
VMWrapping
Fake it till you make it

Johannes Henning
Hasso-Plattner-Institute, University

of Potsdam, Germany
johannes.henning@hpi.de

Tim Felgentreff
Hasso-Plattner-Institute, University

of Potsdam, Germany
tim.felgentreff@hpi.de

Robert Hirschfeld
Hasso-Plattner-Institute, University

of Potsdam, Germany
robert.hirschfeld@hpi.de

Abstract
Building or extending Virtual Machines (VMs) to investi-
gate new language features or optimization techniques is
challenging in several ways. The overhead for developing
a new research VM for an existing practical language is
immense, and meaningful evaluation often requires imple-
menting much more than just the parts that are interesting
for the research question.
In this paper, we propose a different approach for imple-

menting VMs based on wrapping an existing, feature com-
plete VM. Our technique aims for lower implementation
overhead by reducing the number of features that have to
be implemented to produce a working prototype and thus
producing results quicker. While already proving useful for
research, our approach also suggests a way to extend legacy
virtual machines with new features and optimizations.

Keywords Virtual Machines, RPython
ACM Reference format:
Johannes Henning, Tim Felgentreff, and Robert Hirschfeld. 2017.
VM Wrapping. In Proceedings of ICOOOLPS’17, Barcelona , Spain,
June 19, 2017, 4 pages.
https://doi.org/10.1145/3098572.3098576

1 Introduction
Many modern programming languages are executed inside
an interpreter or VM. For popular programming languages
such as Python or Java a multitude of VMs is available, offer-
ing different benefits or targeting different usage scenarios.
VM-design is an integral part of programming language re-
search. Optimization techniques implemented inside the VM
such as Just-In-Time (JIT)-compilation continue to be ac-
tive research topics. VM implementation frameworks such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICOOOLPS’17, June 19, 2017, Barcelona , Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5088-4/17/06. . . $15.00
https://doi.org/10.1145/3098572.3098576

as RPython [1] offer optimization techniques which can be
implemented language independently. The RPython JIT com-
piler has been applied to several languages, yielding signifi-
cant performance benefits.
However, conducting such experiments is very time-intensive
as altering an existing VM or implementing a new one re-
quires significant implementation effort, as well as knowl-
edge aboutminute language-internals. In particular, researchers
might have to invest a lot of effort implementing parts of
the language that are not directly relevant for answering
the research question, but necessary to support the targeted
language. If this process of VM development could be stream-
lined further, it would be beneficial to VM development,
particularly in research. In this paper, we propose an im-
plementation approach for quickly generating meaningful
apples-to-apples measurements of the effectiveness of new
optimization techniques or language features. This proposal
centers on the idea of wrapping an existing VM and only
overriding the parts relevant for research to quickly gain
insights into the research question, while maintaining com-
plete compatibility with the existing language implementa-
tion. This approach also seems to be applicable for language
implementations in general, in particular maintaining and
enhancing legacy languages.
In particular, we aim to lower the implementation effort of:

1. Implementing new bytecodes or language features
2. Modifying internal VM objects and storage strategies
3. Implementing and testing new optimization techniques
4. Implementing a newVMwhile continuously providing

a compatible and executable VM throughout develop-
ment

We will outline background and motivation in Section 2
before presenting our proposed implementation and possible
usage scenarios in Sections 3 and 4, after which we position
ourselves to related work in Section 5 and outline future
work in Section 6, before concluding in Section 7.

2 Background and Motivation
Our approach builds upon the RPython framework [1], and
optimization techniques such as just-in-time compilation
and meta-tracing JIT compilers [2]. We will introduce the
SQPyte prototype which builds upon these technologies and
expand it as a motivating example for our proposed solution.

https://doi.org/10.1145/3098572.3098576
https://doi.org/10.1145/3098572.3098576

ICOOOLPS’17, June 19, 2017, Barcelona , Spain Johannes Henning, Tim Felgentreff, and Robert Hirschfeld

2.1 SQPyte
The SQPyte [3] prototype aimed at speeding up database ac-
cess in PyPy by including SQLite in the runtime environment.
SQLite is an in-process library implementing a SQL database
engine with a c-based interpreter. By virtue of having no
dependencies, being serverless, and requiring little configu-
ration, it is one of the most widely deployed databases1. By
overriding selected bytecodes in the Main-Interpreter Loop
(MIL) of the SQL engine it allowed the JIT compiler to opti-
mize application and database operations at the same time.
They built their prototype in 8 person-months and used an
implementation technique similar to the one presented here.
Overall, the prototype was able to produce insights into
the optimization potential of an in-process database while
maintaining complete compatibility with unmodified SQLite
invocations and only modifying relevant parts of the code
base. The SQPyte prototype did not modify any data storage
and did not need to be aware of specific database internals,
while still allowing for JIT optimized SQL statement execu-
tion.

2.1.1 SQPyte as a Motivating Example
As demonstrated by the SQPyte prototype, an approach like
VM wrapping can allow for experiments on established soft-
ware projects, without incurring themassive implementation
overhead of rebuilding the existing implementation in the
research framework. More concretely: The established ap-
proach for this type of experiment would have required a
reimplementation of a SQLite equivalent database inside the
RPython framework or Python itself. Unless the newly imple-
mented database would have been able to support all SQLite
features, the researchers still would have needed to argue
the applicability of the results to SQLite. SQLite has been
developed for over a decade2 and rebuilding it or exchanging
significant parts of the implementation would require signif-
icant implementation effort. Without the approach followed,
it would not have been possible to conduct the experiments
in the relatively short period of time it took to build the
prototype.
We believe the SQPyte prototype as a case study motivates
VM wrapping as a general approach for implementing re-
search prototypes for programming language experiments.

3 Proposed Implementation Strategy
VM wrapping relies on an existing implementation as much
as possible in order to reduce implementation overhead and
thereby streamlining the development of new VMs. We pro-
pose overriding and extending an existing implementation

1According to https://www.sqlite.org/mostdeployed.html (accessed on 2017-
06-01)
2Development started 2000-05-09 https://www.sqlite.org/about.html (ac-
cessed on 2017-06-01)

Figure 1. Conceptual architecture of VM wrapping with
transparent dispatch between new and wrapped VM

and delegating everything that is not required by or interest-
ing for our implementation goals. This is done by wrapping
the existing VM in our new VM and delegating where appro-
priate, see Figure 1. Thereby, we support the entire language,
even if we have not implemented all of it ourselves. This is
particularly helpful, because we can rely on existing bench-
mark suites as well as an abundance of existing example
applications.
There are several ways this delegation could be implemented,
varying by implementation strategy and carrying different
advantages and disadvantages, which we will discuss in the
following Sections.

3.1 Granularity of Delegation
The first important decision depends on the parts of the
implementation that the researchers are interested in. For
example, are we interested in implementing a new bytecode,
changing the implementation of an existing one, using a dif-
ferent layout for internal VM objects, or testing optimization
techniques like unrolling?
This decision is important for identifying the parts of the
existing implementation that we need to extend or replace. A
new bytecode could be added relatively easily to the MIL of
the existing VM, while changing storage strategies for inter-
nal VM objects would require modifications spanning several
bytecodes and rewriting the underlying data structures. The
following Sections present different delegation techniques
appropriate for different granularities of delegation.

3.1.1 Override Existing Bytecodes
Overriding existing bytecodes is the most straightforward
approach other than extending the existing VM altogether.
The SQPyte prototype discussed in Section 2.1 used this
approach. The idea is to compile the existing VM into our
framework and run it as usual, only overriding bytecodes
that we are interested in. The ideal place for dispatching
between our new functionality and the wrapped VM is the
MIL, which is responsible for dispatching each bytecode to
its implementation. We retain all existing features of the
VM, while the limitations of this approach lie in the existing
implementation. As we can only redefine the execution of
selected bytecodes, we cannot change the underlying data
structures or make other major architectural changes. We

VMWrapping ICOOOLPS’17, June 19, 2017, Barcelona , Spain

also might require somewhat extensive knowledge of the
existing implementation.

3.1.2 Transfer State, Dispatch Per Bytecode
By mapping our internal VM objects onto the wrapped VM’s
internal objects it would be possible to switch bytecode ex-
ecution between both VMs dynamically and transfer the
internal VM state before each switch. This would allow for
complete freedom in the new VM architecture, but would
require significant knowledge about the wrapped VM in ad-
dition to run-time overhead for each switch.

An alternative way to ensure the same state in both VMs
would be to execute both in lock-step, e.g. synchronizing
after each bytecode. This would not be useful for perfor-
mance benchmarks, but could help debugging and testing
computational correctness.

3.1.3 Dispatch Per Function
Wrapped VM implementations could also be called on a per-
function basis. Depending on the level of function ’purity’
the passing of relevant internal objects could be relatively
simple. While this would require the VM to implement all
basic language features, it would allow for complete imple-
mentation freedom, while allowing the developer to delegate
heavily to the wrapped VM similarly to invoking a library.

3.1.4 Pre-Scan, Dispatch Per Program
A different approach would be to keep both VMs separate
from each other and select the appropriate VM through static
analysis. Say our research VM only implements a subset of
the specified language, we could determine whether the pro-
gram uses language features outside of our implementation
and transparently execute it in the wrapped VM. This ap-
proach would only make sense if the subset of the language
we are implementing is large enough to write meaningful
programs in. The advantages would be complete architec-
tural freedom and requiring very little knowledge about the
wrapped VM.

3.2 Combining Abstraction Levels
The implementation approaches presented can also work in
combination with each other. For example, we might select
the appropriate VM by analyzing byte- or program-code,
but discover at run-time that the program uses an unimple-
mented language feature through a function like eval. At this
point we could fall back on delegating to the wrapped VM
via our per-function approach.

4 Usage Scenarios
We believe that the presented approach could be useful for
multiple use-cases, presented in the following Sections.

4.1 Research Prototypes
As discussed in Section 2.1, the overhead of implementing
equivalent technologies to create meaningful and applicable
research results is a general problem of language implemen-
tation research. While RPython already makes it possible to
experiment with JIT technologies with minimal overhead, it
still requires the complete language to be implemented for
the VM to be of practical use. While there have been some
successful implementations of language VMs in RPython, i.e.
PyPy and RSqueak3, there have been more research VMs that
are unlikely to ever support the entire language they were
targeted to implement, simply because it is not connected
closely enough to the research question the partial VM was
built for.
We believe that VM wrapping can be an applicable solution
for many similar problems in research. It is a way to get an-
swers faster, much in the same way that RPython is. While
the JIT optimizations RPython provides are generally not
as efficient as what is available in specifically tailored VMs
like Java hotspot or LuaJIT, the cost-benefit of RPython is
far better. Similarly, the result of VM wrapping will not be
an optimal VM for the targeted language, but a low-cost
way of answering research questions about the language,
while generating more meaningful results than alternative
low-cost approaches.

4.2 Legacy Language Maintenance
There is another use-case for transparent dispatch between
different VM implementations. We have observed problems
for vendors of proprietary languages when deprecating lan-
guage features. Since the vendor is not aware of all exist-
ing customer applications and features used within them,
the vendor is often hesitant to deprecate at all, fearing sub-
optimal usability or lack of backwards compatibility. We be-
lieve that an approach like pre-scan (section 3.1.4) could help
to update such languages while maintaining backwards com-
patibility for overhauled language features. Such an approach
could also prove useful for transition periods and continuous
integration development, as parts of the language could be
redesigned one at a time, while continuously providing a
compatible and complete VM.

4.3 General Language VM Development
For the design of a new production VM for non-research
purposes, VM wrapping could also be useful as a way of
getting early feedback during development by allowing to
execute programs even if important parts of the new VM
have not been implemented yet.

5 Related Work
As the idea we presented here is in essence about easing
language implementation, there are numerous publications

3https://github.com/HPI-SWA-Lab/RSqueak (accessed on 2017-06-01)

ICOOOLPS’17, June 19, 2017, Barcelona , Spain Johannes Henning, Tim Felgentreff, and Robert Hirschfeld

directly related to this goal. However, we are not aware
of previous work describing the particular implementation
strategies presented here. We will present three projects
which aimed to solve similar problems, namely a technique
used in MacLisp, the aforementioned SQPyte project, and
the Truffle framework.

5.1 Unimplemented User Operations
Unimplemented User Operations (UUO) were used in MacLisp
to dispatch op-codes to different implementations [4]. These
unimplemented op-codes would trap the execution and allow
calling user-defined functions. In practice this was enabled
transparent switches between compiled and interpreted ver-
sions of the VM and thus was not intended to dispatch be-
tween different VMs. However, this approach demonstrates
the possibility of replacing bytecode implementations trans-
parently at a lower level of abstraction.

5.2 SQPyte
While our approach is similar to the work done for the
SQPyte prototype (Section 2.1), it was focused simply on
getting results in the fastest and easiest way available and
was not concerned with the general applicability of the used
implementation approach, but presents a valuable case study
for our proposed implementation approach. In Section, 3 we
presented several considerations and implementation adden-
dums that were outside the scope of the SQPyte prototype
and thus not discussed previously.

5.3 Truffle
The Truffle framework [5] optimizes Abstract Syntax Tree
(AST) interpreters building on the Graal JIT compiler. While
the project goals are similar to the RPython project, the
implementation is different, as it is based on the Java HotSpot
VM and works with AST interpreters. While we focus on
bytecode interpreters in this work, VMwrapping could work
just as well with selectively overriding node interpretation
in an AST interpreter. The JRuby+Truffle project 4 went
a similar route when optimizing JRuby by overriding and
thereby optimizing parts of the existing implementation step-
by-step. As with the SQPyte project this approach was the
simplest way to proceed and the project was not concerned
with the general applicability of the used implementation
approach.

6 Future Work & Open Questions
We are confident that VM wrapping can be applied to most
bytecode interpreter by selectively overriding bytecodes as
shown by the SQPyte project. However, we aim to show
further uses of VM wrapping in the future, in particular con-
cerning the other presented usage scenarios.
Our future experimentswill continue to focus on the RPython
4http://chrisseaton.com/rubytruffle/announcement/ (accessed on 2017-06-
01)

tool-chain, which not only allows us to experiment with all
the languages already implemented in it, but also enables
us to wrap any C-based language implementation. In partic-
ular, we would be interested in the feasibility of extending
an existing incomplete RPython-based VM (e.g. Topaz) by
wrapping a C-based VM (e.g. MRI Ruby) and dispatch using
the per function approach. The goal of such an experiment
would be to show whether the effort invested would be less
than porting the missing functionality.

6.1 Open Questions
While SQLite contains a classic C interpreter it is mainly
a database and it is unclear how well the implementation
approach of SQPyte fits to a programming language envi-
ronment.
Also, the underlying assumption of VM wrapping is, that
with any language implementation there are interfaces in the
implementation that might ease reuse. It is not yet clear how
this approach might work with parts of the implementation
that are orthogonal to such interfaces, e.g. garbage collection.

7 Conclusion
We have presented an alternative approach to research VM
development, which allows for streamlining parts of the pro-
cess, by focusing on the research-relevant parts of the VM
implementation and leaving the rest to an existing implemen-
tation while maintaining compatibility with existing bench-
mark suites and example applications. While VM wrapping
seems feasible in theory, we have yet to test our proposed
implementation approaches in practice, which is the logical
next step and future work.

References
[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D Mat-

sakis. RPython: A Step Towards Reconciling Dynamically and Statically
Typed OO Languages. In Proceedings of the Dynamic Languages Sym-
posium (DLS) 2007, pages 53–64. ACM, 2007.

[2] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo.
Tracing the Meta-Level: PyPy’s Tracing JIT Compiler. In Proceedings
of the Workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems (ICOOOLPS) 2009,
pages 18–25. ACM, 2009.

[3] Carl Friedrich Bolz, Darya Kurilova, and Laurence Tratt. Making an
Embedded DBMS JIT-friendly. CoRR, abs/1512.03207, 2015.

[4] Richard P Gabriel. Performance and Evaluation of LISP Systems, volume
263. MIT press Cambridge, Mass., 1985.

[5] AndreasWöß, ChristianWirth, Daniele Bonetta, Chris Seaton, Christian
Humer, and Hanspeter Mössenböck. An Object Storage Model for
the Truffle Language Implementation Framework. In Proceedings of
the Conference on Principles and Practices of Programming on the Java
platform: Virtual machines, Languages, and Tools, pages 133–144. ACM,
2014.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 SQPyte

	3 Proposed Implementation Strategy
	3.1 Granularity of Delegation
	3.2 Combining Abstraction Levels

	4 Usage Scenarios
	4.1 Research Prototypes
	4.2 Legacy Language Maintenance
	4.3 General Language VM Development

	5 Related Work
	5.1 Unimplemented User Operations
	5.2 SQPyte
	5.3 Truffle

	6 Future Work & Open Questions
	6.1 Open Questions

	7 Conclusion
	References

