
1

Future Software Design

Richard P. Gabriel
Software Architecture Group

Hasso Plattner Institute
rpg@dreamsongs.com

it’s the real thing not a plan. Chronology is fundamentally
about the runtime.

!

Let’s not look too hard at these metaphors but instead ex-
amine them vigorously in the shallows. Themes seem abstract
as do modules. Certainly a software module contains con-
crete code, and a module as text contains source code, but
aside from what could be described as degenerate cases, that
code is abstract. At least abstract in the sense that the code
will behave in some manner once some of its originally un-
known parts are provided—such as the value of the (abstract)
fibonacci function is computed once its source code is com-
piled and a particular concrete argument is supplied. Until
then, the source code is simply there to examine and reason
about. When it’s a plain and simple function we can usually
recognize what it is. But even the code for fibonacci can be
mysterious. For example, is there a limit on the magnitude
of its argument? Looking at the source code, we might not
know. Looking at the source code alone, we might not even
know what language it’s written in. When we decorate the
definition with types, we might know a little more about it,
but we still might not know argument constraints. And per-
haps all a compiler can guarantee is that it is roughly in the
form of source code that computes a number, but it cannot
tell us that it computes fibonacci.

Consider the code at the top of the next page. You can be
forgiven if you can’t read Lisp code, but I would guess that
even superb Lisp coders can’t figure it out at all.

Well, of course it’s fibonacci, but it can compute for large
arguments—it takes a lot longer to print the exact answer
than to compute it.

(I showed you this code to briefly defamiliarize you, to
make you feel a little of the stupidity one can feel when en-
countering unfamiliar source code.)

A compiler can fuss & fume and finally tell us its types are
ok (if we label them ok). And perhaps someone writing out
derived equations could figure it out after a bit. But otherwise
it is abstract. A programmer writing thematic material is rely-

Let’s start with how to structure nonfiction.
In December 2017 I was reading a new book by John

McPhee—“Draft No. 4: On the Writing Process”—in it he
describes how he structures his nonfiction essays and books;
and I unexpectedly started to apply his ideas to how people
work with software. I was thinking about programming and
not design methodology and standard engineering—or per-
haps the experience of programming. (I find it hard to word
this description because it is too easy to fall into software
engineering jargon, which might lead us into a mental rut.)

The two ways are these: thematically and chronologically.
Most nonfiction succumbs to chronological treatment: this
happened, then this, then that…until the end. Sometimes
a chronological piece has flashbacks and flash-forwards in
which segments of chronological time are pieced together
out of order. For example: me right now telling you that I
first encountered McPhee’s writing the early 1970s just after
I moved to California from Illinois, and from there I started
to take my own nonfiction writing more seriously.

In thematic structure, things that go together are grouped
together. I could for example put together a section in this
little essay about all the things I did throughout my life to
become a better writer, and within that section I might group
similar approaches and studies without much attention to
when they took place. Many technical papers are themati-
cally structured.

Going only this far into what McPhee was explaining
regarding writing, I leapt at the idea that in programming,
thematic structure is modules. At least from far, far away it
can seem like this. One can think of a module as a grouping
to which a single team is assigned, and the information that
team handles can be divided into the information that is pri-
vate to their concerns and the information that is exchanged
with other modules. Information that can be grouped to-
gether so as to be kept from others is information that goes
together. A theme.

What then is chronology in programming? It’s one thing
after another—it’s execution; stuff that happens; running sta-
tus; A then B then C. This is the inexorability of the actual;

Workshop on Designing the Software Systems of the Future,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, January 12-14, 2018

2

ing on abstract thinking and tools that suffer to some degree
the ignorance abstraction requires. Thematic programming
is like writing code on a piece of paper.

Contrast that with the chronological—the execution itself
or the runtime. We can quickly see that for arguments up to
about 10 the pattern for f looks like fibonacci: 1, 1, 2, 3, 5, 8,
13, 21, 34, 55. We get to do science on the chronological code,
and only mathematics on the thematic.

Let’s look at the experience of a programmer using a live
programming system. A live programming system is one
where you sit in front of the running code and changes you
make to the “source” are immediately reflected in the run-
ning system. You can pause parts of the system, inspect data,
insert breakpoints, and otherwise manipulate the running
system. Systems that approximate this include Lisp systems,
Smalktalk, Self, and many others.

A live system is chronological because instead of reason-
ing about what the program might do, the programmer can
look at what it has done and what it is doing right now. The
experience is concrete.

Let’s call these two types of systems thematic and chrono-
logical. They are good names because they have no baggage
in the software engineering and computer science worlds.

!

In a thematic system, bugs that are found and analyses
that are produced are thematic and hence abstract. Thematic
systems are generally static, like ink on paper. Finding such
bugs and providing such analyses are extremely important,
and a guarantee that is made thematically is one that can
be counted on. Computer science and software engineering
rightly strive to find such good thematic tools.

On the other hand, because there are many things that
can be wrong with a executing system, the ultimate test is
the running code. Support software can fail; hardware can
fail by faulty design or manufacture, or by adverse environ-
mental conditions; correct software can be used incorrectly;
it can be used in adverse circumstances (too little memory).
This is why there is testing and things like testing.

There is a whole other dimension to chronological systems,
and it’s the one I think is related in a surprising way to the fu-
ture of software design. Chronological systems have a human
in the loop. A live system with its programmer on vacation
is a static system that happens to be running. A chronologi-

cal system with its programmer asleep at home is a thematic
system that has been compiled, linked, and is executing.

A person sitting in front of a chronological system can
improvise—try things out, experiment, make mistakes, and
recover from mistakes. There are many tools that help pro-
grammers who improvise badly from killing the system. But
an important factor is that a chronological system can be
adapted on the fly by the programmer sitting in front of it.
And such a programmer, if very alert, can be aware of what
the system is doing. (And by “programmer,” I include several
people—a team.)

In some live languages, it is not only possible to examine
live structures and data, but to also alter behavior by inserting
code, altering code, and manipulating the underlying execu-
tion structures. This is called “reflection.” Some languages
have mechanisms that enable programmers to operate at a
meta level on meta-objects that implement the semantics of
the language. Hence reflection can be broken into introspec-
tion and intervention or intercession. Some refer to the ability
to effect changes in the fundamental executing semantics of
a system “behavioral reflection.” But in all this—so far—this
is all under the control of a programmer sitting in front of
a live system.

Comparing the experience of acting on a textual represen-
tation of a program with acting on the program actually run-
ning, we observe that a sort of distance is shortened. When
we look at a program like f above, we can observe its structure,
see how its parts relate, and can imagine it running; but we
don’t get to see without mental effort what happens when some
example values are provided for the various temporaries. We
can deduce what the concrete might be or will be, but that is
not as immediate, not as close up as seeing actual values. Some
programming environments can provide stunning concrete
visualizations of the code executing. The distance between
the language describing or representing the program and its
usage is reduced. If we take this to an extreme, we might say
that the language, the program, and the programmer are part
of a single unit. Or perhaps a single organism.

When viewed this way, we can take one more step: a system
which is able to introspect can be described as self-aware, and
a system able to modify itself can be described as conscious.
In a live system, that consciousness is supplied by the hu-
man sitting there, observing, thinking, and acting. In typical
software engineering scenarios, this is part of an exploratory

(defun f (n)
 (labels ((t7 (t1 t5 t6)
 (let ((t2 (+ (* t1 t1) (* t5 t5)))
 (t3 (* t5 (+ t1 t6))))
 (values t2 t3 (- t2 t3))))
 (t8 (t5 t6 t4) (declare (ignore t4))
 (values (+ t5 t6) t5 t6))
 (t9 (i)
 (cond ((= i 1) (values 1 0 1))
 ((oddp i) (multiple-value-call #’t7 (t9 (ceiling i 2))))
 (t (multiple-value-call #’t8 (t9 (- i 1)))))))
 (cond ((zerop n) 0)
 (t (values (t9 n))))))

3

approach toward understanding the problem and solution do-
mains in order to construct a program that will be used in the
traditional way: a static program that happens to be running.

!

Having made a leap from thematic systems to chronologi-
cal systems, is there yet another leap that can be made from
chronological systems? I think there can be. It is this:

We should be figuring out how to create an artificial
consciousness embedded in our otherwise ordinary
systems.

Not to do or provide artificial intelligence, but to provide the
ability to introspect, think, and intervene for the purpose
of ensuring the system is doing what we intend it to be do-
ing. Currently we reify such activities in exception handlers,
consistency checks, checkpointing, fault tolerance patterns
implemented, etc. What this reification does is break down
some places where consciousness would help and patch safe-
guards into the system.

What I am talking about is a generalized consciousness—it
can be thought of as a low-resolution model of the running
system and the world with which and in which it is (inter)
acting. (This formulation is after the work of Thomas Metz-
inger, a German theoretical philosopher.)

This leap turns into code the human that provides con-
sciousness in chronological systems—the human that cre-
ates the advantage chronological systems have over thematic
ones. What are some things we could (possibly) do with an
artificially conscious system?

The system can ask itself the following questions and take
appropriate actions: What am I doing now and why am I do-
ing it? Am I doing things the right way? Does the mistake I
just made matter? Do I need to ask for help? Maybe I should
plan this next part out by pretending to do it and envision-
ing what happens. This is taking too long—why? This looks
bad, I should stop. I need to do this operation faster; I’ll ask
my developer to take a look at it. Oh dear, that seems like it
could be an attack, I’d better hole up and act cautiously.

!

What does it take to make a system artificially conscious?
Not sure I know, but perhaps working on some of these can
help:

Sensors: How can we make sensors for internal stuff like
processes, data structures, parallel operations, and the im-
mediate world around the system?

Describable structures: How can we make data structures
self-describing or describable as well as understandable and

explainable by consciousness code at runtime? Chronological
systems already make manifest the types of its data, but this
does not go far enough toward capturing intent and purpose
along with the particular meaning of the current instances.

Low-res model: What does a low-res model of the system
and its immediate surroundings look like? How is it imple-
mented? Does it include a simulation to compare actual out-
comes to predicted ones? Can some of these simulations be ma-
chine learned? Is the model “inside” the system or “outside”?

Intercession: What kinds of intercessions are possible?
How are they accomplished? Does this entail an expanded
notion of modularity and information hiding?

Artificial intelligence: To what extent does some degree of
AI need to be part of the artificial consciousness of a system?

Execution environment: Does artificial consciousness
require a different kind of execution environment—perhaps
one not optimized for running (parallel) Fortran?

People: How does an artificial consciousness relate to
people—both those inside and those outside the system?
Think of that friendly developer who was asked to revise
part of the system.

Innovations for programming: Programming for artificial
consciousness will not be much like regular programming—I
would guess; mechanisms will need to be invented. Is it pos-
sible these will spawn new control and data structures for the

“regular” part of the system? A long while back a project I was
involved with came up with a sort of method invocation that
would begin when execution “entered” a specified region of
code. This without flags. It seemed to be fun to program using
it, and some programs using it were much simpler, shorter,
and easier to understand.

!

The world of software ahead will be full of mysteries and
unknowns—and I don’t mean simply that we can’t predict the
future, but that every system will be designed, implemented,
executed, and maintained in an environment that is hostile
and chaotic. Perhaps at the hands of our own (unavoidable)
ineptness. The design and execution of those systems need
to take care of themselves. A machine designed to operate
adaptively through the sheer cleverness of its making is, I
suspect, going to be in for a difficult time of it. Many of the
living things around us have brains of one sort or another,
or are otherwise autopoietic one way or another. We need to
do that sort of thing for software.

