
When a Mouse Eats a Python
Smalltalk-style Runtime Development for Python and Ruby

Tim Felgentreff Fabio Niephaus Tobias Pape Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

1. Debug Mode is the Only Mode
Debuggers in interactive programming environments are pow-
erful tools to explore and develop systems at runtime.

However, among users of scripting languages such as
Python or Ruby, a debugger is sometimes viewed as a rarely
used “development time” tool. As Seaton, Van De Vanter, and
Haupt have observed [5], debugging support is assumed to
come with compromises: there surely must be a performance
impact; in order to minimize the impact when debugging is
not needed, the functionality surely must be limited; the com-
plexity of debugging couples debuggers closely to just one
language; and in order to actually use debugging facilities,
one surely must accept the inconvenience of having to run
the program in a special “debug” mode.

Due to the inconvenience involved in using debuggers in
such systems, developers instead set up feedback loops by
creating the infrastructure for quick, repeated test executions.
This further cements the distinction between “development
time” and “deployment time”: to a program running in pro-
duction, this feedback loop infrastructure is not available and
any issues have to be reproduced and distilled into tests on a
development system before they can be fixed.

As Gilad Bracha has noted,1 this separation of develop-
ment time and deployment time stands in contrast to envi-
ronments in the Lisp, Smalltalk, and Self heritage that view
programs as live, continuously evolving systems. The devel-
opment environment is the runtime environment and develop-
ers can work with concrete objects and can interrupt, inspect,
and modify runtime state, and keep running.

In this work, we present a prototype virtual machine
(V M) written in RPython [1] based on the RSqueak/VM that
provides Squeak/Smalltalk’s live development and debugging
for PyPy Python [4] and Topaz Ruby.2 Of particular interest
in this context is how the interpreters can be adapted in a

1 https://gbracha.blogspot.com/2012/11/

debug-mode-is-only-mode.html
2 http://docs.topazruby.com

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).

MoreVMs’17 April 3, 2017, Brussels, Belgium
Copyright c© 2017 held by owner/author(s).

general fashion for Smalltalk-style development, as well as
the practical overhead of such an integration.

The core features of our prototype are:

• A combination of multiple RPython interpreters in the
same, cooperatively scheduled execution environment,

• Smalltalk-style unhandled exception and edit-and-continue
debugging for Ruby and Python.

2. Implementation Sketch
Our implementation is based on the approach to interpreter
composition in RPython proposed by Barrett, Bolz, and
Tratt [2]. Since we use RPython as our implementation
language, we can use its meta-programming and object-
oriented model to generically adapt the different interpreters.

Our main RPython interpreter is RSqueak that implements
Squeak/Smalltalk, because we use its graphical system as
our development environment. Both, Ruby and Python, can
be accessed from within Squeak/Smalltalk with a primitive
through which Squeak/Smalltalk code can call into the other
languages. In addition, objects from different languages can
pass across language borders: they simply become opaque
foreign objects for which method lookup and execution is
routed through the corresponding language’s interpreter.

However, this combination offers little more than a conve-
nient foreign-function interface— the Smalltalk development
model relies on the ability to interact with the environment
while the system is running. Smalltalk has traditionally im-
plemented this by using green threads (called Processes [3])
with a “UI process” running at high priority to check for user
input. Furthermore, all processes and the scheduler are acces-
sible from Smalltalk, so that developers can inspect, interrupt,
and modify execution at runtime.

2.1 Yielding to the UI Process
In order to have the environment react to user actions, we
integrate the cooperative scheduling mechanism of Smalltalk
processes with all interpreter loops: using RPython meta-
programming, we patch the Ruby and Python interpreters
at convenient locations to yield execution to the Smalltalk
scheduler. This happens regularly at operations like bytecode

https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
http://docs.topazruby.com
http://creativecommons.org/licenses/by-nd/4.0/


executions, message sends, and/or backwards jumps. The
Smalltalk interpreter already yields in the same way after a
certain number of backward jumps and message sends.

To make Python and Ruby executions available to the
Smalltalk tools for inspection and to the Smalltalk scheduler
for resumption, we create an entry point by putting an arti-
ficial suspended Squeak frame on the top of the stack. The
Smalltalk tools can query this frame for its caller/sender— re-
trieving a Python or Ruby frame as Squeak/Smalltalk object—
or resume it. When this virtual frame continues execution, it
returns control to the Python or Ruby interpreter by using the
Stacklet mechanism for delimited continuations available in
RPython.

2.2 Exception Detection
Another requirement of an “always running” system such as
Squeak/Smalltalk is to detect unhandled exceptions, stop the
execution, and offer to debug them. This is in contrast to the
usual approach in Python and Ruby where an unhandled ex-
ception can unwind the stack and exit: but if your deployment
environment is also your development environment, it must
never exit due to an exception.

We detect unhandled exceptions by intercepting the rais-
ing of language exception objects in each interpreter on the
RPython-level. When an exception is raised, we search the
stack for an exception handler. If it is found, we continue
raising it, otherwise we interrupt execution immediately —
leaving the stack untouched— and return control back to the
Squeak/Smalltalk UI process, which can then open a debug-
ger to inspect the erroneous execution.

2.3 Restarting Frames
Finally, Squeak/Smalltalk allows changing and restarting ex-
ecution frames, which is indispensable for edit-and-continue
debugging. Since frames in each interpreter are typically rep-
resented as objects in RPython, we can restart them by setting
their stack, program counter, bytecode, or any other runtime
state to desired values. To use this from Squeak/Smalltalk
tools, we expose these frame objects and add a primitive to
restart their execution.

3. Performance Considerations
Combining the interpreters of different RPython V Ms already
results in nicely inlined JIT loops on toolchain level. How-
ever, there are three sources of potential overhead in our pro-
totype: the addition of counters for yielding to the UI, the
addition of stack-walking to find unhandled exceptions, and
a limitation of RPython not being able to apply an optimiza-
tion that avoids allocation of more than one type of stack
frame object.

We minimize the cost of counters by not checking them
after each bytecode when we are in machine code, but instead
count once at the end of each loop the number of bytecodes
executed and possibly yield then. This means we might yield

later than intended, but if the counter is chosen to yield
roughly every 5 ms, we can easily miss the target by a few
factors and still have a responsive UI.

The cost of finding exception handlers is proportional to
the distance of the handler from the exception. For most
exceptions that occur and are caught (such as stopping an
iteration in Python), this distance is small and often within
the same JIT trace and, thus, the overhead is often negligible.
Exceptions that are uncaught will stop execution and yield
anyway, so performance is not as relevant in this case.

To avoid allocations of stack frames, RPython offers a JIT
hint called virtualizables. When method frames are inlined
under normal circumstances, the frame objects do not escape
and the JIT can avoid allocation by normal escape analysis.
The outermost frame in a JIT trace exists before the beginning
and after the end of a loop, however, so its allocation cannot
be avoided. We have found in benchmarks that the overhead
is usually small if the actual work is instead done inside
another method called inside a loop body.

4. Conclusions and Future Work
We were able to enable Smalltalk-style runtime development
for Python and Ruby with minimal effort, minimal loss in
performance, and in a generic manner that we believe can
be applied to other RPython languages as well. As part of
future work, we want to investigate Python and an RPython
implementation of Prolog in particular to explore if Squeak/
Smalltalk’s live development can also aid in the creation of
better debuggers and other tools for these languages com-
pared with what is currently available.

References
[1] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython:

A step towards reconciling dynamically and statically typed
OO languages. In Proceedings of the 2007 Symposium on
Dynamic Languages, DLS ’07, pages 53–64, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-868-8. doi: 10.1145/
1297081.1297091.

[2] E. Barrett, C. F. Bolz, and L. Tratt. Approaches to interpreter
composition. Computer Languages, Systems & Structures, 44,
Part C:199–217, 2015. ISSN 1477-8424. doi: 10.1016/j.cl.2015.
03.001.

[3] A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman, Boston, MA,
USA, 1983. ISBN 978-0201113716. The Blue Book.

[4] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine
construction. In OOPSLA’06 Companion, pages 944–953, New
York, NY, USA, 2006. ACM. ISBN 1-59593-491-X. doi:
10.1145/1176617.1176753.

[5] C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging
at full speed. In Proceedings of the Workshop on Dynamic
Languages and Applications, Dyla’14, pages 2:1–2:13, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2916-3. doi:
10.1145/2617548.2617550.


	1 Debug Mode is the Only Mode
	2 Implementation Sketch
	2.1 Yielding to the UI Process
	2.2 Exception Detection
	2.3 Restarting Frames

	3 Performance Considerations
	4 Conclusions and Future Work

