
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2006; 36:1115–1131
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.766

Dynamic service adaptation‡

Robert Hirschfeld1,2,∗,† and Katsuya Kawamura1

1DoCoMo Communications Laboratories Europe, Landsberger Straße 312, D-80687 Munich, Germany
2Hasso-Plattner-Institut, Universität Potsdam, Prof.-Dr.-Helmert-Straße 2-3, D-14482 Potsdam, Germany

SUMMARY

Change can be observed in our environment and in the technology we build. While changes in the
environment happen continuously and implicitly, our technology has to be kept in sync with the changing
world around it. Although we can prepare for some of the changes for most of them we cannot.
This is especially true for next-generation mobile communication systems that are expected to support
the creation of a ubiquitous society where virtually everything is connected and made available within an
organic information network. Resources will frequently join or leave the network, new types of media or
new combinations of existing types will be used to interact and cooperate, and services will be tailored
to preferences and needs of individual customers to better meet their needs. This paper outlines our
research in the area of dynamic service adaptation to provide concepts and technologies allowing for such
environments. Copyright c© 2006 John Wiley & Sons, Ltd.

Received 19 April 2004; Revised 9 May 2006; Accepted 11 May 2006

KEY WORDS: dynamic service adaptation; DSA; aspect-oriented programming; dynamic AOP

INTRODUCTION

Mobile communication systems beyond the third generation (B3G) are not only expected to integrate
several networks, but also to encourage a substantial richness of services through third-party service
offerings. In this context, comprehensive support for complex and dynamic computing environments,
distributed over multiple service platforms, is essential to adequately address high demands for mobile
multimedia services B3G. The unanticipated nature and complexity of forthcoming services and
applications make support for dynamic service adaptation (DSA) and unanticipated software evolution
(USE) a necessity.

In this paper we give an overview of some of our research efforts towards systems B3G.
These include software engineering principles and mechanisms for software evolution in mobile

∗Correspondence to: Robert Hirschfeld, DoCoMo Euro-Labs, Landsberger Strasse 312, 80687 Munich, Germany.
†E-mail: hirschfeld@acm.org
‡An earlier version of the paper was presented at DARES Workshop on Distributed Auto-adaptive and Reconfigurable Systems
2004 in Tokyo, Japan.

Copyright c© 2006 John Wiley & Sons, Ltd.

1116 R. HIRSCHFELD AND K. KAWAMURA

communications systems and dynamic adaptation for service integration and personalization. We align
our work with active research in the field of aspect-oriented software development (AOSD, [1]) and
USE and point out how the development of highly-distributed mobile telecommunication systems can
benefit from the deployment of AOSD and USE.

In addition to seamless and secure access to heterogeneous networks, B3G systems are considered
to encompass high service availability and best service quality to the end-user. With respect to that,
system requirements are highly demanding. Here are some of the key issues we have identified to be
essential to B3G communication platforms:

• short development and provisioning cycles;
• minimal system downtimes;
• runtime updates/upgrades support;
• third-party component and service integration;
• integration of heterogeneous environments; and
• service personalization.

We consider DSA to be significant in our ability to address these issues, at both the network
and the terminal side. The intention of DSA is to enable service and platform evolution, to support
the advancement of individual parts at a different pace, and to facilitate personalization, context-
awareness, and ubiquitous computing. We consider long-lived, continuously running, highly available
systems which might be embedded or large-scale widely distributed—all of which are properties of
mobile communication systems—to be the chief candidates to benefit from DSA. While our work is
mainly concerned with application-level services, we do believe that our approach can be extended to
adaptations at the system or infrastructure level, including the adaptation platform itself.

Most of the adaptation mechanisms deployed today concentrate typically on content, not so often
on communication, but almost never on service logic or behavior itself. Thus, content as well as
communication adaptation is understood much better than service logic adaptation. For convenience,
we will use the term service adaptation to denote service logic or behavior adaptation.

Contributions of our paper include the following.

• The equation of aspects as modularity constructs for implementing crosscutting concerns with
adaptation modules for capturing changes to the system that usually crosscut multiple modules
in the target system.
• The design and implementation of an adaptation platform that allows for dynamic deployment,

activation, deactivation, and un-deployment of adaptation modules into a running system,
controlling the lifecycle of aspect-based adaptation modules.

In contrast to more traditional approaches, we combine aspect-oriented programming (AOP) [2–5]
with computational reflection and late binding to adapt services and service platforms when changes
actually require doing so, as late as possible, preferably without disruption of service.

The remainder of our paper is organized as follows. The next section illustrates our approach to
DSA, addressing modularity and variation points, AOP, late binding and reflection. An overview of our
research platform is given in the subsequent section. After demonstrating DSA applied in the context
of third-party service integration, our paper is concluded.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1117

Computation/Behavior

Data/Content

Communication

…

R
un
-T
im
e

Lo
ad
-T
im
e

C
om
pi
le
-T
im
e

D
ev
-T
im
e

C
o
m
p
o
s
it
io
n

T
ra
n
s
fo
rm
a
ti
o
n

…

Computation/Behavior

Data/Content

Communication

…

R
un
-T
im
e

Lo
ad
-T
im
e

C
om
pi
le
-T
im
e

D
ev
-T
im
e

C
o
m
p
o
s
it
io
n

T
ra
n
s
fo
rm
a
ti
o
n

…

Computation/Behavior

Data/Content

Communication

…

R
un
-T
im
e

Lo
ad
-T
im
e

C
om
pi
le
-T
im
e

D
ev
-T
im
e

C
o
m
p
o
s
it
io
n

T
ra
n
s
fo
rm
a
ti
o
n

…

What

When

How

Figure 1. Adaptation dimensions.

APPROACH

We are concerned with the what, when, and how of service adaptation (Figure 1). The what of service
adaptation distinguishes between the basic properties of software systems computation, state, and
communication. The when of service adaptation addresses the time when adaptations can be made
operational in a system during software development, at development time, compile-time, load-time,
or runtime. The how of service adaptation studies tools and techniques that allow for adaptations to
become effective.

The concept of adaptability is closely related to that of modularity [6] and variation points [7,8].
Modularization is a mechanism for improving the flexibility and comprehensibility of a system while
allowing the shortening of its development time. Variation points allow us to explicitly designate
module boundaries in a system’s design where changes are expected to happen without the need for
explicitly naming these changes. Variation points are introduced to support flexibility and extensibility
through the separation and composition of common and variable system aspects. Variations and
variation points depend on the modularity mechanism provided by the programming platform that
a system is built on. Most newly built systems are based on object-oriented technologies with classes
and instances as modularity constructs as well as units of change. AOP provides a new, more fine-
grained, modularity construct that allows us to represent crosscutting concerns, down to the methods
of individual instances.

Most changes happen after a system’s initial deployment and need to be addressed very late in a
system’s lifecycle. It is preferable, or even required, to avoid system downtimes by performing as
many corrective actions on-demand at runtime. To address this requirement, we consider reflective
architectures and late binding to be key elements of a platform for DSA.

In our approach to DSA, we use the aspect modularity construct to most adequately represent units
of change. Computational reflection, dynamic AOP, and late binding will allow us to adapt service

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

1118 R. HIRSCHFELD AND K. KAWAMURA

and service platforms when changes actually require doing so, as late as possible, preferably without
system downtime and with that the disruption of service.

In the following sections, we give a brief introduction to the concepts of modularity, variation points,
AOP, reflection, and late binding.

Modularity and variation points

Modularity is one approach to manage complexity. By organizing a complex system into smaller, less
complex subsystems and then recombining these subsystems in a principled way, we are trying to
improve the comprehensibility of a system as well as its flexibility and so reducing its development
time [6]. We design modules to hide from each other complex design decisions or design decisions
which are more likely to change [6]. Variation points [8], also called hotspots [9], allow us to designate
module boundaries in a system’s design where we expect changes to happen without explicitly naming
them. With variation points, we gain flexibility in the context of change through the separation and
composition of common and variable system aspects.

In object-oriented programming, for example, the basic unit of modularity is that of objects.
Class objects capture the properties of their instances. Instead of being localized within one or a small
number of modules, code that implements a particular concern is spread around (scattered) over many
or even almost all places, crosscutting various other modules and implementing other concerns as well.
Because of its non-explicit structure, such crosscutting code is difficult to reason over, and with that
it is also difficult to change. The consistency of changes is both hard to prove and hard to enforce.
Object-oriented programming and its class modularity construct, while proven to be appropriate
for many modeling scenarios, cannot be of help in implementing the logging concern in a well-
modularized way.

Variations and variation points [8] depend on the underlying modularity mechanism provided by the
programming platform a system is built on. Most modern software systems were built using object-
oriented technologies where the modularity constructs, and with that the units of change, are those
of classes and instances. Although this level of granularity is sufficient in some cases, a more fine-
grained approach to modularity is desirable to permit the change of even smaller semantic units such as
method implementations. Also, while traditional modules such as classes and instances might support
the proper structuring of the initial system, subsequent changes to this system could crosscut these
module boundaries to affect more than one location.

AOP

AOP [2–5] is a new software technology addressing the issues of separation of concerns (SOC) [10].
It is based on the assumption that crosscutting is inherent in complex systems. AOP addresses these
issues by introducing new/alternative units of modularity to capture crosscutting structures explicitly.
Such structures are called aspects and can be found in a software system’s design as well as its
implementation.

Aspects are units of modularity that represent implementations of crosscutting concerns.
Aspects associate code fragments (code to be executed when a join point is encountered) with join
points (well-defined points in the execution of code) by the use of advice. A collection of related
join points, to be addressed by an advice, is called a pointcut. Join point descriptors denote targets for

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1119

the weaving process to apply computational changes to the underlying base system stated in advice
objects.

The activity of integrating aspects and their advice into the base system is called weaving. Weaving
in general can be performed at compile-time, load-time, or runtime. AspectJ [11] is an example
of compile-time weaving. Here, the weaver parses an AspectJ program, transforms the AspectJ
abstract syntax tree (AST) into a valid Java [12] AST, and then generates Java byte code for a
standard Java virtual machine. JMangler [13,14] performs load-time transformation of Java class
files. AspectS [15,16] employs a runtime weaver to transform the base system according to the
aspects involved. The woven code is based on method wrappers [17], reflection [18], and meta-
programming [19].

As of today there are several approaches that support aspect-oriented concepts, ranging from general-
purpose aspect languages such as AspectJ or AspectS to domain-specific aspect languages such as
RG [20] or D [21]. Many of these languages allow us to represent crosscutting concerns, down to
the methods and instance variables level of granularity. Like objects in object-oriented programming,
aspects may appear at all stages of the software development lifecycle. Examples of aspects that can
be commonly observed are architectural or design constraints, features [22], and systemic properties
or behaviors such as error recovery, logging, or transactional behavior [23].

Late binding and reflection

During the software development and product lifecycle, it happens quite frequently that we find out
something we wished we had known from the very beginning of the project [24]. While there is always
the chance that some of the requirements were not sufficiently understood to adequately address them
in the software system, many changes happen after a system’s initial deployment, and with that are
impossible to anticipate and address right from the beginning. On the contrary, such changes must be
addressed very late, after deployment, and during production. System downtime can be minimized if
most corrective actions are carried out at runtime.

To address this requirement, we consider reflective architectures and late binding to be key elements
of a platform for DSA.

Reflective architectures are implemented by systems that incorporate structures representing (aspects
of) themselves [18]. The aggregate of these structures is called the system’s self representation,
which allows the system to both observe its own execution as well as influence or change its own
behavior. The former property of a reflective system is called introspection and the latter intercession.
In the context of service updates and adaptation, introspection will allow us to observe computational
properties of a deployed set of services as well as the computational environment they are running in.
Intercession can then be based on our observations and result in the alteration of the service/system.
While there is also research on the subject of compile-time reflection (especially in the context of
generative programming, [8]), we are talking about runtime reflection if not explicitly stated otherwise.

Late binding describes a mechanism to defer decisions to a later point in time. With late binding, we
can avoid too early commitments to design decisions, especially decisions regarding variation points
that we might or will not be able to maintain. Whereas early binding requires us to provide abstractions
addressing possible change at a very early point in time, late binding helps us to avoid such premature
abstractions. Extreme late binding allows these decisions to be made as late as possible, at runtime.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

1120 R. HIRSCHFELD AND K. KAWAMURA

Squeak/Smalltalk Base

Squeak/Smalltalk MOP

AspectS

PerspectiveS

• • •

Adaptation

Module

System

Adaptation

Figure 2. Dynamic adaptation platform.

PLATFORM

With DSA we want services and service platforms to be adaptable, as late as possible, when changes
actually require adaptation to happen, with the benefit of avoiding system downtime and with that the
disruption of service.

To carry out our research, we need to comprehend the nature of fully dynamic systems to advance
our understanding of the possibilities as well as the difficulties of our ambitions. The selection and
extension of our research platform are important factors for making progress. Our platform constituents
build on top of each other, which leads to a layered architecture as depicted in Figure 2.

Running bit-identically on a great variety of platforms—ranging from server machines to small
devices (Figure 3), Squeak/Smalltalk serves as a very dynamic object-oriented multimedia scripting
environment [25–27]. Some of its most remarkable properties are its extensive reflection support
covering both introspection and intercession, its powerful meta-object protocol [19] that gives us full
access to the computational properties of our platform, and its support for very late binding to defer
binding decisions until the point when they actually need to be made. The idea of meta-object protocols
is that one can and should open languages up to allow users to adjust the design and implementation
to make the language or environment to suit their particular needs. With that, users are encouraged to
actively participate in the language design process. Language designs based on a meta-object protocol
are themselves implemented as object-oriented systems which take advantage of object orientation to
make the properties of such language implementations flexible.

AspectS extends the Squeak/Smalltalk environment to allow for experimental aspect-oriented system
development. The goal of AspectS is to provide a platform for the exploration of aspect-oriented
software composition in the context of dynamic systems. It supports simplified guided meta-level
programming, addressing the tangled code phenomenon by providing aspect-related modules. AspectS
shows great flexibility by not relying on code transformations (neither source nor byte code) but making

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1121

Figure 3. DSA platform running on a handheld device.

use of meta-object composition instead. In contrast to these approaches to AOP that only focus on
class-level aspects, AspectS allows for instance-level aspect and with that allowing for modularization
of behavior that crosscuts a set of individual instances.

PerspectiveS builds on AspectS to allow for dynamic behavior layering in the Squeak environment.
It coordinates context awareness of a set of aspects, and so lets us decorate a system with
context-dependent behavior, without requiring developers of the base system to be aware of
potential decorations. PerspectiveS enables greater SOC of a base system from its context-dependent
behavior [28]. With that, base systems can be relieved from providing behavior that explicitly
takes action in response to context changes not known at either development or deployment time.
PerspectiveS facilitates role modeling by dynamic composition of multiple roles without the loss of
object identity. Roles can be added or removed on-demand, with each role bringing in its own set
of state and behavior.

All of these layers allow us to both implement our basic service logic as well as to adapt this
service logic to additional requirements and unforeseen circumstances if necessary. Due to the dynamic
nature of our research platform, adaptation activities can be carried out on an on-demand basis, during
runtime, while our services are already deployed and activated.

Please note that we decided to base our research environment on Squeak because we wanted to
take advantage of its many innovative applications, including the Open Croquet platform [29,30].
Most of the results could have been achieved in other environments as well. To yield similar results in a

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

1122 R. HIRSCHFELD AND K. KAWAMURA

Java-based context, we would like to mention Reflex, an open and portable system for behavioral
reflection and AOP in Java [31]. DAC++ [32] tries to provide similar runtime flexibility in a
C++-based setting.

In the next section, we use the scenario of third-party service integration to illustrate the application
of our DSA platform.

CASE STUDY: THIRD-PARTY SERVICE INTEGRATION

We expect B3G mobile communication systems to be open to third-party service providers, allowing
them to offer their services. Not all services to be offered will exactly match with service platforms
operated. Adjustments need to be made to eventually offer a pleasant service experience to customers.
While some of the adjustments can be identified and applied upfront, many of them will be required
after the initial service deployment, perhaps without disrupting a currently active service.

In the following, we illustrate the value of DSA by discussing in more detail four such situations
that can occur during third-party service integration. The situations we selected are:

• additional safeguards;
• style guide conformance;
• late user interface (UI) branding; and
• upgrades, updates, and fixes.

This list is by no means complete. System extensions, usage indication, metering, personalization,
per-standard releases, and the meeting of regulatory requirements are prime candidates to be added.

All insights concerning DSA in the context of third-party service integration, safeguard introduction,
style guide conformance, UI branding, upgrades, updates, fixes and so on are derived from first-hand
experience, gained through prototypical implementations. Here, Squeak, AspectS, and PerspectiveS
serve as part of our research platform. Squeak provides a reflective runtime environment with late
binding and reflection facilities. AspectS adds quantification and obliviousness to dynamic systems.
PerspectiveS offers context-aware adaptation activation mechanisms.

Basic service

We decided to offer a new service called a personal digital assistant (PDA), which is intended to be
used by our subscribers at their mobile terminal. The particular PDA implementation we utilize on our
service platform is Faure [33], an open-source PDA implementation designed to run on a handheld
device.

Obtaining the third-party component implementing this PDA service was simple. We located the
component in our component repository (the Web), and downloaded and installed it onto our service
platform, acting as our integration testbed. The welcome screen of an active Faure PDA summarizes
to-do items and scheduled events at a certain time on a certain day.

We can start using our new PDA right away organizing our list of things to do, our personal schedule,
our contact information, or our social events to follow up. Our new PDA also offers us a little notepad
where we can sketch notes or little drawings, a little piano to explore some music, we can start some
3D demos that emphasize the power of our new toy, or just play a game.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1123

Figure 4. Additional safeguard.

Additional safeguards

Until now, we faced no problem integrating the PDA component into our service provisioning
environment. Ending the PDA service by pressing the Quit button, however, reveals an assumption
made by the original developer of this third-party component that is not acceptable for our platform:
instead of ending only the PDA service, quitting the PDA will also quit the PDA’s execution platform
and with that our entire service platform.

To make sure that something like that will not happen in a production environment, we need to adjust
the behavior of the Quit button functionality. Instead of asking the original Faure developers to change
their components to fit our needs, and also instead of us performing those changes in the component’s
source code ourselves, we decided to perform an adaptation in a non-invasive manner (meaning not
affecting the original source code of the original implementation) by applying DSA. We provided an
adaptation module (an aspect) that would accompany the original component and instruct our runtime
environment to insert additional behavior into the Quit button functionality so that every time customers
want to end their new PDA service they would be asked if they wanted to exit only the PDA or the
whole runtime platform (Figure 4).

In this example we introduced an additional dialog to better visualize the change applied. In a
commercial system we would most likely not offer such an option, but exit the PDA only without
giving the choice to exit our platform (here Squeak) in the first place.

The following two listings illustrate how the adaptation was achieved. Figure 5 shows the method
that is invoked every time a customer presses the Quit button: our PDA saves its current state, and

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

1124 R. HIRSCHFELD AND K. KAWAMURA

FaureWorld class�
quit

PDA current saveDatabase: ‘db.pda’.
Smalltalk quitPrimitive.

Figure 5. Quit primitive invocation.

FdsaQuitAspect�
adviceBrowserBuildMorphicSystemCatList

↑ AsAroundAdvice
qualifier: (AsAdviceQualifier

attributes: { #receiverClassSpecific. })
pointcut: [OrderedCollection

with: (AsJoinPointDescriptor
targetClass: FaureWorld class
targetSelector: #quit)]

aroundBlock: [:receiver :args :aspect :client :clientMethod |
| ctx morph |
PDA current saveDatabase: ’db.pda’.
(self confirm: ’Quit Squeak, too?’)

ifTrue: [Smalltalk quitPrimitive]
ifFalse: [self deleteFaureWorld]]

Figure 6. Safeguard dialog for quit.

after that invokes the quit primitive (Smalltalk quitPrimitive) of our platform, with the consequence of
terminating the entire platform (Squeak).

Figure 6 shows part of our adaptation module (FdsaQuitAspect) that instruments the previously
discussed method. Employing AspectS [15,16], we constructed an advice (AsAroundAdvice) that
provides code to be executed instead of the original quit method of FaureWorld. After saving the state
of our PDA as in the original implementation, we inserted a dialog (self confirm:) asking our customer
if only the PDA is to be terminated or actually the entire platform (Squeak).

Our deployed PDA service is accompanied by this adaptation module that instructs our service
platform to carry out the desired adaptation step.

Style guide conformance

Many operators require third-party services provided through their infrastructure to conform to
specific UI style guides. Prominent examples are style guides for i-mode by NTT DoCoMo and for

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1125

Figure 7. Imposed style guide.

Vodafone live! by Vodafone. Non-conformance to such style guides can cause misunderstanding on
the user’s side and ultimately mean that the service portfolio offered by a service provider is not well-
selected. This can and will cause harm to customer acceptance, at best of an individual service offering
or at worst of the entire service portfolio. Style guide-related adaptations might not only be necessary
for third-party components not developed originally with a specific style guide in mind, but also when
existing style guides or policies are changed.

In our example, we have chosen a style guide that requires the text that appears on Quit buttons to be
rendered using the color red. The developers of the Faure PDA did not anticipate the color of the Quit
button text to be a concern for us to be changed, and because of that they did not provide a means to
change it. Instead, the coloring of the Quit button is hidden somewhere in the UI initialization sequence
of the PDA component.

Figure 7 shows Faure’s UI after it had been adapted by us. We applied a non-invasive adaptation
module that changed the color used to initialize the Quit buttons text to be red.

In Figure 8 we can see part of our adaptation module (FdsaQuitButtonMigrateAspect) that
instruments Faure’s menu bar button construction method (Figure 9) as follows: we created an
AspectS advice (AsBeforeAfterAdvice) that provided code to be executed after each invocation of
the addButton:withAction:target: method of FaureMenuBar. Our code checks whether the button
constructed is actually a Quit button, and if so it changes its text color to red (m color: Color red).

While such a change only becomes effective during the start-up of a PDA component, this style
guide-related adjustment also needs to be applied to all running PDA components, meaning to
PDA components that were already started and to those already run their UI initialization sequence.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

1126 R. HIRSCHFELD AND K. KAWAMURA

FdsaQuitButtonMigrateAspect�
adviceFaureMenuBarAddButtonWithActionTarget

↑ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier

attributes: { #receiverClassSpecific. })
pointcut: [OrderedCollection

with: (AsJoinPointDescriptor
targetClass: FaureMenuBar
targetSelector: #addButton:withAction:target:)]

afterBlock:[:receiver :args :aspect :client :return |
| m |
m← receiver submorphs first findA: StringMorph.
(m notNil and: [m contents = ‘Quit’])

ifTrue: [m color: Color red]]

Figure 8. Specialized quit button initialization.

FaureMenuBar�
addButton: aName withAction: aSymbol target: aTarget

| m |
(m← SimpleButtonMorph new) label: aName;

borderWidth: 0;
target: aTarget;
actionSelector: aSymbol;
actWhen: #buttonDown;
cornerStyle: #Square;
color: Color black;
height: 20;
vResizing: #rigid;
hResizing: #rigid;
layoutInset: 3;
changeTableLayout.

(m findA: StringMorph)
color: Color white.

self addMorph: m.

Figure 9. Button initialization.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1127

To achieve that, we greatly benefit from the reflective nature of our runtime platform: we employ
a metaprogram that finds all active PDAs not yet conforming to our style guide requirements and
transforms all places necessary to make all existing Quit buttons render their text in red.

Late UI branding

Many third-party components offer UI elements that could be used for additional branding, which
could be used by the operator of a service platform or the service providers themselves to place brand
names, trade marks, or even advertisements. Unfortunately, most of the time, component providers do
not provide explicit interfaces that would allow us to make use of those additional opportunities for
branding.

DSA allows us to augment basic UI rendering to place additional branding-related information onto
UI widgets and other surface areas without anticipated interfaces to do so explicitly.

The Faure PDA comes with a 3D demo to show the high-performance 3D rendering capabilities of
the Squeak environment that Faure makes use of. The demo displays a cube with its six square sides
rendered in a different color. Wheel controls allow this cube to be zoomed and rotated in all three
dimensions.

Since the surface area of the cube is rendered using a plain texture, it is a prime candidate for
additional branding. We provided an adaptation module that places an additional texture, the DoCoMo
Euro-Labs logo, on its surface (Figure 10). The application of our adaptation can again be characterized
as dynamic and non-invasive because it can be applied and revoked at runtime, and it does not change
the source code of the original component adapted to our current needs.

Figure 11 shows the code used to initialize Faure’s 3D demo scene. Here, a 3D scene object (a cube)
is created and added to the actual scene, without providing any specific texture to be rendered on the
sides of the cube.

In Figure 12, we have another adaptation module (FdsaDcml3dMigrateAspect) creating an advice
(AsBeforeAfterAdvice) that adds some code to be executed after the creation of the 3D demo scene
in createDefaultScene. Here we provide the 3D demo object with our DoCoMo Euro-Labs logo as the
new texture.

This particular adaptation is yet another example of the need for instance or state migration necessary
to adjust existing objects with state that is the result of side effects that have occurred before the
activation of our adaptation module.

Upgrades, updates and fixes

By looking at the logo of DoCoMo Euro-Labs in Figure 10, we discovered a 3D rendering bug.
This rendering bug is not a bug introduced by Faure but was already there in our runtime environment.
Now that we have discovered it, it would also be nice to fix it quickly, without the need to rebuild the
whole system, shutting down all nodes that need to be fixed, replacing the old malfunctioning system
with the newly built one, and bringing everything up again. Note that bringing a system down and up
again might require us to backup and restore the operational state if necessary.

Instead of exercising the procedure of rebuilding and exchanging the system, we provide a dynamic
adaptation module that fixes the 3D rendering problem while our system is running (Figure 13).

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

1128 R. HIRSCHFELD AND K. KAWAMURA

Figure 10. Late UI branding.

B3DSceneMorph�
createDefaultScene

| sceneObj camera |
sceneObj← B3DSceneObject named: ‘Sample Cube’.
sceneObj geometry: (B3DBox

from: −0.7@−0.7@ to: 0.7@0.7@0.7).
camera← B3DCamera new.
camera position: 0@0@−1.5.
self extent: 100@100.
scene← B3DScene new.
scene defaultCamera: camera.
scene objects add: sceneObj.

Figure 11. Sample 3D scene creation.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1129

FdsaDcml3dMigrateAspect�
adviceB3DSceneMorphCreateDefaultScene

↑ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier

attributes: { #receiverClassSpecific. })
pointcut: [OrderedCollection

with: (AsJoinPointDescriptor
targetClass: B3DSceneMorph
targetSelector: #createDefaultScene)]

afterBlock: [:receiver :args :aspect :client :return |
receiver scene objects first

texture: ((Form fromFileNamed: ‘dcml.jpg’)
asTexture wrap: true)]

Figure 12. Offering a texture for the 3D cube.

Figure 13. Fixed 3D rendering problem.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

1130 R. HIRSCHFELD AND K. KAWAMURA

SUMMARY AND OUTLOOK

We believe that next-generation mobile communication systems will be more complex than ever before.
This is caused not only by the increased complexity of the environment these systems are connected
to, but is in part also due to the assumption that such systems will be open for third-party service
providers to offer their services to end-customers using the operator’s communications platform.
Service providers come and go, with their service portfolio adjusted to the needs and preferences
of their customers. Because changes are the norm rather than the exception and usually cannot be
planned for, we need new concepts, mechanisms and technologies to better support change to make
it all possible. We need to investigate what is really required to make us comfortable with change.
We then have to understand how to evolve our computational platforms to meet our needs, to migrate
to a different and better platform, or, if such a platform does not exist, how to build one ourselves.
In addition to concepts, mechanisms, and technologies, we also need appropriate infrastructure
support to propagate adaptation modules, to coordinate their activation and deactivation, to detect
and resolve conflicts if necessary, and to address safety and security concerns related to mobile code.
Service adaptation, or adaptation composition in general, can go beyond a basic approach towards
semantic-based service composition. We believe that our research will give us a more principled
approach to DSA.

ACKNOWLEDGEMENTS

Thanks are due to Matthias Wagner, Kazuhiro Abe, Masashi Umezawa, Hendrik Berndt, Pascal Costanza, and the
participants of the 2004 DARES workshop for their comments and contributions.

REFERENCES

1. AOSD homepage. http://www.aosd.net/ [March 2006].
2. Filman RE, Friedman DP. Aspect-oriented programming is quantification and obliviousness. Proceedings of the Workshop

on Advanced Separation of Concerns (OOPSLA 2000), Minneapolis, MN, October 2000. Available at:
http://citeseer.ist.psu.edu/filman00aspectoriented.html.

3. Filman RE. What is aspect-oriented programming, revisited. Proceedings of the Workshop on Advanced Separation of
Concerns (ECOOP 2001), Budapest, Hungary, June 2001. Available at: http://citeseer.ist.psu.edu/filman01what.html.

4. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier J-M, Irwin J. Aspect-oriented programming.
Proceedings of the European Conference on Object-Oriented Programming, Finland, 1997 (Lecture Notes in Computer
Science, vol. 1241), Akşit M, Matsuoka S (eds.). Springer: New York, 1997; 220–242.

5. Lopes CV. Aspect-oriented programming: An historical perspective (what’s in a name?). Technical Report UCI-ISR-02-5,
University of California, Irvine, CA, December 2002.

6. Parnas DL. On the criteria to be used in decomposing systems into modules. Communications of the ACM 1972;
15(12):1053–1058.

7. Jacobson I, Griss M, Jonsson P. Software Reuse: Architecture, Process and Organization for Business Success. Addison-
Wesley: Boston, MA, 1997.

8. Czarnecki K. Generative programming: Principles and techniques of software engineering based on automated
configuration and fragment-based component models. PhD Thesis, Technical University of Ilmenau, 1998.

9. Pree W. Design Patterns for Object-Oriented Software Development. Addison-Wesley: Boston, MA, 1995.
10. Ernst E. Separation of concerns. Proceedings of the AOSD 2003 Workshop on Software-Engineering Properties of

Languages for Aspect Technologies (SPLAT), Boston, MA, March 2003.
11. AspectJ homepage. http://eclipse.org/aspectj/ [March 2006].
12. Gosling J, Joy W, Steele G, Bracha G. The Java Language Specification (2nd edn). Addison-Wesley: Boston, MA, 2000.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

DYNAMIC SERVICE ADAPTATION 1131

13. JMangler homepage. http://javalab.cs.uni-bonn.de/research/jmangler/ [February 2005].
14. Kniesel G, Costanza P, Austermann M. JMangler—a framework for load-time transformation of Java class files.

Proceedings of the 1st IEEE International Workshop on Source Code Analysis and Manipulation (SCAM 2001). IEEE
Computer Society Press: Los Alamitos, CA, 2001.

15. AspectS homepage. http://www.prakinf.tu-ilmenau.de/∼hirsch/Projects/Squeak/AspectS/ [September 2005].
16. Hirschfeld R. Aspects—Aspect-oriented programming with squeak. Objects, Components, Architectures, Services, and

Applications for a Networked World (Lecture Notes in Computer Science, vol. 2591), Akşit M, Mezini M, Unland R (eds.).
Springer: New York, 2003; 216–232.

17. Brant J, Foote B, Johnson RE, Roberts D. Wrappers to the rescue. Proceedings of the European Conference on Object-
Oriented Programming (Lecture Notes in Computer Science, vol. 1445), Jul E (ed.). Springer: New York, 1998; 396–417.

18. Maes P. Computational reflection. PhD Thesis, Artificial Intelligence Laboratory, University of Brussels (VUB), 1987.
19. Kiczales G, des Rivieres J, Bobrow DG. The Art of the Metaobject Protocol. Addison-Wesley: Boston, MA, 1991.
20. Mendhekar A, Kiczales G, Lamping J. Rg: A case-study for aspect-oriented programming. Technical Report SPL97-009

P9710044, Xerox PARC, Palo Alto, CA, February 1997.
21. Lopes CV. D: A language framework for distributed programming. PhD Thesis, College of Computer Science, Northeastern

University, Boston, MA, 1997.
22. Prehofer C. Feature-oriented programming: A fresh look at objects. Proceedings of the European Conference on Object-

Oriented Programming, Finland, 1997 (Lecture Notes in Computer Science, vol. 1241), Akşit M, Matsuoka S (eds.).
Springer: New York, 1987; 419–471.

23. Fabry J. Modularizing advanced transaction management—tackling tangled aspect code. PhD Thesis, Vrije Universiteit
Brussel, 2005.

24. Kay A. Is Software Engineering an Oxymoron? Viewpoints Research Institute: Glendale, CA, 2002.
25. Goldberg A, Robson D. Smalltalk-80: The Language and its Implementation. Addison-Wesley: Boston, MA, 1983.
26. Ingalls D, Kaehler E, Maloney J, Wallace S, Kay A. Back to the future: The story of squeak, a practical smalltalk written

in itself. Proceedings of the Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM
Press: New York, 1997; 318–326.

27. Squeak homepage. http://www.squeak.org/ [March 2006].
28. Hirschfeld R, Wagner M. Perspectives Aspects with context. Proceedings of the OOPSLA 2002 Workshop on Engineering

Context-Aware Object-Oriented Systems and Environments (ECOOSE), Seattle, WA, November 2002. Available at:
http://citeseer.ist.psu.edu/hirschfeld02perspectives.html.

29. Smith DA, Kay A, Raab A, Reed DP. Croquet—a collaboration system architecture. Proceedings of the 1st Conference
on Creating, Connecting and Collaborating through Computing (C5 2003). IEEE Computer Society Press: Los Alamitos,
CA, 2003; 2–11.

30. Open Croquet homepage. http://www.opencroquet.org/ [March 2006].
31. Tanter E, Noye J. A versatile kernel for multi-language AOP. Proceedings of the GPCE (Lecture Notes in Computer

Science, vol. 3676), Gliick R, Lowry MR (eds.). Springer: New York, 2005; 173–188.
32. Almajali S, Elrad T. Benefits and challenges of a class-based design for dynamic aspects in DAC++. Workshop on Software

Engineering Properties of Languages and Aspect Technologies (AOSD 2006), Bonn, Germany, March 2006.
33. Faure homepage. http://russell-allen.com/squeak/faure/ [March 2006].

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1115–1131
DOI: 10.1002/spe

	INTRODUCTION
	APPROACH
	Modularity and variation points
	AOP
	Late binding and reflection

	PLATFORM
	CASE STUDY: THIRD-PARTY SERVICE INTEGRATION
	Basic service
	Additional safeguards
	Style guide conformance
	Late UI branding
	Upgrades, updates and fixes

	SUMMARY AND OUTLOOK

