
Report from Dagstuhl Seminar 12011

Foundations for Scripting Languages
Edited by
Robert Hirschfeld1, Shriram Krishnamurthi2, and Jan Vitek3

1 Hasso-Plattner-Institut, Potsdam, DE, hirschfeld@hpi.uni-potsdam.de
2 Brown University, Providence, US, sk@cs.brown.edu
3 Purdue University, US, jv@cs.purdue.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 12011 on the “Found-
ations for Scripting Languages”. The choice of “for” rather than “of” is intentional: it is our
thesis that scripting languages are in need of foundations to support their extensive use but lack
them, and we hope this event consolidated and advanced the state of the art in this direction.

Seminar 02.–06. January, 2012 – www.dagstuhl.de/12011
1998 ACM Subject Classification D.2 Software Engineering, D.2.4 Formal Methods, D.3 Pro-

gramming Languages, D.3.1 Semantics, D.3.4 Compilers, I.7.2 Scripting Languages
Keywords and phrases scripting languages, programming languages semantics, type systems,

verification techniques, security analyses, scalability, rapid software development
Digital Object Identifier 10.4230/DagRep.2.1.1

1 Executive Summary

Robert Hirschfeld
Shriram Krishnamurthi
Jan Vitek

License Creative Commons BY-NC-ND 3.0 Unported license
© Robert Hirschfeld, Shriram Krishnamurthi, and JanVitek

Common characteristics of scripting languages include syntactic simplicity, a lack of onerous
constraints for program construction and deployment, the ability to easily connect to and
control systems processes, strong built-in interfaces to useful external objects, extensive
library support, and lightweight (and embeddable) implementations. More broadly, these
characteristics add up to strong support for effective software prototyping. Due to a
combination of these characteristics, common scripting languages like Perl, Python, Ruby,
JavaScript, Visual Basic, and Tcl have moved from the fringes to mainstream program
development.

To academics, these languages do not appear that different from, say, Scheme or ML. Since
languages like Scheme and ML have well-defined semantics and other formal attributes, the
mainstream passion for scripting languages may appear to simply be the result of ignorance
of better languages amongst mainstream developers. However, the properties that scripting
language users claim to find most beneficial are often not found in their more academic
counterparts, such as a strong orientation towards systems process management, easily
extensible objects, specific but useful control operators, etc.

In short, the academic tendency towards reductionism appears to miss some important
characteristics. In particular, properties that may appear incidental—and are ignored by

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Foundations for Scripting Languages, Dagstuhl Reports, Vol. 2, Issue 1, pp. 1–18
Editors: Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12011
http://dx.doi.org/10.4230/DagRep.2.1.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 12011 – Foundations for Scripting Languages

the formalization of academic languages—may actually be essential. As a result, the formal
study of scripting languages is a worthwhile research activity in its own right.

Not only does the study of scripting offer academics fresh problems, their results have
the potential for widespread benefit. As scripts grow into programs, the very characteristics
that seem an advantage sometimes prove to be disadvantages. If any object can be extended
by any other object, it is impossible to reason about its behavior. If any object can access
any resources, it is impossible to bound security implications. If programmers can places
values of any type into a variable, it is impossible to obtain type guarantees. And so on. In
other words, the very flexibility that enables prototyping inhibits the reasoning necessary for
programs to grow in scale.

In the early days of scripting, there was an expectation that scripts were not meant to
“grow up”. Rather, as a prototype proved valuable, it would be turned into a program in a
mainstream language, such as Java. However, reality does not match this vision. First, once
a system becomes valuable to an organization, it is not possible to halt development on it
while waiting for a full re-implementation. Second, even if the current version is converted to
Java, the next version would probably still benefit from the benefits of prototyping. Thus, in
both cases, programs that start in a scripting language are likely to remain in it. Finally,
even if clients do want to rewrite the program in a more mature language, they would benefit
from formal support to enable this conversion.

As a result, the formal study of scripting languages is a worthwhile research activity in
its own right. In particular, we hope this seminar had both direct and indirect impact on
academia and industry. We also hope that, based on our discussions, academics will identify
concrete problems that need solutions and find scripting language experts who they can
communicate with. In turn, we hope scripting experts identified knowledge, expertise, and
interest from academia and are better aware of how to formulate problems for academics
and map their solutions back to practice.

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 3

2 Table of Contents

Executive Summary
Robert Hirschfeld, Shriram Krishnamurthi, and JanVitek 1

Overview of Talks
Eval Begone!
Gregor Richards . 5

Evaluating the Design of the R Language
Jan Vitek . 5

Reasoning about Javascript
Philippa Gardner . 5

Language Support for Third-party Code Extensibility
Benjamin Lerner . 6

Empirical Studies on Static vs. Dynamic Type Systems
Stefan Udo Hanenberg . 6

Engineering a JavaScript Semantics
Arjun Guha . 6

AmbientTalk as a Scripting Language
Theo D’Hondt . 7

Life After main()
David Herman . 7

RubyX: Symbolic Execution for Security Analysis of Ruby on Rails
Jeffrey Foster . 7

Languages as Libraries
Sam Tobin-Hochstadt . 8

Virtual Values for Language Extension
Cormac Flanagan . 8

Sandboxing Untrusted JavaScript
Ankur Taly . 9

ADsafety: Type-based Verification of JavaScript Sandboxing
Joe Politz . 9

Integrating Typed and Untyped Code in a Scripting Language
Francesco Zappa Nardelli . 9

Using Contracts to Connect Different Scripting Languages
Kathryn E. Gray . 10

Blame for All
Philip Wadler . 10

Temporal Higher-order Contracts
Cormac Flanagan . 11

A Racket Contract Example
Robert Bruce Findler . 11

12011

4 12011 – Foundations for Scripting Languages

Dynamic Inference of Static Types for Ruby
Michael Hicks . 12

Nested Refinements: A Logic for Duck Typing
Ravi Chugh . 12

The Ciao Assertions Model
Manuel Hermenegildo . 13

Occurrence Typing
Sam Tobin-Hochstadt . 13

Gradual Typing Roundup
Jeremy G. Siek . 14

(Towards) Gradual Typing for Java
Atsushi Igarashi . 14

Combining Types and Flow Analysis
Arjun Guha . 14

Lively Webwerkstatt—A Self-sustaining Web-based Authoring Environment
Jens Lincke, Robert Hirschfeld, and Bastian Steinert 15

What Use for Macros / Compile-time Meta-programming?
Laurence Tratt . 15

Experiences of Implementing a VM with RPython
Laurence Tratt . 15

Meta-Tracing in the PyPy Project for Efficient Dynamic Languages
Carl Friedrich Bolz . 15

HipHop – A Synchronous Reactive Extension for Hop
Manuel Serrano . 16

A Possible End-User Scripting Environment for STEPS
Yoshiki Ohshima . 16

101companies:101 Ways of Building a Management System With Different Pro-
gramming Technologies
Ralf Lämmel . 16

A Scripting Language for Remote Communication
William R. Cook . 17

Languages in Racket Demo
Matthew Flatt . 17

Participants . 18

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 5

3 Overview of Talks

3.1 Eval Begone!
Gregor Richards (Purdue University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gregor Richards

Eval is a common feature in dynamic languages, but an uncommon feature in analyses.
Our work measures the real-world use of eval and determines its utility, in search of the
“mythical” proper use of eval. We then introduce a system for the automated removal of eval
by interactive analysis of its use and dynamic replacement with static suggestions.

3.2 Evaluating the Design of the R Language
Jan Vitek (Purdue University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jan Vitek

Joint work of Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek

R is a dynamic language for statistical computing that combines lazy functional features
and object-oriented programming. This rather unlikely linguistic cocktail would probably
never have been prepared by computer scientists, yet the language has become surprisingly
popular. With millions of lines of R code available in repositories, we have an opportunity to
evaluate the fundamental choices underlying the R language design. Using a combination
of static and dynamic program analysis we can assess the impact and success of different
language features.

3.3 Reasoning about Javascript
Philippa Gardner (Imperial College London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Philippa Gardner

Joint work of Philippa Gardner, Sergio Maffeis, and Gareth Smith

JavaScript has become the most widely used language for client-side web programming. The
dynamic nature of JavaScript makes understanding its code notoriously difficult, leading
to buggy programs and a lack of adequate static-analysis tools. We believe that logical
reasoning has much to offer JavaScript: a simple description of program behaviour, a clear
understanding of module boundaries, and the ability to verify security contracts.

We introduce a program logic for reasoning about a broad subset of JavaScript, including
challenging features such as prototype inheritance and with. We adapt ideas from separation
logic to provide tractable reasoning about JavaScript code: reasoning about easy programs
is easy; reasoning about hard programs is possible. We prove a strong soundness result. All
libraries written in our subset and proved correct with respect to their specifications will be
well-behaved, even when called by arbitrary JavaScript code.

12011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

6 12011 – Foundations for Scripting Languages

3.4 Language Support for Third-party Code Extensibility
Benjamin Lerner (University of Washington, Seattle, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Benjamin Lerner

Browsers today support extensions, third-party pieces of script and markup that provide new
or modified behavior for the underlying system. Likewise, users can inject scripts into web
sites to modify them in a similar fashion. However, the idioms used to achieve this injection
are cryptic, brittle, and have severe semantic flaws.

In this work we propose adding a new linguistic primitive to JavaScript, namely dynamic
aspect weaving, that supports these extensions in a more robust, understandable, and stable
way. As a side benefit, the new mechanism often out-performs the original idioms used.

3.5 Empirical Studies on Static vs. Dynamic Type Systems
Stefan Udo Hanenberg (Universität Duisburg-Essen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Udo Hanenberg

While static and dynamic type systems are exhaustively discussed by a large number a people,
there is still no evidence whether (or in what situations) a static or dynamic type system
provides a measurable benefit for software developers. This talk summarizes the results
and the underlying ideas for an experiment series which compares the impact of static and
dynamic type systems on software developers (based on the measurements of development
time). The preliminary results so far are that the possible benefit of static and dynamic type
systems is programming task specific. Furthermore, there is some evidence that type casts
are no valid argument against static type systems.

3.6 Engineering a JavaScript Semantics
Arjun Guha (Brown University, Providence, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arjun Guha

Joint work of Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

We reduce JavaScript to LambdaJS, a core calculus structured as a small-step operational
semantics. We present several peculiarities of the language and show that our calculus models
them. We explicate the desugaring process that turns JavaScript programs into ones in the
core. We demonstrate faithfulness to JavaScript using real-world test suites. Finally, we
illustrate utility by defining a security property, implementing it as a type system on the
core, and extending it to the full language.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 7

3.7 AmbientTalk as a Scripting Language
Theo D’Hondt (Vrije Universiteit Brussel, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Theo D’Hondt

AmbientTalk is a language for mobile ad-hoc networks. It combines actors with effects and
promotes failure to the rule rather than the exception. AmbientTalk and its implementation
is described and subsequently compared to Python as a scripting language.

3.8 Life After main()
David Herman (Mozilla, Mountain View, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© David Herman

Scripting languages are often embedded in dynamic environments such as editors or browsers,
and provide dynamic evaluation through REPL’s. When a dynamic language contains static
semantics such as static scoping, types, macros, or operator overloading, the interaction
between the static and dynamic portions of the language can be fiendishly complicated.
In my talk I discuss some of the surprising interactions and describe some of the design
landscape for designing scripting languages with static semantics.

3.9 RubyX: Symbolic Execution for Security Analysis of Ruby on Rails
Jeffrey Foster (University of Maryland, College Park, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jeffrey Foster

Joint work of Jeffrey Foster, Avik Chaudhuri, and Jong-hoon (David) An

Many of today’s web applications are built on frameworks that include sophisticated defenses
against malicious adversaries. However, mistakes in the way developers deploy those defenses
could leave applications open to attack. To address this issue, we introduce Rubyx, a symbolic
executor that we use to analyze Ruby-on-Rails web applications for security vulnerabilities.
Rubyx specifications can easily be adapted to variety of properties, since they are built
from general assertions, assumptions, and object invariants. We show how to write Ruby
specifications to detect susceptibility to cross-site scripting and cross- site request forgery,
insufficient authentication, leaks of secret information, insufficient access control, as well
as application-specific security properties. We used Rubyx to check seven web applications
from various sources against out specifications. We found many vulnerabilities, and each
application was subject to at least one critical attack. Encouragingly, we also found that it
was relatively easy to fix most vulnerabilities, and that Rubyx showed the absence of attacks
after our fixes. Our results suggest that Rubyx is a promising new way to discover security
vulnerabilities in Ruby-on-Rails web applications.

12011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

8 12011 – Foundations for Scripting Languages

3.10 Languages as Libraries
Sam Tobin-Hochstadt (Northeastern University, Boston, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sam Tobin-Hochstadt

Joint work of Sam Tobin-Hochstadt, Robby Findler, Vincent St-Amour, Ryan Culpepper, Eli Barzilay, Matthew
Flatt, and Matthias Felleisen

Programming language design benefits from constructs for extending the syntax and semantics
of a host language. While C’s string-based macros empower programmers to introduce
notational shorthands, the parser-level macros of Lisp encourage experimentation with
domain-specific languages. The Scheme programming language improves on Lisp with macros
that respect lexical scope.

The design of Racket—a descendant of Scheme—goes even further with the introduction
of a full-fledged interface to the static semantics of the language. A Racket extension
programmer can thus add constructs that are indistinguishable from “native” notation, large
and complex embedded domain-specific languages, and even optimizing transformations
for the compiler backend. This power to experiment with language design has been used
to create a series of sub-languages for programming with first-class classes and modules,
numerous languages for implementing the Racket system, and the creation of a complete
and fully integrated typed sister language to Racket’s untyped base language.

3.11 Virtual Values for Language Extension
Cormac Flanagan (University of California, Santa Cruz, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Cormac Flanagan

Joint work of Thomas H.Austin, Tim Disney, and Cormac Flanagan

This paper focuses on extensibility, the ability of a programmer using a particular language to
extend the expressiveness of that language. This paper explores how to provide an interesting
notion of extensibility by virtualizing the interface between code and data. A virtual value is
a special value that supports behavioral intercession. When a primitive operation is applied
to a virtual value, it invokes a trap on that virtual value. A virtual value contains multiple
traps, each of which is a user-defined function that describes how that operation should
behave on that value.

This paper formalizes the semantics of virtual values, and shows how they enable the
definition of a variety of language extensions, including additional numeric types; delayed
evaluation; taint tracking; contracts; revokable membranes; and units of measure. We report
on our experience implementing virtual values for Javascript within an extension for the
Firefox browser.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 9

3.12 Sandboxing Untrusted JavaScript
Ankur Taly (Stanford University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ankur Taly

Joint work of Ankur Taly, John C. Mitchell, Sergio Maffeis, Ulfar Erlingsson, Mark S. Miller, and Jasvir Nagra

Most websites today incorporate untrusted JavaScript content in the form of advertisements,
maps and social networking gadgets. Untrusted JavaScript, if embedded directly, has complete
access to the page’s Document Object Model(DOM) and can therefore steal cookies, navigate
the page, maliciously alter the page or cause other harm. In order to combat the above threat,
many websites use language-based mechanisms for restricting untrusted JavaScript. Popular
examples of such mechanisms are Facebook FBJS, Yahoo! ADSafe and Google Caja. In
this talk, I will rigorously define the security goals of such sandboxing mechanisms and then
develop principled techniques for designing and analyzing them. I will back the techniques
with rigorous guarantees established using an operational semantics for JavaScript. I will
also present security vulnerabilities in Facebook FBJS and Yahoo! ADSafe found during the
course of this work and principled approaches to fixing those vulnerabilities. The talk will
span JavaScript based on 3rd edition of the ECMA262 specification and also the recently
released “strict mode” of JavaScript based on 5th edition of the ECMA262 specification.

3.13 ADsafety: Type-based Verification of JavaScript Sandboxing
Joe Politz (Brown University, Providence, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Joe Politz

Joint work of Joe Gibbs Politz, Arjun Guha, Spirodon Aristides Eliopolous, and Shriram Krishnamurthi

Web sites routinely incorporate JavaScript programs from several sources into a single page.
These sources must be protected from one another, which requires robust sandboxing. The
many entry-points of sandboxes and the subtleties of JavaScript demand robust verification
of the actual sandbox source. We use a novel type system for JavaScript to encode and verify
sandboxing properties. The resulting verifier is lightweight and efficient, and operates on
actual source. We demonstrate the effectiveness of our technique by applying it to ADsafe,
which revealed several bugs and other weaknesses.

3.14 Integrating Typed and Untyped Code in a Scripting Language
Francesco Zappa Nardelli (Inria, Paris-Rocquencourt, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Francesco Zappa Nardelli

Many large software systems originate from untyped scripting language code. While good
for initial development, the lack of static type annotations can impact code-quality and
performance in the long run. We present an approach for integrating untyped code and typed
code in the same system to allow an initial prototype to smoothly evolve into an efficient and
robust program. We introduce like types, a novel intermediate point between dynamic and
static typing. Occurrences of like types variables are checked statically within their scope

12011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

10 12011 – Foundations for Scripting Languages

but, as they may be bound to dynamic values, their usage is checked dynamically. Thus like
types provide some of the benefits of static typing without decreasing the expressiveness of
the language.

3.15 Using Contracts to Connect Different Scripting Languages
Kathryn E. Gray (University of Cambridge, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kathryn E. Gray

Scripting languages are frequently combined with statically-typed languages, potentially
running on different virtual machines. Conventional techniques for writing multi-language
programs entail manually inserting data conversions, inter-machine communication, and
dynamic checks, which can introduce subtle errors. My previous technique allows values to
pass seamlessly from one language to another—for languages with similar dynamic semantics
on the same VM. However, with scripting languages these criteria may not be met. So, this
talk introduces a framework that supports languages with different runtime systems and
semantics, while maintaining type-safety and a free exchange of values.

3.16 Blame for All
Philip Wadler (University of Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Philip Wadler

Joint work of Amal Ahmed, Robert Bruce Findler, Jeremy Siek, and Philip Wadler

[Appeared in POPL 2009] Several programming languages are beginning to integrate static
and dynamic typing, including Racket (formerly PLT Scheme), Perl 6, and C# 4.0, and the
research languages Sage (Gronski, Knowles, Tomb, Freund, and Flanagan, 2006) and Thorn
(Wrigstad, Eugster, Field, Nystrom, and Vitek, 2009). However, an important open question
remains, which is how to add parametric polymorphism to languages that combine static
and dynamic typing. We present a system that permits a value of dynamic type to be cast
to a polymorphic type and vice versa, with relational parametricity enforced by a kind of
dynamic selaing along the line proposed by Matthews and Ahmed (2008) and Neis, Dreyer,
and Rossberg (2009). Our system includes a notion of blame, which allows us to show that
when casting between a more-precise type and a less-precise type, any failure are due to the
less-precisely-typed portion of the program. We also show that a cast from a subtype to its
supertype cannot fail.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 11

3.17 Temporal Higher-order Contracts
Cormac Flanagan (University of California, Santa Cruz, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Cormac Flanagan

Joint work of Tim Disney, Jay McCarthy, and Cormac Flanagan

Behavioral contracts are embraced by software engineers because they document module
interfaces, detect interface violations, and help identify faulty modules (packages, classes,
functions, etc). This paper extends prior higher-order contract systems to also ex- press and
enforce temporal properties, which are common in soft- ware systems with imperative state,
but which are mostly left implicit or are at best informally specified. The paper presents
both a programmatic contract API as well as a temporal contract language, and reports on
experience and performance results from implementing these contracts in Racket.

Our development formalizes module behavior as a trace of events such as function calls
and returns. Our contract system provides both non-interference (where contracts cannot
influence correct executions) and also a notion of completeness (where contracts can enforce
any decidable, prefix-closed predicate on event traces).

3.18 A Racket Contract Example
Robert Bruce Findler (Northwestern University, Evanston, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Robert Bruce Findler

The following contract is an example contract that illustrates why earlier (lax/picky) inter-
pretations of dependent contracts are wrong. See also “Correct Blame for Contracts: No
More Scapegoating” in POPL 2011.

#lang racket

(provide (contract-out [deriv/c contract?]))
(require (planet cce/fasttest:3/random))

(define n 10)
(define δ 0.01)

(define deriv/c
(->i ([f (-> real? real?)]

[ε (and/c real? positive?)])
(fp (-> real? real?))
\#:post
(f fp ε)
(for/and ([i (in-range 0 n)])

(define x (random-number))
(define slope

(/ (- (f (+ x ε))
(f (- x ε)))

(* 2 ε)))
(<= (abs (- slope (fp x))) δ))))

12011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

12 12011 – Foundations for Scripting Languages

3.19 Dynamic Inference of Static Types for Ruby
Michael Hicks (University of Maryland, College Park, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michael Hicks

Joint work of Michael Hicks, David An, Jeff Foster, and Avik Chaudhuri

Ruby is a dynamically typed scripting language in the tradition of Smalltalk. We have
designed a type system for Ruby and a static type inference algorithm that we have applied to
Ruby scripts and libraries. While a useful exercise, we found static type inference extremely
difficult to develop: dynamic languages are typically complex, poorly specified, and include
features, such as eval and reflection, that are hard to analyze.

In response, we developed constraint-based dynamic type inference, a technique that
infers static types based on dynamic program executions. In our approach, we wrap each
run-time value to associate it with a type variable, and the wrapper generates constraints on
this type variable when the wrapped value is used. This technique avoids many of the often
overly conservative approximations of static tools, as constraints are generated based on how
values are used during actual program runs. Using wrappers is also easy to implement, since
we need only write a constraint resolution algorithm and a transformation to introduce the
wrappers. The best part is that we can eat our cake, too: our algorithm will infer sound
types as long as it observes every path through each method body-note that the number of
such paths may be dramatically smaller than the number of paths through the program as a
whole.

We have developed Rubydust, an implementation of our algorithm for Ruby. Rubydust
takes advantage of Ruby’s dynamic features to implement wrappers as a language library.
We applied Rubydust to a number of small programs and found it to be both easy to use
and useful: Rubydust discovered 1 real type error, and all other inferred types were correct
and readable.

3.20 Nested Refinements: A Logic for Duck Typing
Ravi Chugh (University of California, San Diego, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ravi Chugh

Joint work of Ravi Chugh, Pat Rondon, and Ranjit Jhala

Programs written in dynamic languages make heavy use of features—run-time type tests,
value-indexed dictionaries, polymorphism, and higher-order functions—that are beyond the
reach of type systems that employ either purely syntactic or purely semantic reasoning. We
present a core calculus, System D, that merges these two modes of reasoning into a single
powerful mechanism of nested refinement types wherein the typing relation is itself a predicate
in the refinement logic. System D coordinates SMT-based logical implication and syntactic
subtyping to automatically typecheck sophisticated dynamic language programs. By coupling
nested refinements with McCarthy’s theory of finite maps, System D can precisely reason
about the interaction of higher-order functions, polymorphism, and dictionaries. We also
discuss extensions to support imperative updates and inheritance, features commonly found
in real-world dynamic languages.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 13

3.21 The Ciao Assertions Model
Manuel Hermenegildo (IMDEA Software, Madrid, ES)

License Creative Commons BY-NC-ND 3.0 Unported license
© Manuel Hermenegildo

Joint work of M.V. Hermenegildo, M. Carro, P. López-García, J. Morales, F. Bueno, G. Puebla, R. Haemmerlé

We provide a brief overview (and demo!) of Ciao, emphasizing some of the novel aspects and
motivations behind its design and implementation.

Ciao is built in layers over a kernel, which is designed to be extensible in a powerful,
modular way. Using these facilities, Ciao provides the programmer with a large number
of useful features from different programming paradigms and styles. All such features are
in libraries, so that the use of each of the features (including those of logic and constraint
programming) can be turned on and off at will for each program module. Thus, a given
module may be using, e.g., higher order functions and constraints, while another module
may be using assignment, predicates, meta-programming, and concurrency. The module
system and the extension mechanism together allow user-level design and implementation of
powerful extensions and domain specific languages.

Another important objective of Ciao as a “scripting language”—on which the talk and
demo concentrate—is to offer the best of the dynamic and static language approaches, i.e.,
providing the flexibility of dynamic languages, but with guaranteed safety and efficiency.
Important elements to this end are the Ciao assertion language and its preprocessor. The
assertion language allows expressing many kinds of program properties (ranging from, e.g.,
moded types to resource consumption), as well as tests and documentation. The preprocessor
is capable of statically finding violations of these properties or verifying that programs
comply with them, and issuing certificates of this compliance, and also generating run-time
tests for (parts of) specifications with which compliance cannot be resolved at compile-time.
The compiler performs many types of optimizations (including automatic parallelization),
producing code that is highly competitive with other dynamic languages or, with the
(experimental) optimizing compiler, even that of static languages, all while retaining the
flexibility and interactive development of a dynamic language.

3.22 Occurrence Typing
Sam Tobin-Hochstadt (Northeastern University, Boston, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sam Tobin-Hochstadt

Joint work of Sam Tobin-Hochstadt, Vincent St-Amour, and Matthias Felleisen

Ad-hoc, untagged unions are pervasive in scripting languages. However, traditional type
systems do not handle unions well. In this talk, I describe occurrence typing, which provides
an effective elimination rule for union types, and enables the type checking of idiomatic
scripting language programs. I also describe a surprising application to numeric type checking.

12011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

14 12011 – Foundations for Scripting Languages

3.23 Gradual Typing Roundup
Jeremy G. Siek (University of Colorado, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jeremy G. Siek

Gradual typing is an approach for integrating static and dynamic typing within the same
language. Since it’s introduction 5 years ago, many challenges have been overcome, such
as how to efficiently represent higher-order casts and how to integrate gradual typing with
other features such as objects and generics. This talk gives an example-based survey of
the progress in gradual typing and discusses the remaining challenges, with some hints at
solutions to some of them.

3.24 (Towards) Gradual Typing for Java
Atsushi Igarashi (Kyoto University, JP)

License Creative Commons BY-NC-ND 3.0 Unported license
© Atsushi Igarashi

Joint work of Atsushi Igarashi and Lintaro Ina

We have presented our recent work on extending Java with gradual typing. The main focus
is on the interaction between type “dynamic” and generic types. We have also discussed how
our design constraint that proper Java code should compile to (almost) the same bytecode
as javac affected the language feature design and implementation.

3.25 Combining Types and Flow Analysis
Arjun Guha (Brown University, Providence, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arjun Guha

Joint work of Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

Programs written in scripting languages employ idioms that confound conventional type
systems. In this talk, we highlight one important set of related idioms: the use of local control
and state to reason informally about types. To address these idioms, we formalize run-time
tags and their relationship to types, and use these to present a novel strategy to integrate
typing with flow analysis in a modular way. We demonstrate that in our separation of typing
and flow analysis, each component remains conventional, their composition is simple, but
the result can handle these idioms better than either one alone.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 15

3.26 Lively Webwerkstatt—A Self-sustaining Web-based Authoring
Environment

Jens Lincke, Robert Hirschfeld, and Bastian Steinert (Hasso-Plattner-Institut, Potsdam, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jens Lincke, Robert Hirschfeld, and Bastian Steinert

Webwerkstatt is an interactive and programmable wiki environment for experimenting with
different approaches to End-user Web Development and their boundaries to the application
kernel. It is based on the Lively Kernel and incorporates projects such as Lively Wiki (a
Wiki of live objects built on an SVN repository) and Lively Fabrik (a dataflow-like GUI
builder for Lively). For Webwerkstatt, we developed the context-oriented language extension
ContextJS, to explore new concepts for expressing this boundary. Our current research
focuses on prototypical scripting and interactive application construction.

– http://lively-kernel.org/
– http://lively-kernel.org/repository/webwerkstatt/webwerkstatt.xhtml

3.27 What Use for Macros / Compile-time Meta-programming?
Laurence Tratt (King’s College, London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Laurence Tratt

Is the oft-repeated idea that “all good languages have macros / CTMP” undeniably true?
This short talk is intended to make us think about the consequences of this idea.

3.28 Experiences of Implementing a VM with RPython
Laurence Tratt (King’s College, London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Laurence Tratt

A report on preliminary work on implementing an RPython VM for Converge, which suggests
that language designers of the future now have a practical route for making “fast enough”
VMs in “fast enough” time. See also http://convergepl.org/

3.29 Meta-Tracing in the PyPy Project for Efficient Dynamic
Languages

Carl Friedrich Bolz (Universität Düsseldorf, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Carl Friedrich Bolz

Joint work of Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael Leuschel, Samuele Pedroni, and
Armin Rigo

Writing JIT-compilers for recent scripting languages is a hard problem due to their recent
semantics. The PyPy project tries to help with that problem by providing a tracing JIT

12011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://lively-kernel.org/
http://lively-kernel.org/repository/webwerkstatt/webwerkstatt.xhtml
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://convergepl.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

16 12011 – Foundations for Scripting Languages

that operates “one level down”, i.e. below an interpreter. That way the JIT can be reused
for a number of languages.

3.30 HipHop – A Synchronous Reactive Extension for Hop
Manuel Serrano (Inria, Sophia Antipolis, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Manuel Serrano

HOP is a SCHEME-based language and system to build rich multi-tier web applications.
We present HIPHOP, a new language layer within HOP dedicated to request and event
orchestration. HIPHOP follows the synchronous reactive model of the Esterel and ReactiveC
languages, originally developed for embedded systems programming. It is based on synchron-
ous concurrency and preemption primitives, which are known to be key components for the
modular design of complex temporal behaviors. Although the language is concurrent, the
generated code is purely sequential and thread-free; HIPHOP is translated to HOP for the
server side and to straight JavaScript for the client side. With a music playing example, we
show how to modularly build non-trivial orchestration code with HIPHOP.

3.31 A Possible End-User Scripting Environment for STEPS
Yoshiki Ohshima (Viepoints Research Institut, Glendale, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yoshiki Ohshima

In this talk, a brief overview of the STEPS Project and a possible design and implementation
of the end-user scripting environement are presented.

In the STEPS Project, we are set out to explore good abstractions and concise descriptions
of the entire personal computing environment. Language execution engines, a graphics engine,
a GUI framework and an application framework were created in this philosophy and a universal
document editor is created.

However, an end-user scripting system is yet to be written. Drawing from the Functional
Reactive Programming work, we are exploring reactive programming in more dynamic setting.
A possible implementation of such an end-user scripting system is under development.

3.32 101companies:101 Ways of Building a Management System With
Different Programming Technologies

Ralf Lämmel (Universität Koblenz-Landau, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ralf Lämmel

The open-source 101companies Project is concerned with aggregating, organizing, annotating,
and analyzing a corpus of many implementations of a simple Human Resource Management
System (the so-called 101companies System) such that the implementations leverage varying
programming technologies and varying software languages dedicated to different technological

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Robert Hirschfeld, Shriram Krishnamurthi, and Jan Vitek 17

spaces. The specification of the 101companies System contains several optional features
which implementations can choose to implement in the interest of demonstrating specific
programming technologies or capabilities thereof. The 101companies Project helps under-
standing and comparing programming technologies in a manner as it is valuable for different
stakeholders such as teachers, learners, developers, software technologists, and ontologists.
In this paper, we present the following major aspects of the project: i) an emerging ontology
of relevant entities and categories; ii) a list of stakeholders of the project; iii) a feature model
of the 101companies System; iv) themes as a grouping concept for implementations of the
system; v) the structured documentation of implementations.

3.33 A Scripting Language for Remote Communication
William R. Cook (University of Texas, Austin, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© William R. Cook

Joint work of William R. Cook, Eli Tilevitch, Ben Wiedermann, and Ali Ibrahim

Batches are a new approach to relational database access, remote procedure calls, and
web services. Batching employs a simple scripting language to communicate work from a
client to a server. Batches also have a new control flow construct, called a Remote Batch
statement. A Remote Batch statement combines remote and local execution: all the remote
code is executed in a single round-trip to the server, where all data sent to the server and
results from the batch are communicated in bulk. Batches support remote blocks, iteration
and conditionals, and local handling of remote exceptions. Batches are efficient even for
fine-grained interfaces, eliminating the need for hand-optimized server interfaces.

Batch services also provide a simple and powerful interface to relational databases, with
support for arbitrary nested queries and bulk updates. One important property of the system
is that a single batch statement always generates a constant number of SQL queries, no
matter how many nested loops are used.

3.34 Languages in Racket Demo
Matthew Flatt (University of Utah, Salt Lake City, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Matthew Flatt

Racket provides a smooth path from syntactic abstraction, language extension, language
implementation, and environment support for languages with or without S-expression notation.
In this demonstration, we show how implement a little JavaScript-like language in about 200
lines of code (mostly a parser).

12011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

18 12011 – Foundations for Scripting Languages

Participants

Amal Ahmed
Northeastern Univ. – Boston, US

Carl Friedrich Bolz
Universität Düsseldorf, DE

Ravi Chugh
University of California – San
Diego, US

William R. Cook
University of Texas – Austin, US

Theo D’Hondt
Vrije Universiteit Brussel, BE

Matthias Felleisen
Northeastern University –
Boston, US

Robert Bruce Findler
Northwestern Univ. –
Evanston, US

Cormac Flanagan
University of California – Santa
Cruz, US

Matthew Flatt
University of Utah – Salt Lake
City, US

Jeffrey Foster
University of Maryland – College
Park, US

Andreas Gal
Mozilla – Mountain View, US

Philippa Gardner
Imperial College London, GB

Kathryn E. Gray
University of Cambridge, GB

Arjun Guha
Brown Univ. – Providence, US

Stefan Udo Hanenberg
Universität Duisburg-Essen, DE

David Herman
Mozilla – Mountain View, US

Manuel Hermenegildo
IMDEA Software – Madrid, ES

Michael Hicks
University of Maryland – College
Park, US

Robert Hirschfeld
Hasso-Plattner-Institut –
Potsdam, DE

Atsushi Igarashi
Kyoto University, JP

Shriram Krishnamurthi
Brown Univ. – Providence, US

Ralf Lämmel
Universität Koblenz-Landau, DE

Benjamin Lerner
University of Washington –
Seattle, US

Jens Lincke
Hasso-Plattner-Institut –
Potsdam, DE

Hidehiko Masuhara
University of Tokyo, JP

Mark S. Miller
Sunnyvale, US

Floreal Morandat
Purdue University, US

Oscar M. Nierstrasz
Universität Bern, CH

Nathaniel Nystrom
Universität Lugano, CH

Yoshiki Ohshima
Viepoints Research Institut –
Glendale, US

Joe Politz
Brown Univ. – Providence, US

Gregor Richards
Purdue University, US

Manuel Serrano
Inria – Sophia Antipolis, FR

Jeremy G. Siek
University of Colorado, US

Bastian Steinert
Hasso-Plattner-Institut –
Potsdam, DE

Ankur Taly
Stanford University, US

Eric Tanter
Univ. of Chile – Santiago, CL

Sam Tobin-Hochstadt
Northeastern University –
Boston, US

Laurence Tratt
King’s College – London, GB

Herman Venter
Microsoft Res. – Redmond, US

Jan Vitek
Purdue University, US

Philip Wadler
University of Edinburgh, GB

Francesco Zappa Nardelli
Inria – Paris-Rocquencourt, FR

	Executive Summary Robert Hirschfeld, Shriram Krishnamurthi, and JanVitek
	Table of Contents
	Overview of Talks
	Eval Begone! Gregor Richards
	Evaluating the Design of the R Language Jan Vitek
	Reasoning about Javascript Philippa Gardner
	Language Support for Third-party Code Extensibility Benjamin Lerner
	Empirical Studies on Static vs. Dynamic Type Systems Stefan Udo Hanenberg
	Engineering a JavaScript Semantics Arjun Guha
	AmbientTalk as a Scripting Language Theo D'Hondt
	Life After main() David Herman
	RubyX: Symbolic Execution for Security Analysis of Ruby on Rails Jeffrey Foster
	Languages as Libraries Sam Tobin-Hochstadt
	Virtual Values for Language Extension Cormac Flanagan
	Sandboxing Untrusted JavaScript Ankur Taly
	ADsafety: Type-based Verification of JavaScript Sandboxing Joe Politz
	Integrating Typed and Untyped Code in a Scripting Language Francesco Zappa Nardelli
	Using Contracts to Connect Different Scripting Languages Kathryn E. Gray
	Blame for All Philip Wadler
	Temporal Higher-order Contracts Cormac Flanagan
	A Racket Contract Example Robert Bruce Findler
	Dynamic Inference of Static Types for Ruby Michael Hicks
	Nested Refinements: A Logic for Duck Typing Ravi Chugh
	The Ciao Assertions Model Manuel Hermenegildo
	Occurrence Typing Sam Tobin-Hochstadt
	Gradual Typing Roundup Jeremy G. Siek
	(Towards) Gradual Typing for Java Atsushi Igarashi
	Combining Types and Flow Analysis Arjun Guha
	Lively Webwerkstatt—A Self-sustaining Web-based Authoring Environment Jens Lincke, Robert Hirschfeld, and Bastian Steinert
	What Use for Macros / Compile-time Meta-programming? Laurence Tratt
	Experiences of Implementing a VM with RPython Laurence Tratt
	Meta-Tracing in the PyPy Project for Efficient Dynamic Languages Carl Friedrich Bolz
	HipHop – A Synchronous Reactive Extension for Hop Manuel Serrano
	A Possible End-User Scripting Environment for STEPS Yoshiki Ohshima
	101companies:101 Ways of Building a Management System With Different Programming Technologies Ralf Lämmel
	A Scripting Language for Remote Communication William R. Cook
	Languages in Racket Demo Matthew Flatt

	Participants

