
But the creation of an appealing 3D environment is usu-
ally reserved for professionals. This is because of the com-
plexity of the task as well as the huge amount of work that
needs to be accomplished. There are some approaches to
give none-professionals access to such a task by developing
simpler user interfaces and restricting the power of what can
be done. This still leaves users with the problem of the huge
amount of work at hand. A collaborative workflow would
allow this amount of work be shared among multiple users,
and collaborative teamwork can generally be more fun and
motivating.

Creating or enhancing a virtual 3D world can be an en-
tertaining experience. People like to express themselves,
create games or tell interactive stories. Looking at Second
Life [11] it becomes obvious that many people build virtual

978-0-7695-3620-0/09 $25.00 © 2009 IEEE
DOI 10.1109/C5.2009.11

87

homes just because they enjoy doing it and not because they
have a direct benefit. Some people have ideas for games but
no tools to create such games, and yet others love to tell
stories, but they need a “virtual dollhouse” in which to tell
their story. People like sharing their creations with others
and even sharing the experience to create itself.

Besides having fun in a 3D world, it can also be an ex-
cellent place for learning. Collaborative environments offer
many opportunities for distant learning. Groups of students
can meet online to do group work, and a tutor might join in
to help [12]. An Example for an successful 3D learning en-
vironment to teach programming is Alice [18], but Alice is
not an collaborative environment. In a 3D world problems
can be communicated that would be hard to explain on a
sheet of paper. To have a bigger impact on the learner, such
a scenario can be made interactive. An interactive scenario
could also be used to pitch ideas to other people or compa-
nies and might leave a stronger impression through higher
immersion.

Building a virtual world incorporates not only creating
and arranging 3D objects, but also bringing those objects
to life. With scripting languages more people can pro-
gram, who could not do so with traditional programming
languages. This makes scripting languages an interesting
choice for animation in 3D worlds. There are many ways
to animate objects and scripting - as one of them - allows
great flexibility and requires only little programming expe-
rience. Scripts tend to have shorter code length compared
to traditional languages, which is an advantage not only for
collaboration but for novice programmers as well. At the
example of Pair Programming the benefit of collaborative
software development can be seen. Much more errors are
spotted during coding, the resulting design is better, code
length is shorter, projects end with multiple people under-
standing each piece of the system and people learn to work
together [2, 3, 4].

Many existing systems neglect or at least do not actively
support the opportunities of working in a team. One of the
biggest benefits for working in a team is that there are other

IEEE
computer
® psouety

people that can help when someone is stuck with a problem.
As long as the team works at the same place it is no problem
to come over and help, but with a locally dispersed team this
is no option. That is why we attached great importance to
the subject of collaboration and helping each other.

In [1] Bartle describes a persistent world as a virtual
world that -like the real world- exists continuously. “World”
in this context does not necessarily mean an entire planet, it
is an environment that its inhabitants regard as being self-
contained. The worlds are implemented by a computer (or
network of computers) that simulates an environment. Per-
sistent worlds are always available and world events con-
tinue to happen even though no user is logged into it. When
a user changes the world, the changes persist and it is im-
possible to return to a prior state. Persistent is here the op-
posite to temporary. In a persistent world it is crucial to
ensure that changes to the program can be made without
having to restart the world. This becomes obvious by the
example of Second Life where up to 60,000 people are on-
line, at the same time in the same world. Even if only a frac-
tion of those people were working and changing programs,
it would result in such an amount of restarts that inhabiting
in this world would be pointless.

Working together either on the same objects or code
raises problems where the users need support from their
software. People want to know where other participants are
and where their attention is. When people are working to-
gether, relevant questions are always: Who am I collaborat-
ing with? Where are they? What are they looking at? What
are they up to? These questions can get hard to answer if
the participants are locally dispersed. Raising the arm to
point at a problem as you could do it if the other person
would stand right next to you is no option in this situation.
Besides text or voice communication - which is crucial -
awareness aspects help in computer supported collaborative
work to answer those questions [9, 13].

In this paper we present an environment where peo-
ple with little programming background can collaboratively
shape a virtual persistent world via scripting. To facilitate
this process, a workflow was designed and tools were cre-
ated in its support. We target entertainment computing as
an example field of application. For out project Pitsupai we
integrated a code editor in to Qwaq Forums and use Python
as scripting language for the virtual world.

The remainder of the paper is organized as follows: Sec-
tion 2 gives a short overview of Pitsupai, the concept and the
designed workflow. Section 3 shows the implementation of
Pitsupai. Section 4 discusses related work. The last Section
draws a summary and gives an outlook on future work.

88

2 Pitsupai

The aim of this work is to create an end-user scripting en-
vironment in Qwaq Forums. In a collaborative framework,
multiple users should be able to create interactive scenarios
for a distributed 3D environment. For convenient collabora-
tion, awareness and presence aspects need to be introduced
to the authoring process.

Pitsupai' is based on Qwaq Forums, that is a collabora-
tion platform for distributed work in a 3D space. It provides
a distributed and replicated 3D world in which people can
collaborate [15, 14].

aoo. snp e nces - Gusa foms

==
[EN

Figure 1. A Qwaq Forums office with two
shared applications at the room’s wall.

There are a couple of possible fields of application for
Pitsupai as demonstration, personalization, simple games,
and education. This leads to the conclusion that the author-
ing environment of this work should be simple to use, but
yet at least powerful enough to do the task at hand, oth-
erwise not enough ideas can be implemented using it. To
not being frustrating for beginners, the learning curve must
be flat enough. This is especially interesting for education,
since many students will learn using such an authoring tool.
Also of interest for teaching is the collaboration aspect of
the environment, that teams of students can work together
and a tutor can join them for help. When creating a pro-
totype an important factor is, that the creation of it can be
done in a short period of time, so the idea can be tested in a
short feedback loop.

2.1 Pointing: A Major Collaboration Aspect

It is a convenient way for us to raise the arm to the screen
and point with the finger at positions that seem relevant to

The project name “Pitsupai” was chosen, because it means “Hello”.
A salutation seemed suitable for a collaborative environment. This word
is taken from the language of the Mehinaku Indian culture from the South
American Amazon basin.

the problem. Especially for helping and demonstrating, it
is important to have the possibility that other people can
see where someone is pointing at. Not only from our own
experience, but also in conversations with other people, we
saw the ability to be able to point at all working location as
critical to communicate a problem. This is a heavily used
action when two or more people are standing next to each
other looking at the same screen.

This is not possible when people are not at the same lo-
cation and are just communicating via voice or text chat.
As an result it is often a long and complicated task to first
ensure that everybody is looking at the same content, and
second to describe exactly what location on the screen a per-
sons wants to point out. Using only verbal communication
for this task can be very tiring and often leads to miscom-
munication.

Realizing this leads to the conclusion, that the imple-
mented system needs cursors that are able to point at all
locations in the 3D world or the 2D user interface that might
be relevant to help each other while working together. Since
pointing at a computer is commonly done with a 2D point-
ing device like a mouse, it is the mouse location that needs
to be propagated through the system to all other users. This
may sound basic, but still is an extremly important function-
ality.

Figure 2. Two users collaborating with Pitsu-
pai

2.2 Collaborative Editor / Error output

When designing a scripting workflow for a distributed
environment, it would have been a missed opportunity not
to enable collaboration in this workflow. Besides being able
to work together at the same project, a collaborative envi-
ronment is a good place for learning and helping each other.
Like in Second Life collaboration can be a social event.

Therefore in Pitsupai the authoring tool has a collabora-
tive editor and the source code of the script is a replicated

89

document. The editor has a shared output, so that errors
or printed output from the script can be examined together
with other participants. All information is visible to every-
one, this includes a shared view on scripts, but also on the
scripted objects. Furthermore, awareness aspects as well as
voice and text chat facilitate collaboration. As explained
before it is important to know where participants are and
they need a possibility to point out matters. Some informa-
tion can be said more easily to others and some - like source
code - can easier be written, what makes both text and voice
chat important.

2.3 Why Using a Scripting Language

In Pitsupai we use Python as scripting language, because
using a scripting language has a couple of advantages. The
target audience of the system are people with at least little
programming experience, who are able to use textual script-
ing. Using a textual scripting language empowers a range of
people to use such a system, even though it surely rules out
people who have not a minimal affinity for programming or
people who cannot read and write - like preschool children.

Croquet is written in Squeak a Smalltalk dialect. To add
functionality to Croquet or Qwaq Forums Smalltalk code
can be used. It has most of the features a modern scripting
language has and still there are benefits of using an exter-
nal scripting language. Python has a large user base and
good documentation. Choosing Python gives more people
the possibility to do programming in Qwaq Forums than
Smalltalk does, without the need for learning a new lan-
guage. Python offers a solid documentation for beginners
and advanced programmers. For a non-programmer script-
ing languages are often much easier to learn. High level fea-
tures and conceptual simplicity of a scripting language will
make writing code significantly less burdensome to a game
designer. There is no need for explicit memory manage-
ment, and common data types and functions such as lists,
queues, stacks, sorting and searching are usually a few lines
of code [10, 7].

The second major advantage of using an external script-
ing language is safety. A scripting language can be gener-
ally speaking integrated in two ways: As a symbiosis with
the host system or in a sandbox. The first way gives the
scripting language the same power as the host system in
terms of access to resources. The second way lets the script-
ing language only work within the boundaries given to it by
the host system. This restricts which resources can be ac-
cessed by the scripting language and can prevent it from
using critical areas like the users’ personal data or system
resources like network connections. Another safety advan-
tage of the sandbox integration is the possibility to make it
run independently from the host system, which means, if
the user writes code that locks the scripting environment, it

need not lock the host system and the operation system as
well.

Multi-language development adds an extra layer of com-
plexity. It is difficult to debug in both languages simultane-
ously, and time must be spent on maintaining the glue code
that ties the languages together.

Dynamic languages like Python have no “compile time”
type checking. This is something programmers which are
accustomed to a typed language as Java or C/C++ need to
get used to first, but it merely results in a different set of
run-time problems to worry about, and they are generally
much easier to deal with.

In some scripting languages performance gets a prob-
lem, if the written code heavily relies on floating point math.
Comparing such a task to performance of well written C++
code is often disappointing. Every variable reference is a
hash table lookup, and so is every function call. This will
not give performance that can compete against C++, where
the locations of variables and functions are decided at com-
pile time. But this is not what a scripting language should
be used for. A good example what a fitting use for a game
is, is shown in [5]. For the game SimCity 4 e.g., the be-
havior of the people or vehicles moving around in a city is
done in a scripting language, while the core functionality of
simulating a city is not [10, 6].

2.4 Programming in Persistent Worlds

Scripting in a persistent world has a couple of entail-
ments. Since a persistent world should have as little down-
time as possible, it is not much of an option to restart it
every time something does not work as expected. It is a
common approach to test a program and if it goes out of
hand to simply restart everything. Scripting in a persistent
world should not deny a programmer such an approach of
trial and error programming and therefore offer a restart op-
tion that affects only the written program and not the whole
world. This includes the script itself as well as the scripted
objects. Also has a multi-user virtual world, that allows to
be programmed from within itself, many uses: From ex-
ploratory collaborative development, to simple extensions
in real-time response to user requests [16].

Besides a convenient way of programming in a persis-
tent world it is also important that a program does not af-
fect the underlaying system in a way that it compromises its
functionality especially for other users. That is why it is a
good choice to run the scripting extension in a sandboxed
environment thus restricted in its power. Persistent world
scripting entails also specials in debugging. Since the per-
sistent world should not be restarted for changes in a script,
reediting and debugging needs to be done inside the running
world. And when a script is no longer wanted, it must be
removable without requiring to restart the whole system.

90

2.5 Integrated Editor

One of Pitsupai’s goals is to have an obvious and direct
relation between the source code and its outcome. Thereby
making it easier for its users to see the relation between their
input and the resulting output in the virtual world. To sup-
port this goal, the source code editor is integrated into the
development environment as part of the virtual world. Also
an integrated editor can highlight the code line where an er-
ror occurs. For the approach of trail and error programming
these factors are important. Such an immediate feedback is
less likely to achieve, if the users must switch between two
or more applications. Furthermore it is desirable to have an
editor adapted to the workflow. Pitsupai’s workflow adapts
Qwaq Forums’ workflow where saving and replicating files
is handled internally and the user only deals with File Cards.
These File Cards are also used to assign a script to an ob-
ject by dropping a File Card onto the target object. A drag
and drop workflow should work with external files that are
dropped in to the virtual world from the user’s operation
system as well, but not in such a convenient way.

3 Implementation

Croquet is an novel approach to developing collabora-
tive interactive media applications. Every part is designed
around enabling real-time collaboration. TeaTime and Is-
lands are the basis for Croquet’s replicated computation and
synchronization. Islands are containers for arbitrary ob-
jects. Croquet guarantees that the progression of state of
a particular Island replica is identical to any other Island
replica of the same Island. An Island encapsulates its con-
tent and enforces a rigorous content-hiding and a message
passing model. This is necessary to guarantee identical state
of the Island and responses to external events.

3.1 Language Bindings

The version of Qwaq Forums we used included Python
bindings that do the basic communication between Squeak
and Python. This makes it possible to call external Python
functions from Squeak. It does not translate Python code
to Squeak code and executes it, instead it runs a Python
interpreter and can use external modules. The Scripts are
executed on every participant’s machine. This means, they
are replicated as the rest in Croquet: No data or output gets
distributed, but every machine replicates the computation.

With Pitsupai we concentrate on scripting of objects of
the 3D world. A Python script is not hard-wired to an
object, but can be executed for multiple objects. Every
scripted object in the 3D space® gets a proxy object that

2 All graphical objects in Croquet are based on the frame class

def pointerOver (frame, event):
frame.addRotationAroundY (5)

Figure 3. A Python call on an event.

knows which scripts must be executed for its object. Le.,
if one script s/ should be run for object ol and 02, there is
just one script s/ that gets executed twice, once for o/ and
once for 02. Therefore it is important to hand in to every
function a reference to the scripted object. In figure 3 an
example script is shown, that rotates an object around its
y-axis by 5 degrees, when the mouse pointer goes over it.
This is done by calling the addRotat ionAroundY func-
tion of the scripted object frame and frame is passed in the
function call.

This example also demonstrates two other features:
Scripts can be executed on events and Forums offers a
function library of a couple of basic, predefined func-
tions for frame objects. In the example the function
acts on the event that a pointer is over the object. The
pointerDown event (when an object is clicked) is an-
other example for such events. When pointerOver is
called the addRotationAroundY gets executed. Other
useful examples are translateBy or colorize, where
the first one translates the object by a given vector and the
second sets the object’s color.

3.2 Replicated Code Editor

A key aspect of Pitsupai is collaboration. It is a major
aspect in which this work differs from Second Life script-
ing. Creating and modifying a script is supposed to be done
in a small group of people. Therefore all actions done in the
script editor need to be distributed. A Python script can be
edited in an editor that is placed on a stand inside the 3D
world. Every user in a forum can see and work with such
an editor.

We aim to enable small groups of 2-5 people in a fo-
rum rather than a large group of 10 or more people to work
together. A larger group can still work together with the im-
plemented system but should break up in groups that work
in different forums. Their parts can be combined in one
forum afterwards, but the creation can be done more effec-
tively in smaller groups.

Heading for this target, user avatars gather around a stand
inside the 3D world to edit a script. As for other applications
in Qwaq Forums they have a WYSIWIS (what you see is
what I see) view on an editor. Multiple users can interact
with the editor, but have only one mouse and keyboard fo-
cus. This is a drawback, but it weighs not so much, since
groups should be small and scripts are supposed to be short,
at maximum rather a few ten lines than a few hundred. The

91

==t
NEERS

FEE] 10mO

Figure 4. A script is dragged onto a cube from
the code editor on the left.

local position of an avatar indicates at what a user is work-
ing and a Laser shows where a user is pointing at with his
mouse, as seen in figure 4. If one user selects a passage of
code, other users can see this selection.

At the bottom of the editor is an output for status in-
formation, like successful compilation or error output, as
well as output from print statements. This output is repli-
cated and shown to all users in a forum. When working
together, especially helping each other, it is important to
have the same information available. To reduce confusion
among users, statements have a time stamp and the name of
the corresponding script printed with the message.

When a script is attached to multiple objects and this
script is changed by an user, the changed version is exe-
cuted for all objects it is attached to. Another functionality
of the editor is to bring all objects back to the point where
and when this script got attached to them. This way objects
that run a “out of control” script, can be brought back and
do not get lost.

Technically the Python editor inherits from the embed-
ded application class. Subclasses of the embedded appli-
cation class are represented inside the 3D world and share
a functionality base for collaboration. This includes the
shared and tightly coupled view on the document and can
show visualizations of other participants’ pointers. Those
embedded applications also bring the functionality to be
placed inside the 3D world, they are not intended to be part
of the not replicated user interface. Embedded applications
work in a similar way as VNC for one application. They
all have a single input and if one users make an input it is
propagated to all other machines.

3.3 2D and 3D Pointing

Qwagq Forums offers a cursor visualization for the cursor
of all other users in a forum. This visualization is shown
when a user points at an application on a stand inside the

3D world. The cursor has the same color as the avatar of its
owner. Figure 5 shows two avatars and their cursors.

As stated earlier in section 2.1, pointing is a integral
method for collaboration. Thus it was important to have
a representation of cursors in every setup: When a person
points at a 3D stand, having a cursor over the 3D stand as
well as in all open 2D windows and when a person points
at a 2D window having a representation in all 2D windows
as well as at the 3D stand. Our implementation of Pitsu-
pai adds this to Qwaq Forums, for the 2D window avatar-
colored cursors are used that look like a standard mouse cur-
sor from a modern graphical operating system. In figure 5
both pointers are shown.

3.4 Scripts as File Cards: Drag and Drop

In Qwaq Forums a widely used interaction method is
drag and drop. It is used in many cases. A few examples are
dropping an office document from the user’s desktop onto
a wall in Forums. This opens a display at the wall contain-
ing the corresponding office application with this document
opened. It works the same way for images. Another exam-
ple is the user’s inventory. The inventory opens inside the
3D space next to the avatar. If a user wants to get a copy of
a document, he grabs a File Card from the top right corner
of a display containing the document and drops it inside his
inventory. Now he can move to another place or forum and
drag the document out of his inventory and drop it into the
world again.

It was desired to achieve a scripting workflow using the
same principles. Therefore the first step was to create a file
card type for scripts. This allows - combined with further
extensions to the given system - to store scripts in the user’s
inventory, have a menu entry for creating a new script by
creating a File Card with an empty script and opening an
script editor when a script File Card is dropped into the
world.

Also following the drag and drop principal, attaching
scripts to an object was implemented. When the user drags
a script File Card onto an object inside the world, the script
gets attached to that object and is executed for that object.
To get a script running an user can simply take the File Card
from an editor displaying the scripts source code and drop
it onto a nearby object or take the File Card to his inventory
and pull it out there later at a different place to attach it to
an object there. Using drag and drop for the scripting work-
flow integrates very well with the existing system and gives
a consistent usage.

4 Related Work

Hintze [8] and Takada [17] designed environments that
use tile scripting for animation of 3D objects, because their

92

focus lies on children and pupils, respectively. Tile script-
ing results in a smoother learning curve but also in a less
powerful system as it would be with textual scripting. Fur-
thermore Hintze’s system supports no collaboration and
Takada’s system has only a shared view on the scripted ob-
jects. This makes both approaches unsuitable for this work,
since here collaboration in the creation process is of bigger
significance.

The Kansas project [16] has an interesting approach to
the problem of forming groups for collaboration, here peo-
ple can work in privacy by moving away from the other
users, just as in the real world. Kansas has a lot in com-
mon with Pitsupai, as it also allows to change its world
from within. But unlike Pitsupai it supports no 3D graphics
and programs are written in the Self language. 3D graphics
are important for many games and the Self language suf-
fers from the same problem as Squeak/Smalltalk of having
a small user base.

SubEthaEdit [19] is a very mature collaborative source
code editor that offers multiple foci for editing the same
document. This is a strength the editor in Pitsupai is missing
but instead it has a tightly coupled view with only one fo-
cus. SubEthaEdit also can be switched to a tightly coupled
view like Pitsupai what makes it easier to work together at
the same passage of a document, but SubEthaEdit still has
multiple input foci, what is a big advantage over the Pitsu-
pai editor. However SubEthaEdit can not be integrated well
into the Pitsupai workflow, because it is an external tool.

Second Life [11] has a much more powerful framework
for manipulating its scripted objects. Pitsupai offers only
a fraction of those functions, but the basic manipulations
like translation and rotation are possible. Also Second Life
offers receiving information from the world, e.g., that infor-
mation can be used to make a bouncing ball, that actually
bounces of the ground and not just back from an arbitrary
distance. Second Life shows its deficiencies against Pitsu-
pai when it comes to collaboration. In Second Life it is
technically not possible to work at the same script or object
with other people at the same time and also the Second Life
scripting workflow does not facilitate collaboration.

S Summary & Future Work

We designed an easy to use authoring tool as well as a
workflow that facilitates collaboration. The designed work-
flow consists roughly of these steps:

e Create a new script via the document menu

e Drop the created File Card nearby into the world to
open a source code editor

e Write the script together with other participants. Ev-
erybody can contribute by writing code or pointing at
problems

Qwaq Forums

Objects Extras Developers Help

Py Script Editor

Nroa @ 3@«

Py Script Editor

0| E O

Figure 5. The pointers of both participants are visible inside the world as well as in the 2D interface.

e Attach the script to an object by dragging the File Card
from the editor onto the object. All participants can see
what happens and can correct potential errors

To design and validate this workflow, a software prototype
was implemented. Therefore an existing system (Qwaq Fo-
rums) was enhanced. The principal of File Cards was used
and a type for Python scripts introduced. File Cards are a
graphical representation of files and manage the replication
of the file for all users. This concept is also used to assign
scripts to objects by dragging a File Card onto an object.
To edit File Cards with Python scripts as content an edi-
tor was designed, which exists inside the virtual world of a
forum. An editor inside a forum gives the opportunity not
only to let all participants see the editor and the script, but
also to let everybody edit the script. Thus, in Pitsupai edit-
ing does not work exclusively by locking the document for
other users while one user is editing it. Everybody can edit
at every time, but participants need to arrange their edit-
ing of one script, because the editor has only one keyboard
focus. Multiple editors for different scripts can be placed
inside a forum at the same time. The implemented editor
is based on the embedded application class, which offers
the collaboration functionality. This class was extended so
that the users’ pointers (mouse cursors) are replicated and
thereby visible to all participants. This is important for col-
laboration, so the users can point out matters more easily.
Furthermore, the implemented editor not only has a shared
view on the script source, but also on error, compiler or print

93

statements.

The current implementation of Pitsupai leaves some is-
sues untouched. For higher convenience there are some as-
pects that could be added to Pitsupai. E.g., currently one
script can be attached to multiple objects and one object
can have multiple objects attached. Further in the script
menu of an object the user can see all scripts which are at-
tached to this object, but he currently can not see all objects
that a script is attached to. It would also be helpful to have
more information about what other people are currently do-
ing. Second Life shows a note over the head of an avatar for
example “Philipp is editing appearance”, when a person is
editing the appearance of the avatar. It would be helpful to
see information like that on which script or object someone
is working.

One point of importance for Pitsupai was the aspect of
helping each other. This was only considered when peo-
ple are online at the same time (synchronous collabora-
tion). Two further ideas for asynchronous collaboration
with scripts are that the creation process of a script can be
reviewed later like a movie. But unlike the passive roll of a
user watching a movie, it could be stopped at any time and
the viewer could try the script out as it currently is. The sec-
ond idea concerns the lack of comments in source code. For
example, when a user asks another participant to explain a
specific line or section of code, the conversation (voice or
text chat) could be saved with a reference to that section of
code. So explanations on code sections would not get lost

and others could benefit from previous explanations without
the extra effort of explicitly writing code comments.

An issue that was not touched at all in current implemen-
tation of Pitsupai is safety. In Second Life it is a problem
that other Residents infiltrate meetings or annoy their fel-
low Residents with scripted objects placed in a way that
the people cannot carry on with their task or are at least
distracted from it. However, different from Second Life
in Qwaq Forums usually only people meet who know each
other well. Still it should made sure that user-written scripts
do not compromise other participants’ personal data on their
computers. Safety measures were neither implemented nor
was it tested what the existing system does to secure the
participants’ machines.

In this paper we presented an easy to use authoring tool
as well as a workflow that facilitates collaboration. The
target audience is non-professional users and the field of
application is entertainment computing. To achieve a yet
powerful but easy to learn system, the authoring tool uses
a scripting language (Python) for animating and program-
ming. This can be done right inside the virtual world for a
collaborative workflow and an immediate feedback.

6 Acknowledgements

First and foremost we would like to recognize Andreas
Raab for his insightful discussions, valuable contributions,
and extensive support. We would like to thank Maic Ma-
such and Christine Strothotte for their fruitful ideas, and
Evelyn Eastmond for her comments on an early draft of this

paper.
References

[1] R. Bartle. Designing Virtual Worlds. New Riders Games,
July 2003.

K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, October 1999.

A. Cockburn and L. Williams, editors. The Costs and Ben-
efits of Pair Programming, Cagliari, Sardinia, Italy, June
2000. XP 2000.

C. Cook. Towards Computer-Supported Collaborative Soft-
ware Engineering. PhD thesis, University of Canterbury,
Christchurch, New Zealand., 2007.

C. Crowell. I speak for the little people! And...their
cars! Scripting Automata, 2003. as of Septem-
ber 20, 2008, http://simcity.ea.com/about/
inside_scoop/scriptingl.php.

B. Dawson. GDC 2002: Game Scripting in Python, 08 2002.
as of September 20, 2008, http://www.gamasutra.
com/features/20020821/dawson_01.htm.

T. Gutschmidt. Game Programming With Python, Lua, and
Ruby. The Course PTR Game Development Series. Premier
Press, 2003.

(2]

(3]

(4]

(5]

(6]

(7]

94

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

J. Hintze. 3D-Animations-Skripting fiir nicht-professionelle
Benutzer. Diplomathesis, 2003. Otto-von-Guericke-
Universitdt Magdeburg, Fakultét fiir Informatik.

T. Holmer, J. Haake, and N. Streitz. Kollaborationsori-
entierte synchrone Werkzeuge. In G. Schwabe, N. Stre-
itz, and R. Unland, editors, CSCW-Kompendium : Lehr-
und Handbuch zum computerunterstiitzten kooperativen Ar-
beiten, pages 180-193. Springer, August 2001.

B. Hook. The Secret Life of Game Scripting, 2002. as
of September 20, 2008, http://web.archive.
org/web/20051127004125/http://www.
bookofhook.com/Article/GameDevelopment/
TheSecretLifeofGameScript.html.
LindenResearch. Second Life: Official site of the 3D online
virtual world, 2008. as of September 20, 2008, http://
secondlife.com/.

M. Masuch and M. Rueger. Challenges in Collaborative
Game Design Developing Learning Environments for Cre-
ating Games. C5 ’'05: Proceedings of the Third Interna-
tional Conference on Creating, Connecting and Collaborat-
ing through Computing, pages 67-74, 2005.

W. Prinz. Awareness. In G. Schwabe, N. Streitz, and R. Un-
land, editors, CSCW-Kompendium : Lehr- und Handbuch
zum computerunterstiitzten kooperativen Arbeiten, pages
335-350. Springer, August 2001.

Qwaq. Qwaq Forums, 2007. as of September 20, 2008,
http://www.gwaq.com/qwag-forums.html.
Qwaq. Qwaq Forums FAQ, 2007. as of September 20, 2008,
http://www.qgwaq.com/qgwag-fag.html.

R. B. Smith, M. Wolczko, and D. Ungar. Thrown
from Kansas to Oz: Collaborative Debugging when
a Shared World Breaks, 1997. as of September 20,
2008, http://web.media.mit.edu/~lieber/
Lieberary/Softviz/CACM-Debugging/
Kansas/Kansas.html.

H. Takada. A 3D Collaborative Creation Environment with
Tile Programming on Croquet. In C5 ’07: Proceedings of
the Fifth International Conference on Creating, Connect-
ing and Collaborating through Computing, pages 125-130,
Washington, DC, USA, 2007. IEEE Computer Society.
TheAliceTeam. Alice Webpage, 2008. as of September 20,
2008, http://www.alice.org/.
TheCodingMonkeys. SubEthaEdit, 2008. as of Septem-
ber 20, 2008, http://www.codingmonkeys.de/
subethaedit/index.html.

