
R. Battiti, M. Conti, and R. Lo Cigno (Eds.): WONS 2004, LNCS 2928, pp. 227–240, 2004.
© IFIP International Federation for Information Processing 2004

Dynamic Service Adaptation for Runtime System
Extensions

Robert Hirschfeld, Katsuya Kawamura, and Hendrik Berndt

DoCoMo Communications Laboratories, Future Networking Lab,
Landsberger Strasse 308-312, 80687 Munich, Germany

{hirschfeld, kawamura, berndt}@docomolab-euro.com

Abstract. Most of all software systems have to be changed after their initial
deployment. This is not only because of changing knowledge and expectations
about our domains and systems, but also because of the continuous change of
the environment itself. While changes in the environment happen implicitly, we
need to explicitly keep our technology in sync with the changing world around
it. This is especially true for next generation mobile communication systems
which we expect to be open to third-party service providers, allowing them to
offer services on a variety of service platforms. Not all of these services to be
offered will match with all of the platforms. Adjustments and extensions need
to be made to offer a pleasant service experience. Research on dynamic service
adaptation provides concepts and technologies needed to perform such changes
late in a system’s lifecycle, possibly on demand, at runtime, without disruption
of service.

1 Introduction

Our research at DoCoMo Euro-Labs is directed towards mobile communications
technologies beyond the third generation (B3G) that can respond to the requirements
of a highly developed multimedia age. B3G systems are expected to not only integrate
several access technologies, but also to promote a significant wealth of services
offered by a multitude of service providers. In addition to seamless and secure access
to heterogeneous networks, B3G systems are considered to encompass high service
availability and best service quality to the end user. System requirements are highly
demanding. Some of the key requirements essential to B3G communication platforms
are to shorten development and provisioning cycles, to minimize system downtimes,
to support runtime updates and upgrades, to allow for third-party service integration,
and to assist in service personalization.

The unanticipated nature and complexity of forthcoming services and applications
makes the support of dynamic service adaptation (DSA) and unanticipated software
evolution (USE) inevitable. We regard DSA to be part of the foundation to address
phenomena of USE. DSA is motivated by our continuously changing environment, a
heterogeneous service landscape, as well as an open system infrastructure. Major
goals of DSA are to enable service and platform evolution, to support the
advancement of individual parts at a different pace, and to facilitate personalization,
context-awareness, and ubiquitous computing. Mobile communication systems that

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 1800 dpi Downsampling für Bilder über: 2700 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: NeinSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages false /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Average /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Average /DetectBlends true /GrayImageDownsampleType /Average /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 1800 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

228 R. Hirschfeld, K. Kawamura, and H. Berndt

can be described as long-lived, continuously running, highly-available, embedded, or
large-scale widely distributed are most suitable candidates to benefit from DSA.

Most of the adaptation mechanisms deployed today concentrate on content, a few
on communication, but almost none on service logic or behavior itself. Thus, content
as well as communication adaptation is understood much better than that of service
logic or service behavior. In this paper the terms service adaptation, service logic
adaptation, or service behavior adaptation are used interchangeably. In contrast to
more traditional approaches, we combine aspect-oriented programming with
computational reflection and late binding to adapt services and service platforms
when changes actually require doing so, as late as possible, if possible without
disruption of service.

In this paper we give an overview on our research on software engineering
principles and mechanisms for DSA allowing us to evolve, adapt, and extend services
dynamically to better support seamless service provisioning and application
integration for the next generation mobile communication systems. Our work is
aligned with active research in the field of aspect-oriented software development
(AOSD, [2]) and USE. We point out how the development of mobile
telecommunication systems can benefit from the deployment of AOSD and the
provisioning for USE.

The paper is organized as follows: Section 2 illustrates our approach to DSA,
addressing modularity and variation points, aspect-oriented programming, late
binding and reflection. It also gives an overview of our research platform. Section 3
demonstrates DSA applied in the context of runtime system integration and extension.
Section 4 outlines further opportunities for DSA. Section 5 concludes the paper.

2 Dynamic Service Adaptation

The concept of adaptability is closely related to that of modularity and variation
points. The modularization of a system can improve its flexibility and
comprehensibility, and with that can also shorten its development time. Variation
points provide us a way to explicitly designate module boundaries in a system’s
design where changes are expected to happen. The introduction of variation points
and with it the separation and composition of common and variable system aspects
can provide for flexibility.

The majority of recently built systems are based on object-oriented technologies.
Here, classes and instances are employed as both modularity constructs and units of
change. Besides other important properties, most aspect-oriented programming (AOP)
technologies provide a new, finer grained, modularity construct that allows us to
represent crosscutting concerns, down to the methods of individual instances.

Since many changes happen after a system’s initial deployment, they need to be
addressed very late in its lifecycle. To avoid system downtimes, many of the
corrective actions covering these changes need to be performed on demand at
runtime. We consider reflective architectures and late binding to be key elements of a
DSA platform addressing these requirements. In our approach to DSA, we use the
aspect modularity construct to adequately represent units of change. Computational
reflection, dynamic AOP, and late binding will allow us to adapt service and service

Dynamic Service Adaptation for Runtime System Extensions 229

platforms as late as possible, preferably without system downtimes and with that the
disruption of service [11].

In the following subsections we give an overview of modularity, variation points,
AOP, reflection, and late binding. The last subsection outlines our research platform
for DSA and runtime system extensions.

2.1 Modularity, Variation Points, Objects, and Aspects

One approach to manage complexity is modularity. Here, we are trying to improve the
comprehensibility and flexibility of a system by decomposing a complex system into
smaller, less complex subsystems and then recomposing these subsystems in a
principled way. Modules help to hide from each other complex design decisions or
design decisions which are more likely to change [22]. Variation points, or hotspots
[23], designate module boundaries in a system’s design where changes are expected to
happen without the need to explicitly name all of them. With variation points we
improve flexibility in the context of change through the separation and composition of
common and variable aspects of our system.

Variations and variation points depend to a large extent on the underlying
modularity mechanism provided by the programming platform a system is built on.
Most modern software systems were built using object-oriented technologies where
the modularity constructs, and with that the units of change, are that of classes and
instances. Here, classes capture the properties of their instances. Although this level
of granularity is sufficient in some cases, a more fine-grained approach to modularity
is desirable to permit the change of even smaller semantic units such as method
implementations.

In object-oriented systems there is code that, even though it implements one
particular concern, is spread around (scattered) over many or even almost all modules,
crosscutting various other modules implementing other concerns as well, instead of
being confined to one or a small number of modules. Because of its non-explicit
structure, such crosscutting code is hard to comprehend and difficult to change. The
consistency of changes is both hard to verify and to enforce. Object-orientation and its
class modularity construct, while proven to be appropriate for many modeling
scenarios, cannot be of help in implementing other concerns in a modularized way.
Also, while traditional modules such as classes and instances might support the proper
structuring of the initial system, subsequent changes to this system could crosscut
these module boundaries to affect more than one location.

Based on the assumption that crosscutting is inherent to complex software systems,
AOP ([6, 16]) as a new software technology addresses the issues of separation of
concerns (SOC, [5, 12]). For that, AOP introduces orthogonal units of modularity to
capture crosscutting structures explicitly. Such structures are called aspects and can
be found in a software system’s requirements, its design, as well as in its
implementation. AOP builds on existing technologies but provides additional
mechanisms that make it possible to affect a system’s implementation in a
crosscutting way [4]. Aspects are units of modularity that represent implementations
of crosscutting concerns. Aspects associate code fragments (code to be executed when
a join point is encountered) with join points (well-defined points in the execution of
code) by the use of advice constructs. A collection of related join points descriptors,
to be addressed by an advice, is called a pointcut. Join point descriptors denote targets

230 R. Hirschfeld, K. Kawamura, and H. Berndt

for the weaving process to apply changes to the underlying computational base
system as stated in the advice constructs.

Aspects and their advice are integrated into the base system during an activity
called weaving. Weaving in general can be performed at almost any point in time in a
software system’s lifecycle. Most of today’s AOP technologies limit themselves to
either compile-time, load-time, or runtime. AspectJ [15] and HyperJ [25] are examples
for compile-time weaving. In AspectJ for example, the weaver parses an AspectJ
program, transforms the AspectJ abstract syntax tree (AST) into a valid Java [8] AST,
and then generates Java byte code for a standard Java virtual machine. JMangler [18]
performs load-time transformation of Java class files. AspectS [9] employs run-time
weaving to transform the base system according to the aspects involved. The woven
code is based on method wrappers [3], reflection [20, 24] and meta-programming [17].

As of today there are several approaches supporting aspect-oriented concepts,
ranging from domain-specific aspect languages such as RG [21] or D [19] to general-
purpose aspect languages like AspectJ or AspectS. Many of these languages allow us
to express crosscutting concerns, down to the level of individual instances, methods
and variables. Like objects in object-oriented software development, aspects may
appear at all stages of the software development lifecycle. Illustrative examples of
aspects that can be commonly observed are architectural or design constraints,
features, and systemic properties or behaviors.

2.2 Late Binding and Computational Reflection

Software development is still hard. During the software development lifecycle we
quite frequently find out something we wished we had known from the very
beginning of the project [14]. While there is always a chance that some of the
requirements were not sufficiently understood to adequately address them in the
software system, many changes happen after a system’s initial deployment, and so are
impossible to predict and dealt with right from the beginning. On the contrary, such
changes must be addressed very late, after deployment. System downtimes can be
minimized if most corrective measures can be applied at runtime. To address this
requirement, we consider late binding and reflective architectures to be key elements
of a DSA platform.

Late binding is a mechanism to defer decisions to a later point in time which
allows us to avoid too early commitments to design decisions, especially decisions
regarding variation points, we might or will not be able to maintain. Whereas early
binding requires us to provide abstractions addressing possible change at a very early
point in time, late binding helps us to avoid such premature abstractions. Extreme late
binding allows these decisions to be made as late as possible, at runtime.

Systems with reflective architectures incorporate structures representing aspects of
themselves [20]. The aggregate of theses structures is called the system’s self
representation which allows the system to both observe its own computation as well
as influence or change it. The activity of observing oneself is called introspection, the
activity of changing oneself intercession. For service adaptation, introspection will
allow us to observe computational properties of a deployed set of services as well as
the computational environment they are running in. Intercession can be based on our
observations and result in the alteration of the service.

Dynamic Service Adaptation for Runtime System Extensions 231

2.3 Adaptation Platform

While most of today’s adaptation mechanisms focus on content and a few on
communication, almost none considers the adaptation of service logic itself. Because
of that, our research on DSA is directed towards behavior adaptation at runtime. To
adequately address change, services and service platforms need to be adaptable, as
late as possible, when changes actually require adaptation to happen. Making changes
effective dynamically at runtime will offer the benefit of avoiding system downtimes,
and with that the disruption of service.

Our DSA research platform is based on a layered system architecture.
Squeak/Smalltalk serves us a very dynamic object-oriented multimedia scripting
environment [7, 13]. AspectS extends the Squeak/Smalltalk environment to allow for
experimental aspect-oriented system development. PerspectiveS builds on AspectS to
allow for dynamic behavior layering in the Squeak environment.

Squeak/Smalltalk’s properties that are important to our research on DSA are its
extensive reflection support covering both introspection and intercession, its powerful
metaobject protocol [17] that gives us full access to the computational properties of
our environment, and its support for very late binding to defer binding decisions until
the point when they actually need to be made. The idea of metaobject protocols is that
one can and should open languages up to allow users to adjust the design and
implementation to make the language or environment to suit their particular needs.

AspectS provides a platform for the exploration of aspect-oriented software
composition in the context of dynamic systems [9]. It allows for convenient meta-
level programming, addressing the tangled code phenomenon by providing aspect
modules. AspectS shows great flexibility by not relying on source or bytecode code
transformations. Instead, it makes use of metaobject composition. In contrast to most
other approaches to AOP that only focus on class-level aspects, AspectS allows for
instance-level aspect and with that for modularization of behavior that crosscuts
individual instances.

PerspectiveS coordinates the activation of a set of aspects, and so lets us to
decorate a system with context-dependent behavior, without requiring developers of
the base system to be aware of that [10]. PerspectiveS enables greater separation of
concerns of a base system from its context-dependent behavior. Here, base systems
can be freed from providing behavior that explicitly takes action in response to
context changes not known at neither development- nor deployment-time.
PerspectiveS facilitates basic role modeling by dynamic composition of multiple roles
without the loss of object identity. Roles can be added or removed on-demand, with
each role bringing in its own set of state and behavior.

All of these layers allow us to both implement our basic service logic as well as to
adapt this service logic to additional requirements and unforeseen circumstances if
necessary. Due to the dynamic nature of our research platform, adaptation activities
can be carried out on an on-demand basis, during runtime, while our services are
already deployed and activated [11].

In the following section, we use a scenario of runtime system extension to illustrate
the application of our DSA platform.

232 R. Hirschfeld, K. Kawamura, and H. Berndt

3 Runtime System Extensions

Next generation mobile communication systems will give third-party service
providers more opportunities to offer their service on a variety of open service
platforms. Since there will be several such platforms, services are likely to not match
all of them in the same way: While some services and some platforms are perfect
matches, an many cases there is some work to be done to integrate them adequately to
ensure an pleasant service experience. As already stated, it is not possible to identify
and apply all of theses changes upfront, right from the beginning. Most of them are to
become effective after the initial deployment a service or its service platform. And
preferably all of them should be applied without noticeable disruption of service.

Our work on DSA not only covers the design and implementation of an adaptation
platform, but also includes the illustration of our approach by describing candidate
scenarios of DSA. In [11] we explain the application of our DSA platform to integrate
a third-party component, the Fauré personal digital assistant (PDA) [1], and the value
of DSA by discussing four scenarios: The introduction of additional safeguards let us
correct the wrong assumption of the Fauré component provider that this PDA
component would be operated standalone and terminating it requires quitting the
underlying platform, too. The enforcement of style guide elements allowed us to
change the original appearance of the user interface (UI) to conform to the
requirements of a particular style guide – be it because of a difference in the style
offered by the component and the style required by the platform operator, or because
the style guide of the platform operator was changed itself and all existing
components conforming to the previous style guide now have to conform to the new
one. Late UI branding let us decorate suitable UI elements with brand names, logos,
or advertisements. In the category of upgrades, updates, and fixes we resolved an
issue with the rendering engine of our platform we discovered while carrying out our
late UI branding adaptation.

In the following we will show how to take advantage of DSA to extend the Fauré
PDA component with another service application, and to instrument the newly
integrated application with a notification mechanism to indicate proper usage
indication events.

3.1 Our Base Application

We will use the Fauré PDA [1] as the service application to be extended dynamically
at runtime. Fauré, an open source PDA implementation for Squeak designed to run on
a handheld device, runs on top of our DSA platform, most likely on a mobile
terminal.

Dynamic Service Adaptation for Runtime System Extensions 233

Fig. 1. Fauré Welcome Screen

When we launch our PDA application, its welcome screen shows summarized list
of our things to do and our personal schedule (Fig. 1). Via the view menu, we can
reach to our full contacts database, all of our social events and things to do, a little
sketch pad, a piano-like music instrument, and a demonstration of the 3D rendering
facilities of Squeak.

3.2 Tetris

The Fauré PDA also provides a game called Same Game, originally written by Eiji
Fukumoto for UNIX and X. The object of SameGame is to maximize the score by
removing tiles from the board. Tiles are selected and removed by clicking on a tile
that has at least one adjoining tile of the same.

But what if most of our customers would like to play another more popular game, a
game like Tetris? Tetris was originally developed by Alexey Pazhitnov on an
Electronica 60. In Tetris, regularly-shaped blocks appear at the top of the screen and
advance steadily down a fine grid. These blocks can be spun to make them fit into
point-scoring rows. As levels get completed, Tetris is getting faster what makes it
harder to spin and fit blocks together to complete the rows.

3.3 Tetris Integration

After searching for an implementation of Tetris, we find one the runs in our execution
environment (Fig. 2). Unfortunately, that implementation does not fit into our PDA:
The UI element representing the game is too large because its height exceeds the
height made available for user applications by the PDA. Also, the game control
buttons that allow us to rotate and drop Tetris pieces are in a location that would
cause us to waste even more screen real estate we cannot afford.

234 R. Hirschfeld, K. Kawamura, and H. Berndt

Fig. 2. Tetris

A common approach to make the new Tetris game fit into the PDA environment
would be to obtain its source code, change this source code, and completely rebuild
the game application. Another way to make Tetris conform to our requirements is to
provide an additional piece of software that instructs our runtime environment on how
to transform this game to become deployable within our provisioning environment.

Fig. 3. Adapted and Integrated Tetris

Fig. 3 shows the same Tetris applications previously discussed after its
transformation and integration into the PDA. One can see how its size was changed to
meet the constraints imposed by the PDA. Also, all game control buttons previously

Dynamic Service Adaptation for Runtime System Extensions 235

found on top of the game area are now arranged in the bottom row of the PDA UI
where one would have placed them in the first place if the game would have been
designed to run in the PDA from the beginning.

Fig. 4. Fauré View Menu with Tetris Menu Entry

Making Tetris fit is not enough to claim its integration is done. It needs to be
accessible by the user, too. For that we have to extend the launch menu of our PDA
by providing an entry that will launch Tetris if selected. Fig. 4 shows the extended
menu, with our new Tetris entry last in the list.

3.4 Usage Indication and Metering

Merely providing new applications and services to our customers might not be
sufficient from a business’ point of view. Providing services implies most of the time
some form of compensation, either directly or indirectly. Compensation is typically
based on service level agreements (SLAs) about quantitative information about the
usage of a service. Since most of the time third-party software components are not
developed to target specific SLAs and also because SLAs can change as often as
possible, it is not of benefit to commit to specific usage indications too early in the
service lifecycle.

DSA allows us to instrument our applications and services to provide usage
indication information, not even after their development, but also after their
deployment, as late as at runtime.

Fig. 5 shows a usage indication trace of Tetris, where each start of a new game is
reported to usage collection mechanisms which can act as an input feed to a rating and
billing engine. This usage indication record generation was introduced by one of our
adaptation modules that instrument the original Tetris component.

236 R. Hirschfeld, K. Kawamura, and H. Berndt

Fig. 5. Posted Tetris Usage Indication Records

The following listings illustrate how this adaptation was achieved. The first listing
shows the method that gets invoked every time a customer presses the ‘New Game’
button (TetrisBoard>>newGame): Tetris starts over with a new game.

TetrisBoard>>newGame
self removeAllMorphs.
gameOver _ paused _ false.
delay _ 500.
currentBlock _ nil.
self score: 0.

In the next listing we can see code that belongs to our adaptation module
(FdsaTetrisUsageAspect) and is responsible for instrumenting the newGame
Method in such a way that every time (except for the first) it gets invoked, a usage
indication record will be posted to the responsible entity (in this simplified case the
system transcript, Smalltalk’s console).

FdsaTetrisUsageAspect>>adviceTetrisBoardNewGame
^ AsBeforeAfterAdvice

qualifier: (AsAdviceQualifier
attributes: { #receiverClassSpecific. })

pointcut: [OrderedCollection
with: (AsJoinPointDescriptor

targetClass: TetrisBoard
targetSelector: #newGame)]

afterBlock: [:rcvr :args :aspect :client :return |
thisContext baseSender baseSender selector

~~ #initialize “the first game is for free”
ifTrue: [self postTetrisUsage]]

The convenience method postTetrisUsage is implemented as follows:

FdsaTetrisUsageAspect>>postTetrisUsage
Transcript

cr; show: '<UsageIndicationRecord User="',

Dynamic Service Adaptation for Runtime System Extensions 237

self userIdentifier printString,
'" Application="Tetris" Date="',
Date today printString, '" Time="',
Time now printString, '" Usage="NewGame">'.

Our deployed PDA service will be accompanied by the Tetris component to be
integrated and the adaptation modules necessary to do so. The adaptation module
shown above is only responsible for dynamic usage indication record generation, the
adaptation module required to integrate Tetris into the PDA service is not shown in
this paper.

4 Further Opportunities

There are quite a few opportunities for DSA and runtime system extensions. The
following subsections will illustrate how personalization, application-level security,
pre-standard releases, and addressing regulatory requirements can benefit from DSA.

4.1 Personalization

Personalization is regarded to be one of the most compelling features for mobile
communications systems B3G by supporting users in selecting the best services from
the rapidly increasing diversity of mobile services, and adjusting selected services to
their individual needs. Service personalization promises to foster and improve the
relationship between service providers, mobile operators and customers. Also, it is
expected to promote the adoption of increasingly complex services.

Service personalization can basically be approached from two points of view. On
the one hand, there is the user perspective where user models are developed and
expressed through user profiles and user preferences within the respective system of
client devices, services, and applications. We consider context awareness to be an
integral part of this user-centered position.

On the other hand, there is the system side where we need to consider how
personalization features are implemented and how the personalization of mobile
applications effects actual system execution and runtime behavior. An example is the
impact of changes in a user profile on the service delivery in a given situation, for
instance taking the change of a user’s geographical location into consideration.

Service personalization is not limited to data (such as selective content delivery) or
the user interface only, but will also involve DSA with changes to behavior (service
logic) and interaction (service signaling and communication). Such service adaptation
allows mobile systems to react to changes in the environment, which are inherent in
their nature to users roaming in a federated world-wide service space. For instance, a
personalized software application may be downloaded by users, based on their
personal preferences or current environments. To implement this, the appropriate user
aspects have to be merged for a personalized service.

DSA also supports the creation of services being capable of dynamic
personalization. For example, adaptation of service behavior can be made possible

238 R. Hirschfeld, K. Kawamura, and H. Berndt

through extensions to the service provisioning infrastructure that allows the selection
of units of modularity to be adjusted.

4.2 Application-Level Security

One of the main acceptance criteria for new communication and collaboration
services is an adequate management of privacy. We need to ensure all privacy
policies and security constraints to be enforced consistently across the whole system.
Furthermore, in an open environment, we need to assure that our security restrictions
and privacy policies not only affect components currently installed and running, but
also the ones that will be installed in the future.

To ensure that, we need a mechanism that continuously observes the runtime
platform and adjusts to the requirements all newly added components in a consistent
manner. DSA can play an important role in providing such a mechanism.

4.3 Pre-standard Releases

Very often, standardization processes take a long time, and most of the time longer
than expected. While shipping standard conformant products is essential for solutions
that have to be integrated with a heterogeneous environment, time to market is most
of the time more critical to the success of a business than standard conformance.

DSA allows for both, early product releases and standard conformance. If early
releases of a standard become reasonably stable, affected component can be released
at that time. Once the final release of the standard becomes available, all affected and
already deployed components can be updated to conform to the available standard.
Advanced product planning will be possible through the application of DSA in later
phases of the lifecycle of a product.

4.4 Regulatory Requirements

The same said about pre-standard releases holds for regulatory requirements to be
met. Whenever changes of laws or other regulations affect products and systems
already released and deployed, such products and systems need to be adjusted. This
process can become very cost intensive if carried out the traditional way by building a
completely new system, taking down the old systems and bringing up the new ones,
possibly with the consequence of service outages and all economical consequences
involved.

DSA allows us to upgrade deployed and running systems, at runtime, without the
need to disrupt any service provided. Delta modules can provide the additional or
changed functionality needed to meet new requirements, and the DSA infrastructure
makes these modules effective without service disruption if possible.

Dynamic Service Adaptation for Runtime System Extensions 239

5 Summary

We expect next generation mobile communication systems to be more open to third-
party service providers, yielding a rich and flexible service landscape. With that, such
systems will be more complex than ever before. Different parts of the system will
evolve at a different pace. Service offerings continuously come and go. And because
change is rather the norm than the exception, service platforms need to prepare for it.
Instead of relying on premature abstractions, other mechanisms are required to allow
for system adaptations to be performed – when they are needed, on-demand. To
ensure a pleasant service experience and to avoid system downtimes and disruptions
of service as much as possible, necessary adaptations should preferably carried out
during runtime. In this paper we show what we believe is necessary to dynamically
adapt services by giving an overview of our approach, our adaptation platform, and by
showing how to apply these concepts and technologies to integrate and extend
services at runtime. While in the past most of the adaptation strategies are based on
redundancy and failovers, this is no longer possible anymore in a world of small
mobile devices. A new approach is required to deal with change. DSA is ours.

Acknowledgements. We would like to thank Matthias Wagner, Stefan Hanenberg,
Andreas Raab, Wolfgang Kellerer, Anthony Tarlano, and Christian Prehofer for their
contributions.

References

1. Allen, R.: Faure. http://russell-allen.com/squeak/faure/.
2. Aspect-Oriented Software Development homepage (http://www.aosd.net/).
3. Brant, J.; Foote, B.; Johnson, R.; Roberts, D.: Wrappers to the Rescue. In: Proceedings of

the 1998 European Conference on Object-Oriented Programming (ECOOP), pp. 396–417,
Brussels, Belgium, 1998.

4. Elrad, T. ;Aksit, M.; Kiczales, G.; Lieberherr, K.; Osher, H.: Discussing Aspects of AOP.
In: Communications of the ACM, Vol. 44, No. 10, pp. 33–38, October 2001.

5. Ernst, E.: Separation of Concerns. In: Proceedings of the AOSD 2003 Workshop on
Software-Engineering Properties of Languages for Aspect Technologies (SPLAT), Boston,
MA, USA, March 2003.

6. Filman, R.E., Friedman, D.P.: Aspect-Oriented Programming is Quantification and
Obliviousness. In: Proceedings of the ECOOP 2001 Workshop on Advanced Separation of
Concerns, Budapest, Hungary, June 2001.

7. Goldberg, A.; Robson, D.: Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, 1983.

8. Gosling, J.; Joy, B.; Steele, G.; Bracha, G.: The Java Language Specification (Second
Edition). Addison-Wesley, 2000.

9. Hirschfeld, R.: AspectS – Aspect-Oriented Programming with Squeak. In: M. Aksit, M.
Mezini, R. Unland, editors, Objects, Components, Architectures, Services, and
Applications for a Networked World, LNCS 2591, pp. 216–232, Springer, 2003.

10. Hirschfeld, R.; Wagner, M.: PerspectiveS – AspectS with Context. In: Proceedings of the
OOPSLA 2002 Workshop on Engineering Context-Aware Object-Oriented Systems and
Environments (ECOOSE), Seattle, WA, USA, 2002.

240 R. Hirschfeld, K. Kawamura, and H. Berndt

11. Hirschfeld, R.: Dynamic Service Adaptation. DoCoMo Euro-Labs Technical Report, ITR-
FNL-023, Munich, April 2003.

12. Hürsch, W.L.; Lopes, C.V.: Separation of Concerns. College of Computer Science,
Northeastern University, Boston, USA, February 1995.

13. Ingalls, D.; Kaehler, T.; Maloney, J.; Wallace, S.; Kay, A.: Back to the Future: The Story
of Squeak, a Practical Smalltalk Written in Itself. In: Proceedings of the 1997 Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pp.
318–326, Atlanta, GA, USA, October 1997.

14. Kay, A.: Is “Software Engineering” an Oxymoron? Viewpoints Research Institute, 2002.
15. Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W. G.: An

Overview of AspectJ. In: Proceedings of the 2001 European Conference on Object-
Oriented Programming (ECOOP), pp. 327–355, Budapest, Hungary, 2001.

16. Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, Ch.; Lopes, C. V.; Loingtier, J.-M.;
Irwin, J.: Aspect-Oriented Programming. In: Proceedings of the 1997 European
Conference on Object-Oriented Programming (ECOOP), pp. 220–242, Jyväskylä, Finland,
1997.

17. Kiczales, G.; des Rivieres, J.; Bobrow, D.: The Art of the Metaobject Protocol. Addison-
Wesley, 1991.

18. Kniesel, G.; Costanza, P.; Austermann, M.: JMangler – A Framework for Load-Time
Transformation of Java Class Files. In: Proceedings of the Workshop on Source Code
Analysis and Manipulation (SCAM). Florence, Italy, November 2001.

19. Lopes, C. V.: D: A Language Framework for Distributed Programming. Dissertation.
College of Computer Science, Northeastern University, Boston, USA, 1997.

20. Maes, P.: Concepts and Experiments in Computational Reflection. In: Proceedings of the
1987 Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pp. 147-155, Orlando, FL, USA, 1987

21. Mendhekar, A.; Kiczales, G.; Lamping, J.: RG: A Case-Study for Aspect-Oriented
Programming. Xerox PARC. Technical Report SPL97-009 P9710044. February 1997.

22. Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Modules. In:
Communications of the ACM, Vol. 15, No. 12, pp. 1053–1058, December 1972.

23. Pree W.: Design Patterns for Object-Oriented Software Development. Addison-Wesley,
1994.

24. Rivard, F.: Smalltalk: A Reflective Language. In: Proceedings of Reflection 1996.
25. Tarr, P.; Ossher, H.; Harrison, W.; Sutton Jr., S.M.: N Degrees of Separation: Multi-

Dimensional Separation of Concerns. In: Proceedings of the International Conference on
Software Engineering (ICSE), pp. 107–119, Los Angeles, CA, USA, May 1999.

	1	Introduction
	2	Dynamic Service Adaptation
	2.1	Modularity, Variation Points, Objects, and Aspects
	2.2	Late Binding and Computational Reflection
	2.3	Adaptation Platform

	3	Runtime System Extensions
	3.1	Our Base Application
	3.2	Tetris
	3.3	Tetris Integration
	3.4	Usage Indication and Metering

	4	Further Opportunities
	4.1	Personalization
	4.2	Application-Level Security
	4.3	Pre-Standard Releases
	4.4	Regulatory Requirements

	5	Summary
	Acknowledgements. We would like to thank Matthias Wagner, Stefan Hanenberg, Andreas Raab, Wolfgang Kellerer, Anthony Tarlano, and Christian Prehofer for their contributions.
	References

