
How to Build a High-Performance VM
for Squeak/Smalltalk in Your Spare Time
An Experience Report of Using the RPython Toolchain

Tim Felgentreff Tobias Pape Patrick Rein Robert Hirschfeld
Hasso Plattner Institute

{firstname.lastname}@hpi.de

Abstract
In this paper we present our experience in letting students
develop RSqueak/VM, a fast virtual machine for executing
Squeak/Smalltalk, over the course of multiple introductory
VM courses and projects. Our experience indicates that the
way RSqueak/VM is constructed makes it easy for develop-
ers with little or no prior exposure to VM development to
construct a Squeak runtime that is very nearly competitive
to the professional grade Cog VM, which is used by Squeak
and other flavors of Smalltalk. In this experience report we
discuss the benefits and drawbacks of RSqueak/VM as a re-
search vehicle for developing and evaluating Smalltalk lan-
guage extensions without having to learn the deep secrets of
VM development.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors— code generation, optimization

Keywords Tracing JIT, Squeak/Smalltalk, RPython

1. Introduction
We present our experience in creating RSqueak/VM [4, 5],
a fast virtual machine (VM) that can execute unmodified
Squeak/Smalltalk images. RSqueak/VM was originally based
on the SpyVM [1] and is written using the RPython VM
toolchain and leverages its meta-tracing just-in-time compiler
(JIT) framework [2]. RSqueak/VM runs faster in some bench-
marks than the standard Cog VM that is commonly used for
Squeak and is competitive in many others. The RSqueak/VM
JIT inherits its platform support from RPython, and can thus
target x86 (both 32 and 64 bits), PowerPC64, ARMv6 and
ARMv7 (32bit), and IBM’s Z architecture (specifically its
current incarnation s390x running 64 bit Linux).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

IWST’16, August 23 - 24, 2016, Prague, Czech Republic
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4524-8/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/10.1145/2991041.2991062

In this report we share our development experience
with RSqueak/VM. In particular, we believe that the way
RSqueak/VM is implemented makes it possible to achieve
good performance even though development almost exclu-
sively takes place during part-time student projects and in
introductory VM courses. Furthermore, most of the students
that develop RSqueak/VM have never taken VM courses be-
fore, have no prior experience with Squeak VM development,
and have little knowledge of Squeak internals besides using
the Squeak development tools. We see this in contrast to
the Cog VM that is being developed by full-time developers
and that requires a good knowledge of the Squeak object
format, its garbage collector, its meta-programming facilities,
as well as C and assembly programming to participate in
optimization tasks on the VM level. However, RSqueak/VM
is not production ready and is worse in terms of stability and
performance in many areas than the highly optimized Cog. It
also only supports Squeak, whereas Cog can also run Pharo
and Cuis1.

A goal for RSqueak/VM is to support experiments that
extend the Squeak system or the language in particular for
researchers without prior experience in VM development. In
our experience, the RSqueak/VM architecture and toolchain
makes it easy for new students to experiment with new fea-
tures in the VM while achieving very good performance.
Among such features are software transactional memory
(STM) (which gives RSqueak/VM the ability to scale Squeak
to multi-core systems), replacing VM plugins with pure
Squeak code (which allows RSqueak/VM to execute Bal-
loon and BitBlt Slang-code directly in Smalltalk without
requiring a translation to C), or supporting multiple Squeak
image formats in the same VM (starting with the Squeak

1 There is no fundamental reason for not supporting Pharo and Cuis on
RSqueak — both of these dialects are simply missing fallback code for
primitives that are optional in Squeak and not implemented at all in RSqueak,
so execution fails when these primitives are hit. One example is primitive
105 which replaces part of a string with another string. On RSqueak, the
fallback code is actually faster in many cases than the primitive so we omitted
the primitive implementation. Pharo removed the fallback code, failing in a
non-recoverable way early during startup.

1.2 release all the way to the new Spur-format Squeak 5.0
release) without sacrificing run-time performance.

RSqueak/VM takes many of its ideas from the PyPy
project [10], with which it shares its implementation language
and development toolchain RPython. VMs written in RPython
automatically get garbage collection and can use the generic
meta-tracing JIT library. Also, RPython is a true subset of
Python. This also means that, like Squeak, the VM can be
developed, simulated, and debugged in a high-level language
(Python). Just like the Squeak VM is developed using Slang
(a subset of Smalltalk), we think this lowers the barrier of en-
try for new VM developers. The simulation of RSqueak/VM
extends all the way to the JIT, so even optimizations in that
area do not require any knowledge of assembly language or
the machine-level object format. We thus argue that RPython
is a more friendly VM development platform for novices than
Slang/VMMaker. In particular, many optimizations and plat-
form interfaces can be developed using high-level RPython
application programming interfaces (APIs).

Although the Cog VM offers very good performance and
its development process clearly works well when a full-
time VM developer is available, we argue it is not ideal for
researchers that want to conduct language experiments and
evaluate them with respect to performance, but do not have
the time or experience to work on low-level performance
optimizations in the VM. We think RSqueak/VM can make
the following contributions in this area:

• RSqueak/VM is written in RPython and thus offers a flexi-
ble, object-oriented language as implementation platform,
where extensions can make use of VM level polymorphic
implementation classes and object-oriented intercession.
This makes it easy to add new primitives, create new VM-
level objects, or conditionally extend the interpreter.
• RSqueak/VM benefits from RPython’s high-level JIT an-

notations that allow the developer to express assumptions
such as branch probability or functional dependencies and
change frequencies of certain variables and have those an-
notations automatically translated into optimizations of
the JIT. This makes it easy to achieve good performance
when developing extensions that change the semantics
of the language such as Context-oriented Programming
(COP) or Aspect-oriented Programming (AOP).

2. Squeak VM Development so far
A fast VM is a core concern for many Smalltalk implemen-
tations to make the Smalltalk language competitive in real-
world application scenarios. Although the success of a lan-
guage also depends on many other factors, newcomers to
Squeak often use simple, well known programming tasks to
evaluate the feel of developing in the system and the effec-
tiveness of its runtime. If execution is slow, people might not
be swayed by arguments about the beauty and expressive-

ness of the Smalltalk language and instead move on to other
programming languages.

The Squeak virtual machine was created as a simple byte-
code interpreter [8]. The initial goals for the VM were to
be reasonably efficient, while still being easily extensible
so that continued VM development could take place as the
Squeak-dialect of Smalltalk evolves. To that end the VM
and its plugins were developed largely in Slang, a subset
of Smalltalk amendable to static compilation C, so that VM
developers could use the Smalltalk environment to develop,
simulate, and debug the Squeak VM. Originally, only some
platform specific code was hand-written in C.

Since early 2011, the open-source Squeak VM has a
branch to develop the Cog variant of the VM. Cog is a very
high performance virtual machine for Squeak, Pharo, Cuis,
and Newspeak that adds a stack-to-register-mapping just-in-
time compiler, inline message caching, and optimizations for
Smalltalk’s first-class context objects. Much of Cog’s perfor-
mance comes from compiling Smalltalk methods by stitching
pieces of hand-written and optimized assembler for a number
of Squeak primitives and bytecodes together. Because the
original Squeak object format was not developed for this
use case, the complexity of some primitives was too high to
convert them into assembler. For example, the variable object
header format meant to improve interpreter performance and
memory requirements made Cog’s assembler for probing
the inline cache larger than it should be, costing additional
performance on every send. As a result, Squeak’s object for-
mat was changed to a new object format called Spur that
(among other optimizations) allows more primitives to be
implemented in optimized assembler and that simplifies the
inline cache code [9].

The communities around Squeak, Pharo, and Cuis con-
tinue to evolve their various Smalltalk dialects. This includes
evolving the core class library (such as changing the internal
structure of collections or the hierarchy of numeric classes)
adding mechanisms that can be used to improve the expres-
siveness of the language (like AOP or COP), or evolving the
tools to offer more powerful features and introspection capa-
bilities. As these mechanisms and language extensions evolve
during use, new execution paths in the VM become apparent
that need to be optimized, and old optimizations become su-
perfluous.

Due to the evolving nature of the systems that use the Cog
VM, the malleability with which the original Squeak inter-
preter was created is still important to continue supporting
language-level experiments. As we argued above, one impor-
tant question for any language feature is whether it will have
an impact on the efficiency of the system as a whole. How-
ever, if new developers cannot easily adapt the VM it is hard
to judge weather a new language extension can eventually
be optimized appropriately. A problem we see for new de-
velopers with the approach Cog and Spur take is the direct
mapping to assembler and intimate knowledge of the object

layout that is required to make the VM fast. This leads to a
situation where some performance-critical parts of the VM
are no longer easily understandable by just reading the Slang
code (reducing the benefit of simulating the VM in Small-
talk) and where new developers interested in working on the
VM and extending it with new VM-level objects or primitives
must consider how these will translate into assembler if per-
formance is relevant to the experiment. Given that a goal of
the Squeak VM is to run on a multitude of platforms, this
means considering not only x86 assembler, but also possibly
ARM, MIPS, PowerPC, or more architectures in the future.

* * *
The rest of this paper presents the current state of

RSqueak/VM architecture and performance, and what we
found to be interesting aspects of RSqueak/VM development
as compared to the traditional way of building VMs. Section 3
presents the core object model. Section 4 describes how we
use strategies to deal with different object layouts efficiently.
Section 5 discusses performance optimizations to simula-
tion of primitives in Smalltalk and presents benchmarks as
a general overview of RSqueak/VM performance. Section 6
discusses two example projects by students that worked on
RSqueak/VM and Section 7 summarizes our findings.

3. RSqueak/VM Model Classes
RSqueak/VM is architected in an object-oriented fashion. At
its core is a class simply called Interpreter which imple-
ments the bytecode loop by providing a method for each
Squeak bytecode. The second core class is the so-called
ObjectSpace, which takes on the role of the InterpreterProxy
from Slang/Squeak VM in that it has a globally unique in-
stance that provides access to often needed objects and con-
venience functions. Both of these classes are straightforward
and we can find similar expressions of their behaviors in the
standard Squeak VM, as well as the JSqueak/Potato VM2 and
SqueakJS [6].

All Smalltalk objects in RSqueak/VM are represented as
instances in the model class hierarchy, presented in Figure 1.
Squeak (and most other Smalltalks that we are aware of) use
a subclassing mechanism that allows developers to control
the storage layout of a class’s instances. Ordinary objects
store pointers, others store bytes or words, or hold on to
their pointers weakly. In addition to that, we have special
classes known to the VM that cannot store anything, but
are represented as immediates through pointer tagging, and
compiled methods, which use a hybrid of byte and pointer
storage.

In RSqueak/VM, the different types of objects are rep-
resented in the class hierarchy of the model classes. Any
Squeak object is represented at run-time by a sub-instance
of the VM implementation class W_Object. This abstract

2 http://sourceforge.net/projects/potatovm/, accessed May 19,
2016

class contains default implementations for some methods
such as getting the Squeak class of an object, access-
ing its contents, or unwrapping the Squeak contents into
RPython types. RSqueak/VM provides eight concrete sub-
classes: W_SmallInteger, W_Float, W_Character represent
the immediate and (generally) not mutated objects of their
Smalltalk equivalents. W_LargePositiveInteger1Word rep-
resents unsigned positive integers that happen to fit in a ma-
chine word (we elaborate on this optimization in Section 5).
W_PointersObject, W_BytesObject, and W_WordsObject rep-
resent the different storage types that Smalltalk developers
can use when subclassing. Finally, W_CompiledMethod repre-
sents the special format of Squeak’s CompiledMethod that
mixes pointer and byte fields.

One nice effect of the abstraction using model classes is
that features can be implemented in an object-oriented man-
ner. For example, accessing fields is simply implemented in
subclass-specific at0 and atput0 methods. Even a feature as
specific as become is easily implemented for objects of the
same structure: rather than doing a full GC scan and changing
all pointers, we merely need to exchange the RPython model
objects’ fields. For example, our become implementation for
a variable words object that is represented on RPython as a
W_WordsObject simply needs to exchange the fields of these
objects: a words array, an optional object to represent the
words array as a native C-level array (used for interoperabil-
ity with existing Squeak plugins), the object hash, and the
class reference. The latter two fields are implemented in the
abstract model classes W_AbstractObjectWithIdentityHash
and W_AbstractObjectWithClassReference, respectively,
which W_WordsObject inherits from.

1 # from W_WordsObject
2 def _become(self, w_other):
3 assert isinstance(w_other, W_WordsObject)
4 self.words, w_other.words = w_other.words,

↪→ self.words
5 self.native_words, w_other.native_words =

↪→ w_other.native_words, self.native_words
6 W_AbstractObjectWithClassReference._become(self,

↪→ w_other)
7

8 # from W_AbstractObjectWithClassReference
9 def _become(self, w_other):

10 assert isinstance(w_other,
↪→ W_AbstractObjectWithClassReference)

11 self.w_class, w_other.w_class =
↪→ w_other.w_class, self.w_class

12 W_AbstractObjectWithIdentityHash._become(self,
↪→ w_other)

13

14 # from W_AbstractObjectWithIdentityHash
15 def _become(self, w_other):
16 assert isinstance(w_other,

↪→ W_AbstractObjectWithIdentityHash)
17 self.hash, w_other.hash = w_other.hash,

↪→ self.hash

http://sourceforge.net/projects/potatovm/

CompiledMethodHeader

large_frame : int
number_of_arguments : int
number_of_literals : int
number_of_temporaries : int
primitive_index : int

W_CompiledMethod

bytes : list
compiledin_class : W_PointersObject
header : CompiledMethodHeader
literals : list
lookup_class : W_Object
lookup_selector : str

at0()
atput0()
bytecodeoffset()
compute_frame_size()
create_frame()
fetch_bytecode()

header

W_BytesObject

bytes : list
bytes_per_slot : int

getchar()
setchar()
size()

W_Object

getclass()
instsize()
is_nil()
is_same_object()
unwrap_array()
unwrap_float()
unwrap_int()
unwrap_longlong()
unwrap_string()
unwrap_uint()
varsize()

W_Character

value : int

at0()
atput0()

W_PointersObject

strategy : AbstractStrategy

at0()
atput0()
is_class()

W_PreSpurCompiledMethod

setheader()

W_SmallInteger

value : int

lshift()
rshift()

W_MutableSmallInteger

set_value()

W_WordsObject

words : list

getword()
setword()

W_Float

value : float

getword()
setword()

W_LargePositiveInteger1Word

value : uint

lshift()
rshift()
setchar()
getchar()

W_SpurCompiledMethod

setheader()
update_primitive_index()

Figure 1: The Core Model Classes in RSqueak/VM

Immediate Classes All Squeak VMs use pointer tagging
for SmallInteger, and recently the Spur object memory
format in both 32- and 64-bit have introduced tagging also
for Characters and Floats. In RSqueak/VM we do not tag
pointers, but we do represent those immediate types with
special VM-level classes. These classes inherit directly from
W_Object and they each have only one field to hold their
value. RPython provides a special declaration for values that
are expected to change rarely or that are even immutable as a
hint for the JIT.

SmallIntegers in RSqueak/VM are marked as immutable.
This gives the JIT the opportunity to replace object allocations
for W_SmallIntegers with their respective integer value and
allow it to produce code for integer-heavy loops where only
those integers that escape the loop must be allocated on the
heap. In return, the assembler does not have to check each
pointer access for tag bits—providing a speedup that in many
cases outweighs the cost of allocating a small number of
W_SmallInteger objects at the end of the loop.

We further reduced the cost of allocations by allowing
mutations to SmallIntegers that are stored in pointer object
fields. Most integers that escape loops do so because they are
stored in another object’s field. If the objects in those fields
are immutable, the VM must allocate a new object. Instead,
whenever a W_SmallInteger is stored into a pointers object,
we wrap its value in a subclass W_MutableSmallInteger
which does not have the immutability annotation. In cases

where a field already contains such a mutable integer, the JIT
can avoid allocation and simply update the value.

Floats in most Squeak images are implemented as objects
that store two words, which together make a double precision
floating point value. Although it happens rarely and (as far as
we know) never in production code, this means that Floats
can be mutated by writing to their word fields directly. To
accommodate this, W_Float objects in RSqueak/VM were
usually only annotated as quasi-immutable. This still allows
the JIT to emit fast assembler instructions by speculating that
a Float’s value never changes, but requires the insertion of a
few additional guard instructions before each float access.

The final immediate class introduced with Spur are
Characters. Like the previous two types, we wrap characters
and mark them as immutable.

* * *
In our experience, structuring the core model of

RSqueak/VM in this object-oriented fashion made it easier
for new developers to contribute to its development. We had
the same experience with SqueakJS. However, in RPython
the additional performance that can be achieved by a few well-
placed JIT annotations allows even new developers to extend
the VM and immediately achieve very good performance. The
most important JIT annotations so far have been elidable
and promote. The former tells the JIT that a certain RPython
method is pure, that is, its return value will be the same if
all arguments are the same. The second tells the JIT that

an object is likely to be constant in a given execution trace.
The students, just knowing this abstract description, used
these annotations extensively in many parts of the VM when
they knew that many objects that are theoretically mutable
in Squeak (method dictionaries, compiled methods, literals,
strings, ...) nonetheless are unlikely to change. Thus, these
annotations completely avoid any infrastructure for caching
(such as method caches) and offload this work to the JIT.

Another lesson we learned from avoiding pointer tagging
was that it made the transition to Spur much easier— adding
support for immediate float and character values was as
simple as creating a new subclass akin to W_SmallInteger.
At no point did we have to worry about checking pointer
accesses to go through (un-)tagging macros, so mistakes
by less experienced developers caused by forgetting these
are impossible by design. This is especially important since
most RSqueak/VM developers have no prior experience with
tagging or other traditional VM optimization techniques.

4. Strategies to Avoid Changes to the Object
Layout

The original Squeak VM uses a simple model of object repre-
sentation where the in-memory layout of objects corresponds
to the Squeak meta-protocol. This strategy has advantages
(such as making the VM simpler) but comes with the draw-
back that the evolution of the VM is tied to the evolution of
the image.

This tight coupling makes it difficult to support Squeak on
an alternative VM with competitive performance, and it makes
it near impossible for the standard VM to support different
image formats. This means that even as the VM evolves and
becomes faster, older images and architectures that are no
longer supported are left to use older VMs.

With RSqueak/VM, we wanted to avoid this tight coupling.
To still get good performance, we employed a combination
of strategies [3] and shadows [1] to translate in-image object
layouts into formats that can be flexibly used and optimized
in RPython.

Strategies Strategies are a technique that was originally
presented for PyPy to avoid memory allocations for simple
objects stored in lists. In PyPy, this is useful to improve both
the memory and runtime overhead of homogenous lists, for
example lists that store only integers and floats.

Shadows Shadows were used in both SpyVM [1] (the pre-
cursor to RSqueak/VM) and JSqueak/Potato3. Some special
objects such as classes, method dictionaries, and context
parts, which look like ordinary objects to the image, store
information in their fields that is important during lookup,
object creation, or method activation. Classes, for example,
store a class header as an ordinary tagged integer that encodes

3 http://potatovm.blogspot.de/2008/07/
large-integer-handling-in-potato.html, accessed May 19,
2016

information such as the class type or the size of instances.
When the SpyVM first needed to access that information, it
would attach a shadow to the object in question, decode the
header into explicit fields in that shadow, and subsequently di-
rect all read and write operations through that shadow, which
acts as an adapter to provide a more VM-friendly interface. In
Potato, shadows were used to represent large positive integers
also as Java big integers for primitive operations.

4.1 Storage Strategies in RSqueak/VM
In Squeak, many objects are mostly empty, that is, they are
filled with nil values. We found that, for example, most
method dictionaries of metaclasses are empty, yet take up
10 words plus header, the default size of a Squeak Array
instance. While this could be corrected in-image, strategies
can provide a mechanism to improve the memory overhead
of such objects. All pointers objects in RSqueak/VM start
out with a storage strategy that always returns nil on every
read, without actually allocating the memory required. If the
object is never written to, no allocation need ever take place.
If it is written to or used in a specific context, we initiate a
storage transition.

All subclasses of StorageStrategy in RSqueak/VM can
be converted into one another by first reading all fields
from the old storage and then writing them to the new stor-
age. We use a Squeak-specific set of strategies with dif-
ferent trade-offs with regards to memory and access per-
formance. Commonly used strategies are FloatOrNil and
SmallIntegerOrNil. These are useful for homogenous col-
lections and can store floats and integer values untagged by
using a C-level int or float array. A special NaN tag and the
largest word sized integer are used to indicate that a position
really hold a Squeak nil, rather than a float or integer.

Figure 2 shows how storage strategies can reduce memory
overhead. These measurements were taking by simply open-
ing a Squeak 5.0 release image, invoking the About Squeak
dialog, and closing the image. Specifically, we can see that
about 22 % of all objects with on average nine slots remain
in the AllNil strategy, saving the allocation of nine words of
memory for each of these objects. Counting all fields of all
objects in the image, over half of all slots do not have mem-
ory allocated for them, because their objects remain in the
AllNil strategy. The figure also shows that 12 % of all objects
(and 6 % of all fields) only contain integers or nil values, and
so for these no W_SmallInteger objects are created, but the
integer values are stored unwrapped even without tagging.

The shadows from SpyVM are now special kinds of
storage strategies in RSqueak/VM that objects can transition
into. The first time a pointers object is used as a class (for
example, by sending a message to an instance of that class),
the VM converts all fields in the class object into a more
suitable (but less memory efficient) form by eagerly decoding
information from the class header and storing each piece of
information separately. This makes development easier by
providing a dedicated VM-level class with a class-specific

http://potatovm.blogspot.de/2008/07/large-integer-handling-in-potato.html
http://potatovm.blogspot.de/2008/07/large-integer-handling-in-potato.html

AllNil
Incoming: 838,379 objects
Incoming: 7,597,950 slots

Remaining: 251,515 objects (30.0%)
Remaining: 5,031,816 slots (66.2%)

FloatOrNil
Incoming: 811 objects
Incoming: 2,402 slots

Remaining: 651 objects (80.3%)
Remaining: 1,638 slots (68.2%)

392 objects (< 0.1%)
1,228 slots (< 0.1%)

3.1 slots/object

Shadows
Incoming: 15,905 objects
Incoming: 346,274 slots

1,422 objects (0.2%)
8,033 slots (0.1%)

5.6 slots/object

List
Incoming: 756,424 objects
Incoming: 3,769,353 slots

Remaining: 741,730 objects (98.1%)
Remaining: 3,318,598 slots (88.0%)

1 objects (< 0.1%)
60 slots (< 0.1%)
60.0 slots/object

502,447 objects (59.9%)
2,198,510 slots (28.9%)

4.4 slots/object

SmallIntegerOrNil
Incoming: 144,578 objects

Incoming: 646,554 slots
Remaining: 136,719 objects (94.6%)

Remaining: 591,012 slots (91.4%)

82,472 objects (9.8%)
358,265 slots (4.7%)

4.3 slots/object

WeakList
Incoming: 1,735 objects
Incoming: 117,661 slots

130 objects (< 0.1%)
38 slots (< 0.1%)
0.3 slots/object

160 objects (19.7%)
764 slots (31.8%)

4.8 slots/object

CharacterOrNil
Incoming: 47 objects
Incoming: 683 slots

14,483 objects (1.9%)
338,241 slots (9.0%)

23.4 slots/object

211 objects (< 0.1%)
112,514 slots (3.0%)

533.2 slots/object

Object Creation
814,722 objects
7,563,139 slots

813,328 objects (99.8%)
7,558,030 slots (99.9%)

9.3 slots/object

1,394 objects (0.2%)
5,109 slots (< 0.1%)

3.7 slots/object

7,859 objects (5.4%)
55,542 slots (8.6%)

7.1 slots/object

Image Loading
333,580 objects
1,844,543 slots

25,051 objects (7.5%)
39,920 slots (2.2%)

1.6 slots/object

419 objects (0.1%)
1,174 slots (< 0.1%)

2.8 slots/object

47 objects (< 0.1%)
683 slots (< 0.1%)
14.5 slots/object

245,957 objects (73.7%)
1,514,477 slots (82.1%)

6.2 slots/object

62,106 objects (18.6%)
288,289 slots (15.6%)

4.6 slots/object

Figure 2: Storage Strategies and Transitions when Running Squeak

interface for tasks such as lookup and object creation. There
are similar special strategies for context parts and method
dictionaries.

While it may seem like a lot of overhead to have a storage
array, a strategy, and a model object for each Smalltalk object,
the JIT that is generated for the RPython sources removes
almost all of these allocations in loops. For example, fields
of context parts are mapped to registers or they are omitted
entirely if they are found to not escape the loop.

4.2 Shadows for the Meta-object Protocol
Shadows make the implementation of RSqueak/VM more
complex than we would like in some cases. A major reason
for this complexity (and some lost performance that comes
with it) is how Squeak’s meta-object protocol is used in the
system. In particular the “special” objects that are ordinary
objects from the point of view of the VM can and are manipu-
lated as such. This includes method dictionaries, method liter-
als, compiled methods, strings, large integers, floats, classes.
This mutability is actually used by the development tools.
For example, method dictionaries are manipulated by writing
directly into the underlying arrays that implement the dic-
tionary, but there is no explicit VM callback that passes this
object. Thus, RSqueak/VM uses a special shadow to notice
such manipulation to selectively invalidate JIT code involving
those method dictionaries. Without such special shadows, it
is very easy to have too coarse grained caching in the JIT,

leading to frequent invalidation of machine code during de-
velopment.

Shadows abstract from the Squeak object layout for these
special objects to provide object-oriented, RPython-level
methods for tasks such as method lookup or temporary vari-
able access. A benefit of them is that, since these shadows
are still ordinary RPython objects, they can be returned and
handed around as such. This makes, for example, the imple-
mentation of Squeak’s meta-object protocol for accessing the
current context trivial to implement. All bytecodes are im-
plement as methods on the class ContextPartShadow. The
bytecode to access the active context simply pushes self on
to the stack.

5. Simulated Primitives in RSqueak/VM
As we have previously presented [5], RSqueak/VM simu-
lates many primitives that have fallback code available in
Smalltalk. Some of these primitives are no longer imple-
mented in Spur or at least were found not to provide a perfor-
mance benefit anymore in some cases4. Some primitives that
RSqueak/VM simulates, however, do not have fallback code,
but are implemented in Slang. The most important of these
are the BitBlt and Balloon primitives that are used to render

4 For example, there was recent discussion on the Squeak VM mailing list
about findings that some primitives for large integers have now become
slower than the JIT-ed Smalltalk code. See: http://forum.world.st/
The-Inbox-Kernel-dtl-1015-mcz-td4889787.html, accessed May
19, 2016

http://forum.world.st/The-Inbox-Kernel-dtl-1015-mcz-td4889787.html
http://forum.world.st/The-Inbox-Kernel-dtl-1015-mcz-td4889787.html

A
St

ar

B
in

ar
yT

re
e

B
itB

lt
R

ul
es

B
lo

w
fis

h

St
ri

ng
H

as
h

C
om

pi
le

r

D
el

ta
B

lu
e

D
N

U

Fa
nn

ku
ch

Fi
ll

A
rr

ay

G
ra

ph
Se

ar
ch

JS
O

N

B
itB

lt
M

an
da

la

M
an

de
lb

ro
t

N
B

od
y

R
an

do
m

A
rr

ay
In

se
rt

M
eg

am
or

ph
ic

Se
nd

s

R
en

de
rF

on
t

R
ic

ha
rd

s

R
eg

ex
D

N
A

T
hr

ea
dr

in
g

Sl
op

st
on

e

0

2

4

6

8

10

12

14

16

18

20
E

xe
cu

tio
n

tim
e

re
la

tiv
e

to
Sp

ur

Figure 3: Relative runtime of various benchmarks for RSqueak/VM (blue) and Spur VM (red).

the entire Squeak user interface and have to be fast to allow
using the environment.

The simulation of BitBlt uses Slang code available in the
VMMaker packages, which neccessitates that any image that
is used on RSqueak/VM must include that package in some
form. An interesting result of simulating these primitives is
that any changes to the BitBlt code are immediately visible
— but if the changes break the system’s ability to render a de-
bugger this feature can also cause frustration. We have found
Context-oriented Programming (COP) [7] to be a good fit here
as it allows for very fast turn-around times when developing
code that is central to the function of the environment and
still keep the environment itself protected.

Optimizing for Primitive Simulations
We have previously shown that the performance of simulating
BitBlt primitives on RSqueak/VM is within one order of
magnitude of the performance of the standard Squeak VMs
binary plugin and simulating Balloon primitives is within two
orders of magnitude. [5]

The BitBlt code does calculations on word-sized chunks of
the display and the forms it renders to. When the Slang code
is translated to C, these calculations are all done on word-
sized unsigned integers. However, in-image, they will usually
be done on large positive integers. Since RSqueak/VM does
not ship with a LargeInteger plugin to make these calculations
fast, the fallback code is used that causes byte-wise access to
the integer, resulting in very slow 8-bit operations.

LargePositiveInteger in Squeak is a byte class. This stor-
age type was chosen to minimize the memory overhead that
would come with word objects, but the performance of that
storage layout is not ideal when we have to do arithmetic for
BitBlt operations. To avoid both the maintenance burden of
a large integer plugin and the bad performance of the large
integer operations fallback code, RSqueak/VM uses a special
VM-level class to represent small, word-sized large positive
integers. Larger integers are still represented as byte objects
(with the associated performance properties), but word-sized
integers are stored directly as unsigned integer values in a
field of the LargePositiveInteger1Word class. That class
otherwise simulates the semantics of byte objects. When such
objects are used in arithmetic, the usual path in Squeak is to
fail the SmallInteger primitive and use double dispatch to
call into the primitives provided by the LargeInteger plugin.
In RSqueak/VM, all arithmetic primitives succeed also for
the special one-word positive integers, allowing fast arith-
metic on any integer that fits into a machine word.

This optimized representation of word-sized positive inte-
gers has improved the relative performance of the simulation
on RSqueak/VM compared to the C plugins. For the BitBlt
Blue Book benchmark that renders the first 16 combination
rules to the screen, the simulation in RSqueak/VM is now
faster than the generated plugin in C by about one order of
magnitude. For Balloon, our previous worst case rendering
performance for TrueType fonts was more than 180 times
slower than the Balloon plugin compiled to C [5]. The op-

timization detailed above has reduced this to less than 20
times.

A disadvantage of this architecture are more checks when
converting RPython integers into Smalltalk integers and back:
the VM-level class that has to be used depends on whether the
result fits into a small integer, a word-sized unsigned integer,
or needs to be represented as bytes. However, these classes
then provide a unified interface so the rest of the code can
ignore the distinction.

* * *
Figure 3 presents various benchmarks specific to Squeak

and taken from the computer language shootout. The entire
suite of benchmarks is available online5. The benchmark re-
sults represent the average of the middle 95 % measured over
100 benchmark runs and normalized to the Spur Squeak VM
version 16.18.3692. The RSqueak/VM version we used was
c6487cb7d1. All benchmarks were run on an otherwise idle
Ubuntu machine with an Intel Core i5-3470 @ 3.2 GHz and 8
GB of RAM. The benchmarks show that while RSqueak/VM
is much slower for some applications, it is competitive and
sometimes even faster than Spur for others. The areas where
RSqueak/VM is much slower are of three types: First, bench-
marks such as Blowfish and font rendering rely on in-image
fallback code where the Spur VM uses a plugin that was com-
piled to C and is linked into the VM. Second, benchmarks
such as Graph Search and Binary Trees are tree-recursive,
and the RPython JIT is bad at optimizing tree-recursive al-
gorithms. Third, benchmarks such as megamorphic sends or
NBody do not work well with the JIT, because it speculates
that most call sites have very few receiver types.

6. Inexperienced Developers and
RSqueak/VM

We argue that the RSqueak/VM architecture makes it easy
for new developers to extend the VM even without much
guidance. While it is difficult to evaluate this, we want to
present anecdotal evidence to support our claim.

6.1 Adding Support for Objects as Methods
Objects as methods were introduced in Squeak as a mecha-
nism to change lookup semantics from within the image. The
contract is that, when the VM encounters an ordinary object
(rather than a compiled method) in the method dictionary
during lookup, it sends it the special selector #run:with:in:
providing the original selector, arguments, and receiver.

Objects as Methods were added in an introductory VM
development seminar by four students. The seminar lasted
for three months with about one day per week spent working
on the project.

Changes to RSqueak/VM For current images, implement-
ing this in RSqueak/VM is straightforward. The method

5 http://hpi.de/swa/squeaksource/BenchmarkRunner, accessed
May 20, 2016

arithmetic primitive quick oam

101

102

103

N
um

be
ro

fe
xe

cu
tio

ns
pe

rs
ec

on
d

Figure 4: Objects as Methods: Send performance comparison
between RSqueak/VM (blue) and the Spur Squeak VM (red).

sendSelector implemented in the interpreter calls lookup on
the receiver’s class. If the result of the lookup is not a com-
piled method, the arguments are taken off the stack, wrapped
in a Smalltalk array, and the selector, argument list, and re-
ceiver are used as arguments for a new send.

One issue for the students was to take care of older images.
The #run:with:in: selector is a special object in images that
support objects as methods. With RSqueak/VM, we support
images before that as well, so the students hat to make sure
that the VM does not crash trying to fetch that selector and
sending it.

Benchmarks Figure 4 shows the performance of the stu-
dents’ implementation. We compare the send performance
for a method doing simple arithmetic (returning the result
of 1 + 1), a method that calls the identity hash primitive, a
method that simply returns self, and an object as method that
also returns the receiver.

Without any prior experience or specific optimization,
the students achieved roughly the same performance in this
benchmark as the standard Squeak VM, and have the same
comparative slowdown of about one order of magnitude.
For us, this demonstrates that experiments with lookup, for
example, could be done cheaply on RSqueak/VM and be
evaluated immediately without having to spend much time
on performance.

6.2 Multi-core with Software Transactional Memory
RPython includes a module to aid developers in creating VMs
that use STM for concurrency. STM is a lock-free concurrency
mechanism in which each thread executes on its own transac-
tional view of the global memory space. At select times (or
by default after each bytecode), the transactions from differ-
ent threads are considered for merging into the global view. If
there are any conflicts, some threads roll back and re-execute
the set of operations since the last merge. This transparent ap-
proach to concurrency is interesting to let Squeak processes
run truly parallel on different cores of a multi-core machine
with only minimal changes to the image.

http://hpi.de/swa/squeaksource/BenchmarkRunner

The work to add STM concurrency was done as a master’s
project by four students. The project lasted for four months
with about one and a half days per week spent working on
the VM.

Changes to RSqueak/VM The core adjustments to support
STM were inside the VM and are completely transparent for
the user of the image. Since an STM implementation is avail-
able as an RPython library, all that was required was a change
to the scheduler (which is a special object in RSqueak/VM)
and a change to the bytecode loop in the interpreter to commit
the transaction. Additionally, the students added primitives
so that Smalltalk code can influence the behavior of the STM.
One primitive added the capability to explicitly launch a pro-
cess as a separate operating system thread rather than a green
thread that is scheduled cooperatively. With STM’s automatic
transaction boundaries this primitive already allows concur-
rent execution of threads without any further changes to the
Smalltalk code. However, there are cases were the application
relies on the fact that a bigger group of changes atomically
executed either completely or not at all. To let the application
mark the beginning and the end of such atomic blocks, the
students furthermore added two more primitives.

Benchmarks Figure 5 shows the students’ implementation
on two parallel benchmarks with different numbers of threads.
The first benchmark calculating the sum of all numbers was
run twice: first summing up the numbers to 10,000,000 and
then to 1,000,000,000. This benchmark is embarrassingly
parallel, but it shows that the parallelism can actually pay
off for sufficiently large problems if run with the same num-
ber of threads as there are cores in the underlying machine.
For the smaller run, the overhead of thread and transaction
management never pays off however. Nevertheless, it does
appear that unmodified multi-threaded algorithms in Small-
talk can in principle benefit from transparent parallelization
with STM.

On the other hand, the Mandelbrot benchmark shows the
limits of a transparent integration. This benchmark does cal-
culations on distinct ranges of the same Smalltalk array. With-
out any further annotations, these lead to a lot of conflicts,
rollbacks, and re-calculations in the different threads, a prob-
lem that gets worse as more threads are added. Here, the
additional primitives to control atomic access must be used
in the Smalltalk code.

7. Discussion and Conclusions
These and other student projects showed us that it is possible
for students with no prior VM development experience to
extend RSqueak/VM and create extensions that are worth
including in the main branch of development without much
further refactoring.

While the changes to the code base were straightforward
thanks to abstractions we have in RSqueak/VM architecture,
the students disliked other aspects of the development pro-
cess.

One problem with RPython compared to Slang is that it
requires a full program translation to compile to C. Whereas
Slang is a Smalltalk-subset that maps very directly to C and
can thus be translated without much analysis, RPython’s
higher level abstractions require full program control flow
analysis to generate C type annotations. Although RPython
(just like Slang) can be run in interpreted mode for devel-
opment, the fact that it has to load and simulate the entire
image (including many primitives) makes this very slow for
RSqueak/VM. The full translation often requires between
five and ten minutes, and these long roundtrip times led to a
tendency of bigger code changes (“Before we compile, let’s
also add this”), lost flow (“What where we doing before?”),
and different compiled interpreters in parallel testing (“How
is this version different from the others?”). As a consequence,
while the students found it easy to extend the VM in appropri-
ate places, they found it harder to test and correct errors than
on the Cog VM.

Another limitation of RSqueak/VM is that it only works
with Squeak. Fallback code for optional primitives has di-
verged in the different Smalltalk flavors that use the standard
Squeak VM and limited time has prevented us from pursuing
Pharo and Cuis support. We are planning to attempt to add
support for those two systems in another student project.

Despite those limitations, we feel that RSqueak/VM meets
our goals for a research VM. First, it is easy to introduce new
developers to the code base because although RPython is a
subset of Python, it is much more flexible than (for example)
Slang and well-known object-oriented patterns in the code-
base make the introduction easier. Second, the high-level JIT
abstractions provided by RPython allow developers to achiev-
ing promising performance even without any knowledge of
the underlying machine, by encoding domain knowledge di-
rectly.

Acknowledgments
We want to thank all of our students who contributed to
RSqueak/VM development: Lars Wassermann, Anton Gu-
lenko who wrote their master’s theses about aspects of the
VM. Patrick Rein, Johannes Henning, Toni Mattis, Eric Seck-
ler who added experimental support for STM. Sebastian Ger-
stenberg, Sven Knebel, Jakob Reschke, Patrick Siegler who
implemented support for objects as methods. Franz Liedke,
Cornelius Bock, Sven Köhler who experimented with tagged
versus wrapped integers. Hubert Hesse, Marcel Pursche, Ben-
jamin Siegmund, Hannes Würfel who contributed a large
number of benchmarks. Bastian Kruck, Matthias Springer,
Dustin Glaeser, Jakob Reschke who added support for the
Spur format and worked on using Smalltalk code to write
the image to disk. Daniel Werner, Fabio Niephaus, Philipp
Otto, Felix Wolff, Jan Graichen who continue to experiment
with other data layouts and data persistence for RSqueak/VM.
We also want to acknowledge the authors of the original
SpyVM from which RSqueak/VM was initially derived for

1 2 4 8 16
0

5

10

15

E
xe

cu
tio

n
Ti

m
e

(s
)

(a) Parallel Sum 107

1 2 4 8 16
0

20

40

60

E
xe

cu
tio

n
Ti

m
e

(s
)

(b) Parallel Sum 109

1 2 4 8

100

101

102

E
xe

cu
tio

n
Ti

m
e

(s
)

(c) Mandelbrot

Figure 5: Different Benchmark Runs with (blue circles) and without STM (red squares)

their first demonstration that a Smalltalk VM could be written
in a short time using RPython: Carl Friedrich Bolz, Armin
Rigo, Adrian Kuhn, Adrian Lienhard, Nicholas D. Matsakis,
Oscar Nierstrasz, Lukas Renggli, and Toon Verwaest.

References
[1] C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis, O. Nier-

strasz, L. Renggli, A. Rigo, and T. Verwaest. Back to the
future in one week-implementing a smalltalk vm in pypy. In
Self-Sustaining Systems, pages 123–139. Springer, 2008.

[2] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. Tracing the
meta-level: Pypy’s tracing jit compiler. In Proceedings of the
4th workshop on the Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages and Programming Systems,
pages 18–25. ACM, 2009.

[3] C. F. Bolz, L. Diekmann, and L. Tratt. Storage strategies for
collections in dynamically typed languages. In Proceedings
of the 2013 ACM SIGPLAN international conference on Ob-
ject oriented programming systems languages & applications,
pages 167–182. ACM, 2013.

[4] T. Felgentreff, T. Pape, R. Hirschfeld, A. Gulenko, and C. F.
Bolz. Language independent storage strategies for tracing JIT
based VMs. In Proceedings of the 11th ACM Symposium on
Dynamic Languages, DLS ’15, pages 119–128. ACM, 2015.
doi: 10.1145/2816707.2816716.

[5] T. Felgentreff, T. Pape, L. Wassermann, R. Hirschfeld, and C. F.
Bolz. Towards reducing the need for algorithmic primitives
in dynamic language VMs through a tracing JIT. In Proceed-
ings of the 10th Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS’15. ACM, 2015.

[6] B. Freudenberg, D. H. Ingalls, T. Felgentreff, T. Pape, and
R. Hirschfeld. Squeakjs: A modern and practical smalltalk
that runs in any browser. In Proceedings of the 10th ACM
Symposium on Dynamic Languages, DLS ’14, pages 57–66,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3211-8.
doi: 10.1145/2661088.2661100.

[7] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented
programming. Journal of Object Technology, 7(3):125–151,
2008.

[8] D. H. H. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future: the story of Squeak, a practical
Smalltalk written in itself. SIGPLAN Not., 32(10):318–326,
Oct. 1997. ISSN 0362-1340.

[9] E. Miranda and C. Béra. A partial read barrier for efficient
support of live object-oriented programming. In Proceedings
of the 2015 International Symposium on Memory Management,
ISMM ’15, pages 93–104. ACM, 2015. ISBN 978-1-4503-
3589-8. doi: 10.1145/2754169.2754186.

[10] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine
construction. In Companion to the 21st ACM SIGPLAN sym-
posium on Object-oriented programming systems, languages,
and applications, OOPSLA ’06, page 944–953. ACM, 2006.
ISBN 1-59593-491-X. doi: 10.1145/1176617.1176753.

	Introduction
	Squeak VM Development so far
	RSqueak/VM Model Classes
	Strategies to Avoid Changes to the Object Layout
	Storage Strategies in RSqueak/VM
	Shadows for the Meta-object Protocol

	Simulated Primitives in RSqueak/VM
	Inexperienced Developers and RSqueak/VM
	Adding Support for Objects as Methods
	Multi-core with Software Transactional Memory

	Discussion and Conclusions

