
Technische Berichte Nr. 48

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

CSOM/PL
A Virtual Machine
Product Line
Michael Haupt, Stefan Marr, Robert Hirschfeld

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 48

Michael Haupt | Stefan Marr | Robert Hirschfeld

CSOM/PL

A Virtual Machine Product Line

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2011
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2011/5233/
URN urn:nbn:de:kobv:517-opus-52332
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-52332

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-134-9

mailto:verlag@uni-potsdam.de�

CSOM/PL
A Virtual Machine Product Line

Michael Haupt
michael.haupt@hpi.uni-potsdam.de

Stefan Marr
stefan.marr@vub.ac.be

Robert Hirschfeld
hirschfeld@hpi.uni-potsdam.de

April 18, 2011

CSOM/PL is a software product line (SPL) derived from applying
multi-dimensional separation of concerns (MDSOC) techniques to the
domain of high-level language virtual machine (VM) implementations.
For CSOM/PL, we modularised CSOM, a Smalltalk VM implemented
in C, using VMADL (virtual machine architecture description language).
Several features of the original CSOM were encapsulated in VMADL
modules and composed in various combinations. In an evaluation of
our approach, we show that applying MDSOC and SPL principles to a
domain as complex as that of VMs is not only feasible but beneficial,
as it improves understandability, maintainability, and configurability of
VM implementations without harming performance.

1 introduction

Implementors working on high-level language virtual machines (VMs) [36] typi-
cally face the characteristic problem of very high complexity, expressed in source
code as intricately intertwined module dependencies. Even worse, even though
logical modules such as memory management and emulation engine are perceiv-
able, they can often hardly be identified as such in the code. The interdependencies
lead to partial functionality realisations of logical modules being interwoven with
other logical modules’ code. This, in turn, is due to a lack of modular abstraction
application in the domain of VM implementations.

A second difficulty with VM implementations is that they frequently need to
be tailored to specific needs. Different dimensions of interest are relevant in this

1

1 Introduction

regard. The particular application domain might call for differently aggressive
optimisation. For instance, Sun’s HotSpot JVM features two different versions
optimised for client- or server-specific applications, which use different just-in-
time (JIT) compilers1. The optimisation to be used is chosen at VM startup time.
The Jikes RVM2 [5, 6] can employ a selection of two different JIT compilers that
can moreover be combined with an adaptively optimising infrastructure [12].

Other dimensions of interest are, e. g., memory allocation behaviour, calling for
different choices of garbage collectors (GCs) [22, 11]; availability of CPU cores, in-
fluencing the threading model (native or user-level threads, or hybrid scheduling);
and the target platform, possibly imposing all kinds of limitations on the rest of
the implementation (e. g., VMs for resource-constrained devices). Clearly, all of
the choices have implications on the interactions of the different modules, in turn
leading to more intricate relationships [20].

The notion of service modules was introduced [20] to address module entangling
in VMs. A service module is a module with a bidirectional interface—in the fashion
of open modules [2] or XPIs [19]—that can not only be sent requests, but that
can also exhibit internal situations of interest to the outside. An initial proposal
of an architecture description language (VMADL) was introduced, along with a
proof of concept implementation, supporting the concepts of service modules at
the programming language level.

The characteristics of the second problem suggest to regard the various VM
subsystems and their variations as concepts and features in the sense of a software
product line (SPL) [14]. This paper reports on the results achieved in combining
the VMADL approach and SPL principles and applying them to the VM imple-
mentation domain.

In particular, we have applied these principles and techniques to CSOM3 [21],
a VM for a Smalltalk [18] dialect, which is used in teaching at the Hasso Plattner
Institute. Focusing on understandability and clarity, CSOM is moderately complex,
featuring a simple bytecode interpreter and a mark/sweep GC [22]. Despite its
simplicity, CSOM exhibits characteristic crosscutting concerns [20]; increasingly so
when extended with additional or alternative features, e. g., in coursework settings.

VMADL was used to modularise several extensions to CSOM that were pre-
viously introduced by hand. The extensions were of different kinds—garbage
collectors, multi-threading implementations, optimised representation of integral
numbers, and image persistence—and exhibited different crosscutting characteris-
tics. Encapsulating these extensions in service modules allowed for turning CSOM

1java.sun.com/products/hotspot/whitepaper.html
2jikesrvm.org
3www.hpi.uni-potsdam.de/swa/projects/som

2

into an SPL, which we call CSOM/PL 4, enabling different combinations of mod-
ules to be chosen at compile-time.

In summary, the contributions of this paper are as follows.
• We present the first full version and implementation of VMADL. It differs sig-

nificantly from the proof of concept [20] in that it has explicit constructs and ex-
tended support for service module combinations. Moreover, the proof of concept
was replaced with a more stable implementation that applies AspectC++5 [30],
a production-quality AOP extension to C++.

• We show that an approach based on multi-dimensional separation of concerns
at source code level alleviates programming in a complex domain with intricate
crosscutting relationships. The beneficial effect of applying VMADL in the VM
implementation domain consists in making architectural interdependencies ex-
plicit not only at the source code level, but abstractly so, by means of interactions
between bidirectional interfaces.

• We demonstrate how the approach can be used to establish an SPL in this
domain, fostering configuration and variability management as well as code
reuse. The SPL includes combinations of features that were previously applied in
isolation only. The CSOM product line was realised using pure::variants6, a state-
of-the-art tool for SPL development. By virtue of pure::variants, the CSOM/PL
product space is consistently represented as a feature model, and products
can be easily configured and validated. Once a product has been configured,
corresponding build scripts can be generated by the SPL tool.
In the remainder of this paper, we first introduce the CSOM VM in the fol-

lowing section. We then, in Sec. 3, adumbrate the architectural principles at work
in CSOM/PL, and give an introduction to the language VMADL, including a
brief description of its implementation. The CSOM/PL results and how they were
achieved is illustrated in Sec. 4. The evaluation of the obtained results is described
in Sec. 5. Related work is discussed in Sec. 6, and Sec. 7 summarises the paper and
gives future work directions.

2 the csom virtual machine

CSOM7 [21] is a VM for a Smalltalk dialect designed for teaching purposes. Its
precursor, SOM (Simple Object Machine) was implemented in Java at the University
of Århus. CSOM is a port of SOM to C; that has been done at the Hasso Plattner
Institute. There, CSOM has been used in two graduate courses on virtual machines
in 2007 and 2008.

4A live CD image with the complete CSOM/PL is available at www.hpi.uni-potsdam.de/swa/

projects/som. Due to license regulations, pure::variants cannot be included with the CD image.
5www.aspectc.org
6www.pure-systems.com/pure_variants.49.0.html
7Pronounced “see-som”.

3

2 The CSOM Virtual Machine

VM

Compiler

Bytecode

Switch/
Case

InterpreterHelper
Library
(Misc)

Language
Core

(VMObjects)Mark/
Sweep

Garbage
Collection

Smalltalk Libraries and Applications

ObjectModel

Primitives

Figure 1: Architecture of CSOM.

Untypically, CSOM does not support images [18], but instead relies on text files
containing Smalltalk code as input. The Smalltalk application to be run is passed
as a command line parameter when the VM is started. If no application is given,
the VM starts a Smalltalk shell.

The architecture of CSOM is deliberately simple to ease its employment in teach-
ing. An overview about the architecture is given as block diagram in Fig. 1. The
arrows between modules denote “uses” relationships. The standard implementa-
tion features a Smalltalk parser and compiler, a corresponding object model for
representing Smalltalk entities, a simple bytecode interpreter, and a mark/sweep
GC. The CSOM source code consists of 88 C files (43 .c and 45 .h files) accounting
for 6,725 PSLOC [31] spread over seven logical modules represented by the folder
structure of the implementation. The C implementation is accompanied by 568

lines of Smalltalk code in roughly two dozen files constituting its standard library.
Additionally, a test suite and a set of benchmarks are available.

SOM, implemented in Java, exploited object-oriented programming (OOP) con-
cepts to a large extent, using inheritance and interfaces. Also, the VM-level and
language-level representations of core classes of the SOM Smalltalk standard li-
brary have parallel hierarchies. For instance, the Smalltalk implementation of the
Object class is mirrored by a corresponding class on the VM side. The Smalltalk
Array class inherits from Object, and so does the VM-level representation of
Smalltalk arrays. This design is preserved in CSOM by using a macro-based emu-

4

lation of OOP constructs in C. It supports single inheritance and a limited notion
of traits [13], which is used to emulate Java’s interfaces. Late binding is achieved
by using a SEND macro to send messages and parameters to objects.

As already mentioned, CSOM has been used in teaching over the past few
years. Several students have implemented extensions to CSOM to fulfil coursework
assignments. So far, the following extensions have been developed.

Two alternative multi-threading approaches have been realised. Native threading
uses the pthreads [25] library, whereas green threading implements scheduling and
thread management within the VM itself.

For memory management, GCs applying mark/sweep and reference-
counting [22] have been implemented. Since then, the mark/sweep GC is also
part of the “standard” CSOM handed out to students.

As an emulation engine optimisation, a threaded interpreter [10] has been
implemented. Integer representation was optimised using one-based tagged inte-
gers [18]. Virtual images [18], saving snapshots of application state, are common
with Smalltalk and were provided for CSOM.

Each of the above was implemented as a stand-alone extension to CSOM, as
the coursework groups were working separately. Hence, they were not concerned
with clear modularisation and interoperability among the extensions. Thus, the
implementations mentioned above are independent of each other, and represent
custom-built products derived from a common code base.

The different extensions exhibit largely different crosscutting characteristics. For
instance, mark/sweep and reference-counting GC both require the structural ex-
tension (“introduction” [23]) of adding a mark bit or reference count to objects.
Behavioural crosscutting, however, is much different: while reference counting
requires modifications at practically all pointer assignments (including parameter
passing), mark/sweep GC is attached only to allocation requests. Another example
is multi-threading. Native threading effectively requires the interpreter implemen-
tation to be thread-safe (i. e., the interpreter’s global state must be turned into
thread-local state). Conversely, green threading implies significant changes in the
interpreter logic itself, as the interpreter is responsible for passing control to the
scheduler, e. g., every N bytecode instructions.

All in all, the extensions realised so far constitute an interesting challenge with
regard to modularisation. This holds even more when combinations of the afore-
mentioned extensions are taken into account, e. g., a version of CSOM that features
both a mark/sweep GC and native threading.

3 virtual machine modularity

In this section, we will first summarise the approach to VM modularisation [20]
whose concepts VMADL implements. We will then give a tutorial on VMADL in

5

3 Virtual Machine Modularity

its current state. It will include an extension to C that was necessary to allow for
VMADL’s application to the C programming language in the setting with CSOM.
Finally, the VMADL implementation and tool chain will be briefly described.

3 .1 Disentangling VM Architecture

In previous work [20], the architectures of different VM implementations were
investigated. It was found that most of them exhibit no clear boundaries between
subsystems perceivable as logical modules. The necessity of an architectural ap-
proach with support for reasoning about high-level modular structures in VM
implementations was then motivated.

We would like to explain the notion of architecture that we adopt. There is no
consensus on a definition for the terms “architecture” and “architectural descrip-
tion language” (ADL). A wide range of different interpretations of the terms [28]
exists. On the one end of the spectrum, there are, e. g., graphical ADLs that enable
an easier comprehension of system architectures to improve communication about
systems. On the other, there are languages proposing formal semantics and tools
for analyses, code synthesis, and run-time support, to allow for a formal evaluation
of complex systems.

For VM implementations, system architecture needs to be supported at the
source code level: architectural building blocks have no clear boundaries and are
hence not cleanly modularisable. Consequently, modules and their interactions
have to be described at a level that is close to the implementation language but
still supports architectural abstraction in that it expresses larger-scale interdepen-
dencies. At the same time, the implementation language must not be constrained
in its degree of control over low-level details.

The earlier introduced approach [20] modularises VM implementations into
service modules with bidirectional interfaces. That is, a service module can not only
be sent requests, but it can also signal internal situations of interest to the outside
world. Other service modules can attach to these signals and react to them. These
signals are called exposed join points, are defined using pointcuts, and constitute
a module-specific join point model, elements of which can be quantified over by
means of pointcuts.

To achieve these goals, VMADL provides a frame in which an implementation
language and an aspect language can be combined. Consequently, VMADL is
essentially agnostic as far as the particular implementation and aspect languages
at work are concerned: it adds high-level modularity constructs that coordinate the
interaction of the former two. The first VMADL proof of concept [20] was applied
with C as the implementation language, and Aspicere2 [1] as the aspect language.
In the present work, the implementation language is still C, but AspectC++ [30] is
the aspect language.

6

3.2 VMADL: A Walkthrough

3 .2 VMADL: A Walkthrough

This overview of VMADL uses abbreviated actual code from the CSOM/PL imple-
mentation (cf. Sec. 4) to introduce the various features. A complete example of two
service module definitions and their combination is given in App. A.

1 service Interpreter {

2 void Interpreter_start(void);

3 }

4 service VMCore {

5 void Universe_set_global(_VMSymbol*, _VMObject*);

6 }

7 service ObjectModel {}

8 service VMObjects {

9 require ObjectModel;

10 expose {

11 pointcut initializer() = "void _VM%_init(...)";

12 }

13 }

Listing 1: Service module definition in VMADL.

Lst. 1 introduces service module definitions. Four such modules are defined, and the
Interpreter and VMCore module definitions demonstrate that the API is simply de-
fined by declaring the corresponding C function. It is also possible to express that a
given module is required by another, as in the VMObjects definition. The listing also
demonstrates how join point exposition is achieved by using AspectC++ definitions:
the VMObjects module exposes the initializer pointcut, which matches when-
ever a C function matching the name _VM%_init is executed. To express mandatory
relationships between modules, the require statement is used. It ensures that the
resulting configuration includes all mandatory service modules.

The specification of service module interactions is illustrated in Lst. 2. The con-
struct used for this is called a combiner. The combine construct allows to implement
module interactions at the same architectural level as service modules, but without
touching module definitions. This separation enables developers to describe mod-
ule interactions at a well-defined place in the source code. This allows an easier
recognition of module relationships and dependencies. Furthermore, a combiner
becomes part of the system only if all modules it refers to are part of the product
configuration.

The first combiner in Lst. 2 avoids garbage collection during object initialisation
by attaching an around advice to the initializer pointcut exposed from the
VMObjects module. The second combiner shows how join point context information
can be used in advice. It establishes management of a symbol table saved along
with the Smalltalk virtual image.

When implementation languages such as C or C++ are used, the VM imple-
mentation most likely uses preprocessor macros. In the case of CSOM, whose
implementation emulates object-orientation in C, macros are used to realise mes-

7

3 Virtual Machine Modularity

1 combine GCMarkSweep, VMObjects {

2 advice execution(VMObjects::initializer())

3 : around() {

4 gc_start_uninterruptable_allocation();

5 tjp->proceed();

6 gc_end_uninterruptable_allocation();

7 }

8 }

9 combine Image, VMCore {

10 advice execution("void Universe_set_global(...)")

11 && args(name, value)

12 : after (_VMSymbol* name, _VMObject* value) {

13 // register key for symbol

14 SEND(globals_dictionary_symbols,

15 addIfAbsent, name);

16 }

17 }

Listing 2: Definition of service module interactions.

sage sending. The implementation of 1-based integer tagging (cf. Sec. 4.2.4) requires
a redefinition of the SEND macro. As macros are not first-class values in the C pro-
gramming language, some means for their redefinition was required.

1 service ObjectModel {

2 SendMacro {

3 #define SEND(O,M,...) ({ typeof(O) _O = (O); \

4 (_O->_vtable->M(_O , ##__VA_ARGS__)); })

5 }

6 }

7 service TaggedIntOne {

8 #include <tagged-int-one/tagged-int-one.h>

9 replace ObjectModel.SendMacro {

10 #define SEND(O,M,...) ({

11 typeof(O) _Org = (typeof(O))(O); \

12 typeof(_Org) _O =

13 (typeof(_Org))(INT_IS_TAGGED(_Org) ? \

14 VMInteger_Global_Box() : _Org); \

15 (_O->_vtable->M(_Org, ##__VA_ARGS__)); })

16 }

17 }

Listing 3: Named section replacement.

Lst. 3 introduces the concept of named sections, i. e., parts of source code that
can be referenced by name in VMADL. Named sections add structure to interface
definitions and are used to support interface definition refinement. The listing
shows how the SEND macro is defined in the SendMacro named section in the
ObjectModel service module, and also its redefinition in the TaggedIntOne service
module.

Since C is the implementation language, we had to introduce a language or-
thogonal to VMADL, which provides us with the necessary flexibility to describe
crosscutting refinements of classes in our OOP emulation. Thus, we designed a

8

3.2 VMADL: A Walkthrough

small class definition language (ClassDL) as an add-on to C to be able to modu-
larise the features of our VM product line completely. ClassDL is implemented as
part of the VMADL tool chain used in our case study on CSOM.

ClassDL provides a C-like notation to define classes and traits according to
CSOM’s OOP emulation. ClassDL can be used to refine classes from other mod-
ules as well. From ClassDL definitions, the necessary implementation details like
structure definitions for object layout and virtual method tables, including code for
their initialisation, are generated. The ClassDL notation used to define fields con-
forms to field definitions in C structures. Respectively, method definitions conform
to function declarations.

To support structural changes in VMADL service module combinations, an
additional keyword was introduced to refine classes or traits from other modules.
Within the scope of our case study, it was necessary to add methods and fields
to existing classes due to the structural crosscutting exhibited by some features
(cf. Sec. 2). For method introductions, simple definitions are given like in a normal
class definition. As object layout must be controllable at a fine level of granularity—
in particular, the order of fields in objects is important—, a field can be defined with
an additional predicate specifying the position with respect to another field. These
language constructs are sufficient to modularise the features under consideration.

1 service VMObjects {

2 class VMObject {

3 size_t num_of_fields

4 pVMObject fields[0]

5 }

6 trait VMInvokable : VMObject {

7 pVMSymbol signature

8 pVMClass holder

9 void invoke(pVMFrame)

10 }

11 class VMArray : VMObject {}

12 class VMMethod : VMArray, VMInvokable {

13 pVMSymbol signature

14 pVMClass holder

15 bytecode_t get_bytecode(intptr_t)

16 void set_bytecode(intptr_t, bytecode_t)

17 void invoke_method(pVMFrame)

18 }

19 }

20 service GCRefCount {

21 refine VMObject {

22 intptr_t gc_field {before fields[0]}

23 }

24 }

Listing 4: ClassDL object layout definitions.

Lst. 4 shows some ClassDL examples. It first presents how object layouts and in-
terfaces for classes and traits defined in the VMObjects service module are specified.

9

3 Virtual Machine Modularity

It then shows how the reference-counting GC extends object layout in a controlled
way by inserting the reference count field before the fields array responsible for
storing actual object slots.

We would like to point out once more that ClassDL is entirely orthogonal to
VMADL. Also, ClassDL is purely declarative: method implementations are not
given. Its sole purpose is to help with the particularities of the OOP emulation
approach chosen in CSOM. Had CSOM been implemented in a different language
with dedicated support for object-oriented modularisation and heterogeneous
crosscutting, ClassDL would not have been necessary.

A note on differences between the VMADL proof of concept [20] and the robust
version of the language presented here is advisable. The proof of concept did not
feature explicit combiners—service module interactions were defined in service
module definitions themselves, prohibiting definitions of interaction facets when
introducing new service modules. The proof of concept also lacked named sections
and explicit module relationships expressed with require.

3 .3 The VMADL Tool Chain

The VMADL compiler acts as a preprocessor for the actual implementation and
aspect languages. It produces implementation files according to a given set of
chosen service modules and identifies the required service module combinations
automatically to provide the intended variability. The product configuration is given
by passing the chosen service modules’ names to the VMADL compiler. With this
information available, the VMADL files are parsed, and AspectC++ .ah files as well
as C .h files are generated, defining the function interfaces at the C language level.
The ClassDL compiler also processes the respective .c files to generate initialisation
code for the OOP emulation. It outputs a set of C header and implementation files
as well, whose contents also depend on the chosen configuration and the actual
implementation. The resulting files are processed by the AspectC++ and C++
compilers.

A VMADL file may contain a service module definition along with combiners,
or just one or more combiners. Hence, it is possible to specify a newly arisen
combination in a single new file without having to touch already existing ones.

The tool chain itself integrates into the CSOM build environment which is based
on make. A sample invocation to generate a CSOM instance with mark/sweep GC,
1-based tagged integers and green threading looks as follows:
./configure marksweep int-one green && make.

10

����

�����	�
��� ���

������� ������������
�����

	���������������������������

�����

������

�����������

���

��������

� ������!��� "����

� ����

#��� $�����

����%

��&"�!��� '�(�����

#� ��������

Figure 2: The CSOM/PL feature model as realised by the current implementation.

4 a virtual machine product line

This section presents CSOM/PL. The first part will discuss the product line’s
feature model, possible configurations, realisation using pure::variants, and overall
benefits of our approach. Subsequently, we will discuss the language-level concepts
used to modularise CSOM’s features.

4 .1 The CSOM/PL Feature Model

With the earlier proof of concept implementation of VMADL [20], it was possible
to use the implementation of explicit memory management, mark/sweep and
reference-counting garbage collection, and green as well as native threads for a
case study. Each of these features was implemented as a mere add-on to CSOM; no
combinations of features were provided. Some of the CSOM versions composed
using the VMADL proof of concept were less robust than the CSOM extensions
with the same features that were coded by hand.

In contrast, the present VMADL implementation enabled us to achieve signif-
icantly better results. On the one hand, we were able to use, in addition to the
features mentioned above, implementations of Smalltalk virtual images, 1-based
tagged integers, and threaded interpretation. On the other hand, feature combina-
tions were achieved that were not even existent in hand-coded form before.

Fig. 2 shows a feature diagram representing the current status of CSOM/PL.
Mandatory core assets of any given instance of the product line are a memory
manager and an execution engine, i. e., interpreter. Both can be instantiated by
using either of the options mentioned in Sec. 2.

Each of the 16 concrete features has been realised as a VMADL service module,
and all of the achieved product line instances have been realised using VMADL
combiners. The latter not only make it possible to create actual CSOM/PL products,
but also make the architectural relationships between the features (cf. Fig. 1) explicit
at the source code level. Based on the given module names (cf. Sec. 3.3), the VMADL

11

4 A Virtual Machine Product Line

compiler decides which interactions are actually required to instantiate a given
product, and generates code only for those. More detailed descriptions of the
various feature implementations are given below.

Figure 3: A concrete CSOM/PL configura-
tion in pure::variants.

The feature diagram exhibits a con-
straint imposed on virtual images:
they require combination with the
mark/sweep GC as they are not com-
patible with reference counting. This
is due to the Image feature’s relying
on all objects being laid out in a sin-
gle contiguous memory area, which
property explicit memory management
and reference counting do not guaran-
tee. The feature diagram also excludes
combinations of virtual images with
multi-threading. This is simply because
the Image feature was not adapted for
thread safety. Note that these combina-
tions are, in principle, achievable but
require some more implementation ef-
fort (cf. Sec. 7).

The feature model has been realised
in software using the pure::variants
tool, which features a model editor,
product configurator, validity checker,
and a rich generator infrastructure.
Fig. 3 shows a screenshot from the prod-
uct configuration view, where the en-
tire feature model tree of CSOM/PL

has been expanded. The selected configuration represents a CSOM VM with a
threaded interpreter, mark-sweep GC, one-tagged integer representation, virtual
images, and no multithreading support. The mark-sweep GC has been selected
automatically by pure::variants as the Image feature was included in the product.
From such a product configuration, the SPL tool generates a build script which is
used by make to compile a CSOM/PL instance.

4 .2 Feature and Product Implementations

We will now give brief examples how VMADL was used to implement the CSOM/PL
features as service modules, and how those were combined to instantiate products.
It is interesting to note that the CSOM “base implementation” did not have to be

12

4.2 Feature and Product Implementations

adapted to meet the needs of any of the extensions that were added. All combi-
nations could be expressed using the abstraction capabilities of VMADL and the
embedded aspect language, AspectC++. Throughout this section, we will only give
brief examples. A more elaborate example is given in the Appendix. It shows the
definition of the native multi-threading service module and its combination with
the interpreter and mark/sweep GC modules. This combination was chosen because
it significantly influences the involved service modules.

4 .2 .1 Memory Management
The three different service modules representing concrete memory management
features each have a particular implementation of a common interface. The explicit
memory management service module does not provide any additional functional-
ity but relies on the interfaces offered by the VMCore and the VMObjects service
modules.

1 service GCMarkSweep {

2 refine VMObject {

3 int gc_field { before fields[0] }

4 }

5 }

6 combine GCMarkSweep, VMObjects {

7 advice execution(VMObjects::initializer()) :

8 around() {

9 gc_start_uninterruptable_allocation();

10 tjp->proceed();

11 gc_end_uninterruptable_allocation();

12 }

13 }

Listing 5: Combine Mark/Sweep with VMObjects.

The implementation of the mark/sweep GC is almost as transparent as that of
explicit memory management. Just a few parts are adapted in other service mod-
ules by refinement or combiners. An example is given in Lst. 5 for the introduction
of a mark field into the VMObject by a refine statement of ClassDL. It inserts the
mark field before the first field containing a member slot.

Furthermore, a combiner describes the interaction of the mark/sweep GC and the
VMObjects service modules. It introduces a guard for object initialisation. This
avoids dangling pointers resulting from only partially initialised objects which
could be caused by a GC run during object creation. The corresponding code is
shown in lines 6–13 in Lst. 5.

The modularisation of the reference-counting GC is, at first, quite similar. A
ClassDL refine statement introduces a field for the reference count in the VMObject
class of the VMObjects service module. Other than with mark/sweep GC, the
nature of reference counting demands a high number of interactions with other

13

4 A Virtual Machine Product Line

modules, since almost every assignment of an object reference has to be tracked.
Thus, combiners have to be defined for all service modules the reference-counting
GC has to be used with. These combiners are typically straightforward. They
increase the reference count of the new object before the actual execution and
decrease the reference count of the old value afterwards.

4 .2 .2 Multi-Threading
From the modularisation perspective, green threading is quite undemanding. The
service module interacts with the primitives service module to register primitives
for the Scheduler class and with the VMCore service module to enable the shell
to use threads as well. Another combiner is used to adapt the interpreter service
module to signal when it reaches a safe point in execution to allow thread pre-
emption as shown in Lst. 6.

1 service Interpreter {

2 expose {

3 pointcut safe_points() =

4 execution("void send(...)");

5 }

6 }

7 combine GreenThreads, Interpreter {

8 advice Interpreter::safe_points() : before() {

9 ++scheduler_return_count;

10 Scheduler_insert_scheduler();

11 }

12 }

Listing 6: Pre-emption for green threads.

Some additional combiners are necessary to support the combined usage of
multi-threading with, e. g., the different GCs. For configurations using the mark/sweep
GC, the combiner implements an extension to the GC’s mark phase to add the
Scheduler-internal list of available threads to the GC’s root set. Were this not done,
all but the currently running thread would not be regarded as live objects. The case
is similar for reference counting: assignments to Scheduler data structures have
to be handled like all other assignments to ensure reference counts are updated
correctly.

For native threads, the changes are more fundamental than for green threads
(cf. Sec. 2). The major task is to achieve thread-local execution of interpreters. This
is achieved by adapting the global frame pointer to be a thread-local one. Since
most service modules are implemented without global state, this adaptation need
is very low.

The aforementioned assignment adjustments were done to enable the combina-
tion of the native multi-threading and reference-counting GC features. With mark/sweep
GC, this is more challenging. The scheme that was implemented in the feature
combination found in CSOM/PL is a stop-the-world solution [22]. This is imple-

14

mented entirely inside a combiner and will therefore become part of an instance of
the CSOM product line only if both service modules—mark/sweep GC and native
threads—are chosen.

4 .2 .3 Execution Engine
Interaction with the two possible interpreters (switch/case and threading) is re-
alised using the common interpreter service module interface. The threaded inter-
preter requires some interaction with other service modules; e. g., a combination
with the VMObjects service module achieves the translation of method bytecodes
into threaded code [10] after method assembly by the Smalltalk compiler. Bytecode
index handling is also adapted. The original design implies a local bytecode index
in every VMFrame object. For threaded interpretation, this needs to be changed,
since it relies on a global pointer to the bytecode handler executed next.

4 .2 .4 Integer Representation
When integers are implemented as “ordinary” objects, i. e., boxed integers, there
is no difference between sending a message to an Integer instance or to another
object: the virtual method table (VMT) is accessed and the message implementation
resolved. Conversely, tagged integers do not have a multiple-slot representation in
memory, and do not reference a VMT. Instead, a global “surrogate object” exists
via whose VMT messages sent to tagged integers are dispatched.

In CSOM, adopting this change is challenging because sending messages to
objects is realised via C macros, which cannot normally be redefined. However, as
VMADL features named sections (cf. Sec. 3.2), redefining the SEND macro infrastruc-
ture is done by providing a replacement for the corresponding named section in
the ObjectModel service module.

For this case study, we used one-based tagging as in Smalltalk-80 [18].

4 .2 .5 Image Persistence
The Smalltalk virtual images implementation relies predominantly on the abilities
of ClassDL to refine classes and add methods. This is used to update references
after loading an existing image. The change in the startup process of the VM to
load an image instead of initialising the VM from source files is done by simple
adaptations of initialisation routines implemented with a service module combina-
tion.

5 evaluation

When turning a set of hand-crafted extensions to a base system into a cleanly
encapsulated set of service modules forming an SPL, there are two points of
view from which the results should be evaluated. First of all, it is important to

15

5 Evaluation

assess the impact of modularisation and combination on performance. This is
especially interesting in the domain of VM implementations, where performance is
crucial. CSOM has a set of benchmarks (cf. Sec. 2) that can be used to evaluate the
performance of hand-crafted extensions versus automatically combined products.
The second perspective is that of code complexity. We have evaluated the source
code by applying several source code metrics to it. Modularity improvements were
also considered.

Below, we will elaborate on these assessments, and conclude the section with
a brief discussion of our approach in the light of Parnas’ modularity criteria [32],
SPL development tool support, and how the two coincide in CSOM/PL.

5 .1 Virtual Machine Performance

Performance measurements were run on a Dual Xeon PC (2.5 GHz clock rate, four
cores overall) with 6 MB cache and 8 GB RAM. The operating system was Debian
Linux 4.0r3 with a 64-bit kernel (version 2.6.18) and 32-bit user land. The used
compilers were GNU C++ 4.1.2, and ac++ 1.0pre4/ag++ 0.7 for AspectC++. For
compiling CSOM, standard compiler settings were used, the optimisation flag
given was -O3 (highest optimisation).

To obtain performance results, each benchmark was run ten times as a stand-
alone application in a dedicated CSOM instance; the average running time was
taken as the result. The time required to start up the VM is not contained in
these values; they reflect the sheer time required to actually run the benchmarks.
Measurements were run for pairs of CSOM versions with the same features. We
compare the hand-crafted implementations with the corresponding CSOM/PL
configuration generated from VMADL service modules. This allowed for assessing
the performance impact of using VMADL on a single CSOM/PL product.

Performance measurement results are displayed in Fig. 4. For each CSOM con-
figuration, the relative performance of the VMADL version to the hand-crafted
build is shown. VMADL employment does not bring about severe impacts. In-
terestingly, half of the VMADL-generated products exhibit small improvements.
This is because the compiler applied different optimisations in the presence of
code constructs generated by AspectC++. We comment on the more significant
penalties observed for the reference-counting GC, virtual images, and threaded
interpretation products.

First of all, in case of the reference-counting GC, the fact that the VMADL imple-
mentation performs worse than the hand-crafted one is due to that the reference-
counting service module is more accurate than the hand-crafted code. This is be-
cause the pointcuts used to quantify over pointer assignment join points are more
robust than an approach where all pointer assignments have to be identified and

16

5.1 Virtual Machine Performance

pl
ai
n

gr
ee
n

na
tiv
e

re
fc
ou
nt

m
ar
ks
w
ee
p

m
ar
ks
w
ee
p-
in
t-

on
e

m
ar
ks
w
ee
p-

im
ag
e

m
ar
ks
w
ee
p-

th
re
ad
in
g

av
er
ag
e

Figure 4: Performance measurement results: relative performance of VMADL versions to
hand-crafted feature combinations.

instrumented by hand. Thus, the VMADL reference-counting GC implementation
is slower just because it is correct.

For virtual images, the reason for the observed slight decrease in performance
is due to differences in method localisation between the hand-crafted and the
VMADL versions. The hand-crafted image feature had added various methods to
different C source files. Since they belong to the image logical module, they were
all collected in one place in the VMADL version, namely in the corresponding
service module. That is, instead of being scattered over different compilation units,
they are now found in a single one. The GNU C++ compiler does not support
inter-module optimisation and thus fails to inline the methods from the single
implementation file into the code where they are actually used. This leads to the
observed penalty for the cleanly modularised implementation of the image feature
with VMADL.

Threaded interpretation is the implementation where the implementation based
on service modules exhibits the most significant penalty (about 5 %). This case
in fact illustrates that VMADL requires a feature it is currently lacking: control
over the order in which features apply. In this product, the mark/sweep GC and
threaded interpretation features interact at certain points. Manual modification of
the advice application order in the AspectC++ code generated from the VMADL
preprocessor led to a performance impact of only 1.4 %. This remaining degrada-
tion is owed to the usage of cflow constructs [23] which could not be avoided.

The average performance over all considered CSOM/PL configurations is about
100.2 % compared to the hand-crafted versions. So, even though there can be perfor-

17

5 Evaluation

mance penalties caused by the usage of aspect-oriented means, overall performance
is not influenced when applying VMADL.

5 .2 Source Code Complexity

To assess source code complexity, several metrics were applied. Notice that only the
actual CSOM/PL source code was taken into account. For some of the extensions,
e. g., multi-threading, the Smalltalk libraries had to be extended as well to provide
APIs for the new features. As those do not belong to the VM as such, they were not
regarded.

The metrics were applied to the entire corpus of CSOM source code including all
extensions. Hand-crafted versions represented reference values, to which results
obtained from service module source code were put in relation.

5 .2 .1 Lines of Code Results
The physical source lines of code (PSLOC) [31] metrics counts all lines of code that
are not empty and do not solely consist of comments. Applying VMADL resulted
in a moderate increase of 2.1 % (143 lines) in PSLOC. It needs to be noted that this
value is adjusted as it does not account for the effect of also using ClassDL. The
employment of ClassDL resulted in a decrease of 738 PSLOC. As we want to assess
the sheer effect of VMADL, we elided ClassDL’s effect.

5 .2 .2 Modularity Results
To determine feature locality and modularisation, we identified changed imple-
mentation modules as well as modified functions and structures at the sub-module
level. CSOM’s base configuration was compared to others with reference-counting
and mark/sweep GCs, and green as well as native threading. Moreover, CSOM
with mark/sweep GC was compared to configurations with virtual images, 1-
based integer tagging, and threaded interpretation. That way, it was possible to
determine, by feature, how many lines of code were added or modified, and how
many files and function or structure definitions were affected. The results allow a
comparison of hand-crafted and VMADL implementations.

Results from the modularity metrics are shown in Fig. 5. The shown values are
cumulative: they represent the sums of the respective metrics from measuring
them for all of the analysed feature implementations. In the figure, the left-hand
y axis relates to the dotted large bars in the background; the right-hand y axis, to
the bars in the foreground. The background bars, “new lines” represent the total
number of added lines of code. The foreground bars present additional details,
namely the number of lines that had to be removed, number of newly added files,
changed files, and changed function or structure definitions. The “changed lines”

18

5.3 Discussion and Conclusion

0

1000

2000

3000

4000

5000

6000

7000

8000

Hand-Crafted CSOM VMs CSOM/PL with VMADL

0

50

100

150

200

250

300

350

400

new lines removed lines

changed lines (old) changed lines (new)

new files changed files

changed functions and structures

Figure 5: Modularity metrics results. Left y axis (background bars): number of new lines;
right y axis (foreground bars): number of added/changed lines/files/functions/
structures.

numbers express how many lines were modified in the transition in a way reported
by a common diff tool.

The figure clearly shows that hand-crafted implementations exhibit a larger
(more than 1,000 lines) implementation overhead. Since we did not change the
inner modularisation of service modules, the number of added files remains con-
stant, while eliminating crosscutting changes and thus reducing implementation
overhead. Thus, the VMADL approach yields excellent modularity: while hand-
crafting involves a large number of modifications in existing code, using VMADL
and service modules merely implies introducing new files, which contain all of the
newly introduced code.

In a nutshell, this means that VMADL supports real modularity: extensions are
not invasive in any way; they are completely encapsulated in dedicated files, which
in turn results in a unified source base for the whole CSOM/PL.

5 .3 Discussion and Conclusion

D. L. Parnas has formulated [32] a set of three criteria for modular programming.
In short, an approach can be called “modular” if “separate groups [can] work on
each module with little need for communication”, “drastic changes [can be made]
to one module without a need to change others”, and “it [is] possible to study the
system one module at a time”. More recent elaborations on modularity, such as
those by Meyer [29], add more detail to these criteria but basically imply the same.
We will now briefly discuss our approach to modularising VM implementations
along these criteria.

19

6 Related Work

As interfaces are at the core of the VMADL approach, the benefits usually brought
about by them are also benefits of VMADL. Communication among development
groups can take place in terms of the interfaces of service modules. As long as
changes to modules do not affect their interfaces, other modules do not have to
be changed. When semantically meaningful sets of join points are exposed and
given appropriate names (cf. Lst. 1), it is even possible to change their definition
(i. e., pointcut) without having to change a client. In fact, it might even be the case
that the details of a module interaction change, but the modules themselves do not
have to be modified as the interaction is specified in a VMADL combiner. Studying
a system as complex as a VM one module at a time is usually hard. Having a clear
separation of the various services into distinct modules helps in this process as it
clarifies module boundaries.

Utilisation of SPL tool support in CSOM/PL is less extensive than it might
be expected: pure::variants is only used for feature model representation, prod-
uct configuration and validation, but not for generating large amounts of source
code required to build the product. Instead, there exist various cleanly separated
modules with explicit bidirectional interfaces mapping directly to product line
features.

From the results in the three different areas of interest described above, and from
the considerations on Parnas’ modularity criteria, we conclude that using VMADL
is fruitful. Its employment has no negative impact on performance. It supports
actual modularity. The lines of code count increases slightly, but for the greater
good of module interdependencies’ being made explicit in the code. The subjective
impression of developers is that VMADL makes working with the CSOM source
code more comfortable.

Finally, the strong modular characteristics of the product family code base en-
abled by VMADL result in an excellent direct mappability of product configu-
rations to source code. This, in turn, significantly reduces the effort required to
establish a collection of code fragments as input to the complex SPL generator
infrastructure.

6 related work

In the field of VM implementations, various projects have attempted to tackle
the large complexity that is typical of the domain. Still, the strong focus on both
architecture and modularity that we have adopted has not been chosen by any
of them. Hence, the results from these projects do, however significant in their
own right, not bring about the same improvements in terms of modularity and
architecture perception at the source code level as ours.

The PyPy project [34] focuses on tool-chain based VM development. The core
idea is to swap out implementation complexity to dedicated tools that are applied

20

at certain times during VM code generation. The PyPy VM is implemented in
Python at a very high level, allowing developers to use the object-oriented abstrac-
tion and dynamic language mechanisms that Python offers. Implementation takes
place without regarding the fact that the ultimate VM will have a GC component.
The GC is added later automatically during code transformation steps of the tool
chain.

PyPy thus hides complexity away, easing development significantly. While this is
appreciable, we do not agree with the idea of ignoring the presence of certain fea-
tures. It is our goal to give VM developers full control over all features at the same
level of abstraction. VMADL supports this approach by providing bidirectional
interfaces and combiners that allow for dealing with complex interdependencies.

Metacircular VM implementations generally benefit from the modularisation
techniques offered by the implemented language directly. The Jikes RVM [5, 6] and
Maxine8 are Java VMs implemented in Java.

Jikes is a magnificent platform for VM implementation research and supports
a wide variety of choices among, e. g., GC implementations and JIT compilers.
It makes use of code generation 9 to complete Java source file stubs for various
features prior to compile-time. Memory management is performed by MMTk [11],
which encapsulates GC complexity, but introduces hardwired interactions between
GC logic and the VM, in either code base, leading to the kind of crosscutting
concerns typical for the VM implementation domain. Opposed to use code gen-
eration for variability, To summarise, Jikes realises variability by code generation,
as opposed to VMADL, which achieves the same using declarative means at the
programming language level. Also, Jikes does not support disentangling the way
VMADL does.

Maxine tries to improve modularity with the language features 10 offered by Java
5. Interfaces are used to encapsulate features, and a build-time configuration mech-
anism decides about feature implementations. Even though all feature interactions
are done via interfaces, dependencies between feature implementations are not as
obvious as with VMADL, since interactions are still scattered. Furthermore, the
implementation does not achieve modularisation at the same degree as it would
be possible with MDSOC techniques.

ClassDL was inspired by feature-oriented programming [33, 8]. Refining a pre-
viously defined class in the context of a specific feature effectively supports het-
erogeneous crosscuts. VMADL thus combines aspect- and feature-oriented ap-
proaches [9] in a more architecture-aware manner.

VMKit [17] is called a “substrate” for implementing VMs. It provides a common
foundation that implementations of different instruction sets and programming

8research.sun.com/projects/maxine
9jikesrvm.org/Building+the+RVM

10java.sun.com/developer/technicalArticles/releases/j2se15langfeat/

21

6 Related Work

languages can build upon. The substrate includes memory and thread managers as
well as a JIT compiler. Implementing a VM on top of it involves providing certain
callbacks to the substrate, and mappings from ISA or programming language
constructs to the substrate’s abstractions. VM implementation is thus significantly
simplified.

While VMKit supports variability to the extent that implementation of differ-
ent languages is simplified in this environment, it is restricted in the choices it
offers at the substrate level. For instance, LLVM [24] is used as the JIT compiler
infrastructure, and MMTk [11] as the memory manager. The latter provides partic-
ularly good variability, but the overall degree of control over feature variation is
coarse-grained, compared to our approach.

Compared to other ADLs, VMADL is most closely related to ArchJava [3]. Like
ArchJava, VMADL makes system architecture explicit in the source code itself.
Other languages like WRIGHT [4] or Rapide [27] separate architecture description
from actual implementation, which is problematic, since it implies the need to
keep both synchronised. VMADL’s bidirectional interfaces are related to principles
found in nesC [16], an extension to C designed to structure systems into compo-
nents with clear boundaries. The interfaces used in nesC declaratively describe
component interactions using events and callbacks.

In contrast to VMADL, ArchJava assumes a dynamic architecture and multi-
ple instances of a component at run-time. Components provide communication
ports, and connections are explicit. This idea is similar to VMADL combiners but
provides lower flexibility, since connections need to be explicit in component im-
plementations. VMADL’s combiners support module combinations at the interface
level without changing their implementations. By using a pointcut language, our
approach is more flexible.

MDSOC techniques offer various opportunities for building SPLs. Alves et al. [7]
describe a methodology which uses aspect-oriented techniques to extract an SPL
from an existing code base. The approach is similar to what we have done to create
CSOM/PL on the basis of the different extensions available. Compared to it, we do
not use additional aspects for the evolution to be able to add new products to the
SPL, instead we chose to bring the adaption to an architectural level and describe
it by means of module interaction.

One of the application areas of FeatureC++ [8] is the implementation of SPLs [35].
It regards feature composition as refinement of a basis implementation. Feature
modules are represented as (aspectual) mixin layers defining such refinements.
Conversely, VMADL service modules are complete implementations of features
that are composed with others by connecting interfaces. VMADL does not as much
regard the single features as crosscutting concerns as their orchestration, which it
makes explicit in combiners.

22

Figueiredo et al. [15] investigated the influences on stability as an important SPL
property. Their results suggest that SPLs decomposed with AOP are more stable
regarding adaptions in optional or alternative features. We assume similar benefits
for an SPL built with VMADL.

VMADL, in its current version, expresses explicit interactions between service
modules. Some languages for modelling variability at an architectural level include
constructs to model other types of relationships as well. One example in the field
of product lines is the Variability Modelling Language [26]. This language is meant
to be used on a more conceptual level and not embedded into the implementa-
tion. It aims to describe variability orthogonally to architectural descriptions. This
approach would be beneficial to describe, for instance, service modules as alter-
natives. In addition to the variability already described with VMADL, some of
the concepts of this language could be used to provide advanced means for the
configuration of instances of CSOM/PL.

7 summary and future work

We have presented CSOM/PL, a virtual machine product line implemented in C,
AspectC++, and VMADL, and realised with pure::variants. VMADL, an implemen-
tation of which is one of this work’s contributions, surpasses previously achieved
modularisation in the VM implementation domain. It supports modular abstrac-
tion by means of service modules with bidirectional interfaces. Using VMADL
allowed us to implement various of the features of the CSOM Smalltalk VM in
combinable isolated modules—features that were previously realised as hand-crafted
extensions. This also facilitated devising a product line. The evaluation of the ap-
proach shows that performance is not harmed, and that modularity in source code
is significantly improved.

Regarding SPL tool support, VMADL represents a valuable tool that can be
used to introduce modular SPL development in languages like C that do not
inherently support modularity. Moreover, VMADL supports direct mappings from
feature models to source modules, reducing the complexity of code preparation
for consumption by generators.

Some perceivable feature combinations have not been realised yet (cf. Sec. 4.1).
This is not because they are impossible to achieve; it is a matter of providing more
service module interfaces and combinations to make them work. Our ongoing work
is concerned with moving towards the goal of dropping all constraints shown in
Fig. 2, which are not conceptually necessary. For instance, threading together with
virtual images could be realised as well as virtual images independent from a
particular garbage collection technique.

23

References

Performance measurements have shown that fine-grained control over feature
application order is important. We will investigate how to make such control
available in VMADL declarations without introducing uncalled-for complexity.

The ClassDL extension was necessary because CSOM, including its particular
OOP emulation, is implemented in C, and because this led to a lack of declara-
tive means for class (re)definitions. An implementation in C++, combined with
AspectC++ and/or FeatureC++, would have eliminated this need. In fact, a port
of CSOM to C++ is in progress, and will allow to use VMADL directly with
AspectC++. The port will be an important cornerstone of future research in disen-
tangling VM architecture.

In addition to our ongoing activities to evaluate, adjust and extend the CSOM
VM in our research and teaching activities, we hope to transfer our results to other,
more complex, VM implementations to gain more insights into the modularisation
of full-scale VM implementations.

8 acknowledgments

The authors are grateful for the contributions of Bram Adams, Yvonne Coady,
Celina Gibbs, and Stijn Timbermont to the ideas underlying the presented results.
Special thanks go to Tobias Pape for his contributions to CSOM.

references

[1] B. Adams and K. D. Schutter. An aspect for idiom-based exception handling:
(using local continuation join points, join point properties, annotations and
type parameters). In Proc. SPLAT’07. ACM, 2007.

[2] J. Aldrich. Open modules: Modular reasoning about advice. In Proc.
ECOOP’05, volume 3586 of LNCS, pages 144–168. Springer, 2005.

[3] J. Aldrich, C. Chambers, and D. Notkin. Archjava: Connecting software archi-
tecture to implementation. In Proc. ICSE’02, pages 187–197. ACM, 2002.

[4] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[5] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber,
M. Mergen, T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeño in Java.
In Proc. OOPSLA’99. ACM Press, 1999.

[6] B. Alpern et al. The Jalapeño Virtual Machine. IBM Systems Journal, 39(1):211–
238, February 2000.

[7] V. Alves, P. Matos, L. Cole, A. Vasconcelos, P. Borba, and G. Ramalho. Extract-
ing and evolving code in product lines with aspect-oriented programming. In
Transactions on Aspect-Oriented Software Development IV, volume 4640 of LNCS,
pages 117–142. Springer, 2007.

24

References

[8] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the symbiosis
of feature-oriented and aspect-oriented programming. In Proc. GPCE, 2005.

[9] S. Apel, T. Leich, and G. Saake. Aspectual mixin layers: Aspects and features
in concert. In Proc. ICSE’06. ACM, May 2006.

[10] J. R. Bell. Threaded code. Communications of the ACM, 16(6):370–372, 1973.
[11] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High Perfor-

mance Garbage Collection in Java with MMTk. In Proc. ICSE’07, 2004.
[12] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J. Serrano,

V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Dynamic Opti-
mizing Compiler for Java. In Proc. Java Grande’99, pages 129–141. ACM Press,
1999.

[13] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of self
a dynamically-typed object-oriented language based on prototypes. ACM
SIGPLAN Notices, 24(10):49–70, 1989.

[14] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

[15] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia,
S. Soares, F. Ferrari, S. Khan, F. C. Filho, and F. Dantas. Evolving software
product lines with aspects: An empirical study on design stability. In Proc.
ICSE’08. ACM, 2008.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The
nesC language: A holistic approach to networked embedded systems. In Proc.
PLDI’03, pages 1–11. ACM, May 2003.

[17] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and B. Folliot. VMKit: a Substrate
for Managed Runtime Environments. In Proceedings of VEE. ACM Press, 2010.

[18] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[19] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and H. Ra-
jan. Modular software design with crosscutting interfaces. IEEE Software,
23(1):51–60, 2006.

[20] M. Haupt, B. Adams, S. Timbermont, C. Gibbs, Y. Coady, and R. Hirschfeld.
Disentangling Virtual Machine Architecture. IET Journal Special Issue on
Domain-Specific Aspect Languages, 3(3), June 2009.

[21] M. Haupt, R. Hirschfeld, T. Pape, G. Gabrysiak, S. Marr, A. Bergmann,
A. Heise, M. Kleine, and R. Krahn. The SOM Family: Virtual Machines
for Teaching and Research. In Proceedings of the 15th Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE). ACM Press,
2010.

[22] R. Jones and R. Lins. Garbage Collection. Algorithms for Automatic Dynamic
Memory Management. Wiley, 1996.

25

References

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP’01, volume
2072 of LNCS, pages 327–353. Springer, 2001.

[24] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In CGO ’04: Proceedings of the international
symposium on Code generation and optimization. IEEE Computer Society, 2004.

[25] B. Lewis and D. J. Berg. Threads Primer. A Guide to Multithreaded Programming.
Prentice Hall, 1996.

[26] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes. Language Support for
Managing Variability in Architectural Models, volume 4954 of LNCS, pages 36–
51. Springer, 2008.

[27] D. C. Luckham and J. Vera. An event-based architecture definition language.
IEEE Transactions on Software Engineering, 21(9):717–734, 1995.

[28] N. Medvidovic and R. N. Taylor. A classification and comparison framework
for software architecture description languages. IEEE TSE, 26(1):70–93, 2000.

[29] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,
1997.

[30] O. Spinczyk and A. Gal and W. Schröder-Preikschat. AspectC++: An Aspect-
Oriented Extension to C++. In Proc. TOOLS Pacific’02. ACM, 2002.

[31] R. E. Park. Software size measurement: A framework for counting source
statements. Technical Report CMU/SEI-92-TR- 20, ESC-TR-92-20, Software
Engineering Institute, Carnegie Mellon University, September 1992.

[32] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, 1972.

[33] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. LNCS,
1241:419–434, 1997.

[34] A. Rigo and S. Pedroni. Pypy’s approach to virtual machine construction. In
Proc. OOPSLA’06, pages 944–953. ACM, 2006.

[35] M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel. Code generation to
support static and dynamic composition of software product lines. In Proc.
GPCE’08, pages 3–12. ACM, 2008.

[36] J. E. Smith and R. Nair. Virtual Machines. Versatile Platforms for Systems and
Processes. Morgan Kaufmann, 2005.

26

a vmadl example

service NativeThreads {
 require Memory;
 require VM;
 require VMObjects;
 require Interpreter;
 #include <pthread.h>
 extern pthread_key_t tsg_frame, tsg_thread;
 pVMMutex VMMutex_new(void);
 void* VMThread_get_safe_global(pthread_key_t);
 void VMThread_set_safe_global(pthread_key_t, void*);
 class VMMutex : VMObject {
 pthread_mutex_t embedded_mutex_id
 pthread_mutex_t* get_embedded_mutex_id()
 void lock()
 void unlock()
 bool is_locked()
 }
 class VMSignal : VMObject { ... }
 class VMThread : VMObject { ... }
}

combine NativeThreads, Interpreter {
 advice execution("void Interpreter_set_frame(...)") && args(value) : around(_VMFrame* value) {
 VMThread_set_safe_global(tsg_frame, value);
 }
 advice execution("_VMFrame* Interpreter_get_frame()") : around() {
 pVMFrame frame = (pVMFrame)VMThread_get_safe_global(tsg_frame);
 *tjp->result() = frame;
 }
}

combine NativeThreads, GCMarkSweep {
 require Interpreter;
 #include <pthread.h>
 bool stop_the_world;
 pthread_mutex_t mtx_do_collect;
 pthread_mutex_t mtx_gc_structure;
 advice execution("void gc_collect()") : around() {
 if (pthread_mutex_trylock(&mtx_do_collect) == 0) {
 stop_the_world = true;
 wait_for_all_threads();
 tjp->proceed();
 signal_proceed_to_all_threads();
 pthread_mutex_unlock(&mtx_do_collect);
 }
 }
 advice Interpreter::safe_point_in_execution() : before() {
 if (stop_the_world) {
 gc_mark_reachable_stack_objects();
 wait_until_gc_completed();
 }
 }
 advice call("% pthread_exit(...)") : before() { dec_thread_count(); }
 advice call("% pthread_create(...)") : before() { inc_thread_count(); }
 advice execution("void Universe_exit(int)") : before() { signal_exit_to_gc_thread(); }
 advice GCMarkSweep::reserve_and_get_entry() : around() {
 pthread_mutex_lock(&mtx_gc_structure);
 tjp->proceed();
 pthread_mutex_unlock(&mtx_gc_structure);
 }
 advice GCMarkSweep::split_and_reserve_entry() : around() {
 pthread_mutex_lock(&mtx_gc_structure);
 tjp->proceed();
 pthread_mutex_unlock(&mtx_gc_structure);
 }
}

Note: the code displayed
here was abbreviated. Irrelevant
parts are not shown.

required interfaces
from other service modules

here starts the definition
of the NativeThreads service
module interface, including
ClassDL definitions

the interpreter needs to be
executed thread-locally; thus, its
global state variables have to be
made thread-safe

the stop-the-world GC scheme
is implemented entirely in this service
module combination

this advice guarantees
stop-the-world semantics:
– try to acquire a lock; if this fails, a GC run
 has already been requested in another
 thread
– when the lock was acquired, signal all
 threads and wait until they have stopped
 at a safe point; then proceed with the
 collection
– finally, signal all threads to continue

safe point: suspend thread
execution, mark all stack objects,
and wait for the signal to continue

management: counting
threads, and ensuring GC
structures are thread-safe

colophon

This report was typeset by LATEX 2ε with pdf/ε-TEX using KOMA-Script. The body
text is set 12/15 pt on a 36.2 pc measure. The body type face is Palatino by Hermann
Zapf, brought to TEX as Type 1 PostScript font URW Palladio L. The listing type
face is Bera Mono, based on the Vera family by Bitstream, Inc.; Type 1 PostScript
fonts were made available by Malte Rosenau and Ulrich Dirr. —Tobias Pape

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

47 978-3-86956-

130-1
State Propagation in Abstracted Business
Processes

Sergey Smirnov, Armin Zamani
Farahani, Mathias Weske

46 978-3-86956-
129-5

Proceedings of the 5th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

45 978-3-86956-
128-8

Survey on Healthcare IT systems:
Standards, Regulations and Security

Christian Neuhaus,
Andreas Polze,
Mohammad M. R. Chowdhuryy

44 978-3-86956-
113-4

Virtualisierung und Cloud Computing:
Konzepte, Technologiestudie,
Marktübersicht

Christoph Meinel, Christian
Willems, Sebastian Roschke,
Maxim Schnjakin

43 978-3-86956-
110-3

SOA-Security 2010 : Symposium für
Sicherheit in Service-orientierten
Architekturen ; 28. / 29. Oktober 2010 am
Hasso-Plattner-Institut

Christoph Meinel,
Ivonne Thomas,
Robert Warschofsky et al.

42 978-3-86956-
114-1

Proceedings of the Fall 2010 Future SOC
Lab Day

Hrsg. von Christoph Meinel,
Andreas Polze, Alexander Zeier
et al.

41 978-3-86956-
108-0

The effect of tangible media on
individuals in business process modeling:
A controlled experiment

Alexander Lübbe

40 978-3-86956-
106-6

Selected Papers of the International
Workshop on Smalltalk Technologies
(IWST’10)

Hrsg. von Michael Haupt,
Robert Hirschfeld

39 978-3-86956-
092-2

Dritter Deutscher IPv6 Gipfel 2010 Hrsg. von Christoph Meinel und
Harald Sack

38 978-3-86956-
081-6

Extracting Structured Information from
Wikipedia Articles to Populate Infoboxes

Dustin Lange, Christoph Böhm,
Felix Naumann

37 978-3-86956-
078-6

Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple
Graph Grammars

Holger Giese,
Stephan Hildebrandt,
Leen Lambers

36 978-3-86956-
065-6

Pattern Matching for an Object-oriented
and Dynamically Typed Programming
Language

Felix Geller, Robert Hirschfeld,
Gilad Bracha

35 978-3-86956-
054-0

Business Process Model Abstraction :
Theory and Practice

Sergey Smirnov, Hajo A. Reijers,
Thijs Nugteren, Mathias Weske

34 978-3-86956-
048-9

Efficient and exact computation of
inclusion dependencies for data
integration

Jana Bauckmann, Ulf Leser,
Felix Naumann

33 978-3-86956-
043-4

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS '10)

Hrsg. von Bram Adams,
Michael Haupt, Daniel Lohmann

32 978-3-86956-
037-3

STG Decomposition:
Internal Communication for SI
Implementability

Dominic Wist, Mark Schaefer,
Walter Vogler, Ralf Wollowski

ISBN 978-3-86956-134-9
ISSN 1613-5652

	Title
	Imprint

	Abstract
	1 Introduction
	2 The CSOM Virtual Machine
	3 Virtual Machine Modularity
	3.1 Disentangling VM Architecture
	3.2 VMADL: A Walkthrough
	3.3 The VMADL Tool Chain

	4 A Virtual Machine Product Line
	4.1 The CSOM/PL Feature Model
	4.2 Feature and Product Implementations
	4.2.1 Memory Management
	4.2.2 Multi-Threading
	4.2.3 Execution Engine
	4.2.4 Integer Representation
	4.2.5 Image Persistence

	5 Evaluation
	5.1 Virtual Machine Performance
	5.2 Source Code Complexity
	5.2.1 Lines of Code Results
	5.2.2 Modularity Results

	5.3 Discussion and Conclusion

	6 Related Work
	7 Summary and Future Work
	8 Acknowledgments
	References
	Appendix
	A VMADL Example

	Colophon
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

