
M. Aksit, M. Mezini, and R. Unland (Eds.): NODe 2002, LNCS 2591, pp. 216–232, 2003.
© Springer-Verlag Berlin Heidelberg 2003

AspectS – Aspect-Oriented Programming with Squeak

Robert Hirschfeld

DoCoMo Communications Laboratories Europe
Landsberger Strasse 308-312, 80687 Munich, Germany

hirschfeld@docomolab-euro.com

Abstract. AspectS is an approach to general-purpose aspect-oriented
programming in the Squeak/Smalltalk environment. Based on concepts of
AspectJ it extends the Smalltalk metaobject protocol to accommodate the aspect
modularity mechanism. In contrast to systems like AspectJ, weaving and
unweaving in AspectS happens dynamically at runtime, on-demand, employing
metaobject composition. Instead of introducing new language constructs,
AspectS utilizes Smalltalk itself as its pointcut language. AspectS benefits from
the expressiveness of Smalltalk, its elegance and power.

1 Introduction

Aspect-Oriented Programming (AOP) is based on the assumption that crosscutting is
inherent to complex systems [12]. It addresses these issues by introducing new units
of modularity to capture crosscutting structures explicitly. Such structures are called
aspects and can be found in a software system’s design as well as its implementation.
As of today there are several approaches that support aspect-oriented concepts,
ranging from general-purpose aspect languages like AspectJ [1, 13] to domain-
specific aspect languages such as RG or D [15, 14].

AspectS1 extends the Squeak/Smalltalk2 environment to allow for experimental
aspect-oriented system development [8]. It mainly draws on the results of two
projects: the first is AspectJ from Xerox PARC, a general-purpose aspect-oriented
language extension to Java, and the second is John Brant’s MethodWrappers, a
powerful mechanism to add behavior to a compiled Smalltalk method [2, 16]. It
benefits greatly from the simple, elegant, and open architecture of Squeak itself as
well [6, 9, 17].

1 The version of AspectS discussed in the text is 0.4.1 (2002-04-03, [8]).
2 AspectS is implemented in Squeak. Squeak is an open, highly portable Smalltalk-80

implementation [17]. Its virtual machine is written entirely in Smalltalk. The terms Squeak
and Smalltalk are used interchangeably in this text. There is also a port of AspectS to
VisualWorks, another Smalltalk-80 derivative [18].

AspectS – Aspect-Oriented Programming with Squeak 217

The goal of AspectS is to provide a platform for the exploration of aspect-oriented
software composition in the context of dynamic systems. It supports coordinated
meta-level programming, addressing the tangled code phenomenon by providing
aspect related modules. In its current implementation, AspectS is realized without
changing neither Smalltalk’s syntax nor its virtual machine. AspectS shows great
flexibility by not relying on code transformations (neither source nor byte code) but
making use of metaobject composition instead.

The remainder of the paper is organized as follows: Sections 2, 3, and 4 introduce
AspectS’ implementation of aspects, join points, and advice objects. Section 5 gives
an overview of the dynamic on-demand weaving mechanism employed by AspectS.
Selected examples are discussed in section 6. Section 7 illustrates basic tool support.
Section 8 puts AspectS in context with other AOP implementations for Smalltalk. A
summary and final remarks are given in section 9. All of the ideas described in the
paper are fully implemented by the author.

2 Aspects

Aspects (AsAspect3) are units of modularity that represent implementations of
crosscutting concerns. Aspects associate code fragments (code to be executed when a
join point is encountered) with join points (well-defined spots in the execution of
code) by the use of advice objects (AsAdvice). A collection of related join points, to
be addressed by an advice, is called a pointcut (Fig. 1)4.

AsAspectAsAspect AsAdviceAsAdvice AsPointCutAsPointCut AsJoinPointDescriptorAsJoinPointDescriptor

ref [n] ref [n] ref [n]

Fig. 1.

In AspectS, aspects are implemented via regular classes, so their instances act as
regular objects also. An aspect is applied to objects in the image by sending an install
message to an aspect instance. The effects of an aspect to the system are reverted by
simply sending an uninstall message to the same aspect instance that cause the
system transformation.

Since AspectS uses a framework-based approach to AOP, the described object model
is directly reflected in the code one writes to express aspects, as illustrated later by
examples in section 6.

3 Class names in AspectS are prefixed with ‘As’ to avoid collisions with names of other

classes since Squeak, in its current implementation, supports only a global namespace.
4 The notation used in this text is based on OOSE/Objectory [10].

218 R. Hirschfeld

IdentitySet
of: Class

(Sender Classes)

IdentitySet
of: Class

(Sender Classes)

AsAspectAsAspect

IdentitySet
of: Object

(Receivers)

IdentitySet
of: Object

(Receivers)

IdentitySet
of: Object
(Senders)

IdentitySet
of: Object
(Senders)

ref [1] ref [1] ref [1]

IdentityDictionary
key: Object

value: IdentityDictionary
(Client Annotations)

IdentityDictionary
key: Object

value: IdentityDictionary
(Client Annotations)

ref [1]

Fig. 2.

An aspect may hold on to a set of receivers, senders, or sender classes (Fig. 2). These
objects are added or removed by client code, and will be used by woven (composed)
code at run-time to determine if receiver-instance-specific, sender-instance-specific or
sender-class-specific behavior has to be activated or not. Client annotations allow the
introduction of advice-specific state.

3 Join Points

Join points are well-defined spots in the execution of code. Join point descriptors
(AsJoinPointDescriptor) denote targets for the weaving process to apply
computational changes to the underlying base system stated in advice objects.

SenderSender ReceiverReceiver

comm [1]

message

Fig. 3.

In Smalltalk, object interaction is based on the message-sending metaphor (Fig. 3). A
message sent by a sender is decoupled from the actual method implementation
executed by the receiver on behalf of the sender. In AspectS the receiver of a message
is considered the only structural information related to a join point. By naming a
target class and a target selector, a join point descriptor partially describes a join
point’s static property of location within the system’s class hierarchy (Fig. 4). Advice
qualifiers (discussed in section 4.2) allow the description of dynamic attributes of a
join point in the context of an advice.

Join points of a point cut can be enumerated statically, or, due to the very open and
reflective nature of the Smalltalk environment, collected dynamically by querying the
system. AspectS does not introduce a dedicated pointcut language but takes advantage
of the expressiveness of Smalltalk itself

AspectS – Aspect-Oriented Programming with Squeak 219

AsJoinPointDescriptorAsJoinPointDescriptor

Class
(Receiver’s Class)

Class
(Receiver’s Class)

Symbol
(Selector)
Symbol

(Selector)

ref [1] ref [1]

Fig. 4.

Note that the description of a join point combining a target class and a target selector
is not polymorphic but strict. Polymorphic characteristics can be expressed via
dynamic system queries for join point collection as described above.

4 Advice

Advice objects associate code fragments (parts of the crosscutting concern to be
implemented by an aspect) with pointcuts and their respective join points descriptors
that describe targets for the weaver to place these fragments into the system.

AsAdviceAsAdvice

BlockContext
(Computation)
BlockContext
(Computation)

AsAdviceQualifierAsAdviceQualifier

ref [n] ref [1]

Fig. 5.

AspectS uses blocks (instances of BlockContext) to represent code fragments (Fig.
5). An advice is to be qualified to state if the woven code will be receiver-class-aware,
receiver-instance-aware, sender-class-aware or sender-instance-aware, combined with
additional cflow (call flow) semantics if needed.

4.1 Kinds of Advice

AspectS, in its current version, allows to execute crosscutting behavior (Fig. 6):

• before and after the execution of a method invocation (AsBeforeAfterAdvice),
• to handle signaled exceptions (AsHandlerAdvice), and
• around a method invocation (AsAroundAdvice)

220 R. Hirschfeld

AsAdviceAsAdvice

AsBeforeAfterAdviceAsBeforeAfterAdviceAsHandlerAdviceAsHandlerAdvice

ihs ihs

AsAroundAdviceAsAroundAdvice

ihs

AsIntroductionAsIntroduction

ihs

Fig. 6.

It is possible to introduce new behavior to the target clients as well (AsIntroduction).
Table 1 gives an overview of the different kinds of advice:

Table 1.

Kind of Advice Description

Handler A handler advice (AsHandlerAdvice) allows to place an
exception handler around a message send. It specifies an
exception class and an associated exception handler block
that is to be executed if the message send results in the
signaling such an exception. The additional code,
represented as a block context, has access to all method
parameters as well as the exception raised.

Before-After With a before-after advice (AsBeforeAfterAdvice) one can
perform additional code right before and right after a method
invocation. The additional code, represented as block
contexts also, has access to all method parameters.

Around An around advice (AsAroundAdvice) may be put in front of
a specific method to explicitly control the activation of that
method with respect to the actual execution context. The
additional code, represented as a block context, has access to
all method parameters.

Introduction With an introduction (AsIntroduction) one can introduce
new behavior that is needed in the aspect’s context. The
added behavior may be invoked by the aspect, and may
actively invoke the aspect’s or client’s behavior itself.

These kinds of advice are not minimal since both a handler advice and a before-after
advice can be expressed using an around advice. However, providing these concepts
makes the intent of some advice objects more obvious and so the resulting code better
to understand.

AspectS – Aspect-Oriented Programming with Squeak 221

4.2 Advice Qualifier

An advice qualifier (AsAdviceQualifier) allows the description of dynamic attributes
of a pointcut related to an advice. These attributes state dynamic characteristics of
join points enumerated by a pointcut in the context of an advice.

Advice qualifier attributes can be grouped roughly into:

• sender/receiver aware activation, and
• cflow (control or call flow) activation.

The combination of point cut descriptors and advice qualifier attributes can be
compared to AspectJ’s concept of pointcut designators.

Receiver/Sender-aware Activation

Table 2 gives an overview of sender and receiver specific advice qualifier attributes.
Note that Receiver/Sender and Class/Instance-Specific are orthogonal.

Table 2.

Qualifier Attribute Description

Receiver
Class Specific

With a receiver-class-specific advice, all receivers of the
message that are an instance of a certain class are going
to be affected. The advice is receiver-class-aware.

Receiver
Instance Specific

With a receiver-instance-specific advice, only specific
receivers of the message that are an instance of a certain
class are going to be affected. Instances of prospective
receivers can be added to or removed from the advice’s
aspect. The advice is receiver-instance-aware.

Sender
Class Specific

With a sender-class-specific advice, receivers of the
message that are an instance of a certain class are going
to be affected if the sender is of a certain class or its
subclasses. Sender classes can be added to or removed
from the advice’s aspect. The advice is sender-class-
aware.

Sender
Instance Specific

With a sender-instance-specific advice, receivers of the
message that are an instance of a certain class are going
to be affected only if the sender is known to the advice.
Instances of prospective senders can be added to or
removed from the advice’s aspect. The advice is sender-
instance-aware.

222 R. Hirschfeld

Cflow

Table 3 gives an overview of cflow related advice qualifier attributes. Note that
Class/Instance and First/All-But-First are orthogonal.

Table 3.

Qualifier Attribute Description

Class
First

With a class-first cflow advice, the activation test
examines the base context chain (Smalltalk’s stack) for
one or more senders with the same class as the
receiver’s. Activation happens if there is only one such
class in the context chain. (Example: Such advice will
trigger activation on an object-recursion’s first method
invocation.)

Class
All-But-First

With a class-all-but-first cflow advice, the activation test
examines the base context chain for one or more senders
with the same class as the receiver’s. Activation happens
if there is more than one such class in the context chain.
(Example: Such advice will trigger activation on an
object-recursion’s other than first method invocation.)

Instance
First

With an instance-first cflow advice, the activation test
examines the base context chain for one or more
appearances of the receiver instance in it. Activation
happens if there is only one such instance in the context
chain. (Example: Such advice will trigger activation on a
method-recursion’s first method invocation.)

Instance
All-But-First

With an instance-all-but-first cflow advice, the activation
test examines the base context chain for one or more
appearances of the receiver instance in it. Activation
happens if there is more than one such instance in the
context chain. (Example: Such advice will trigger
activation on a method-recursion’s other than first
method invocation.)

Super
First

With a super-first cflow advice, the activation test
examines the base context chain for a send of the current
message to super. Activation happens if there was no
send of the current message to super.

Super
All-But-First

With a super-first cflow advice, the activation test
examines the base context chain for a send of the current
message to super. Activation happens if there was a send
of the current message to super.

AspectS – Aspect-Oriented Programming with Squeak 223

5 On-Demand Weaving

The activity of integrating aspects and their advice into the base system is called
weaving. Weaving in general can be performed at compile-time or run-time. AspectJ
is an example for compile-time weaving. Here, the weaver parses an AspectJ
program, transform the AspectJ abstract syntax tree (AST) into a valid Java AST, and
then generates Java byte code for a standard Java virtual machine. JMangler performs
load-time transformation of Java class files [11]. AspectS employs a run-time weaver
to transform the base system according to the aspects involved. The woven code is
based on method wrappers and meta-programming.

5.1 Method Wrappers

Method wrappers allow for the introduction of code that is executed before, after, or
instead of an existing method. As an alternative to modifying Smalltalk’s standard
lookup process, method wrappers change the objects the lookup mechanism returns.

A method wrapper replaces an entry in a class’ method dictionary (a compiled method
or another method wrapper), adds behavior to the method invocation, and eventually
invokes the wrapped method itself (Fig. 7).

ClassClass

AsMethodWrapperAsMethodWrapper

MethodDictionaryMethodDictionary CompiledMethodCompiledMethod

ref [1]

ihs

ref [n]

ref [1]

BlockContext
(Activator)

BlockContext
(Activator)

ref [n]

AsAspectAsAspect

Fig. 7.

AspectS makes use of block method wrappers, special wrappers that allow to plug-in
block contexts for additional behavior. For each kind of advice (Fig. 6) there is a
matching method wrapper implementation (Fig. 8).

5.2 Weaving Aspects

AspectS coordinates the placement of block method wrappers into the method
dictionaries of the classes of the receivers stated in the various join points advised by
the aspect (Fig. 9).

224 R. Hirschfeld

AsMethodWrapperAsMethodWrapper

AsBeforeAfterWrapperAsBeforeAfterWrapperAsHandlerWrapperAsHandlerWrapper

ihs ihs

AsAroundWrapperAsAroundWrapper

ihs

AsIntroductionWrapperAsIntroductionWrapper

ihs

Fig. 8.

AsAspectAsAspect AsAdviceAsAdvice AsPointCutAsPointCut AsJoinPointDescriptorAsJoinPointDescriptor

ref [n] ref [n] ref [n]

Class
(Receiver’s Class)

Class
(Receiver’s Class)

Symbol
(Selector)
Symbol

(Selector)

ref [1] ref [1]

AsMethodWrapperAsMethodWrapper

Weaver

MethodDictionaryMethodDictionary

ref [n]

ref [n]

BlockContext
(Computation)
BlockContext
(Computation)

AsAdviceQualifierAsAdviceQualifier

ref [n] ref [1]

BlockContext
(Activator)

BlockContext
(Activator)

ref [n]

ref [1]

Fig. 9.

The weaving process happens every time an aspect instance is installed by sending an
install message to the respective aspect instance. To reverse the effects of an aspect to
the system, the aspect hast to be uninstalled by sending an uninstall message to the
aspect instance responsible for the system transformation to be reversed. This process
is also referred to as unweaving. Weaving and unweaving in AspectS can be
characterized as completely dynamic since it happens at runtime. AspectJ, in contrast,
preprocesses code outside of the actual system in a separate preprocess or compile
step.

Method wrappers are placed around a compiled method in such a way that their
activation will happen in the following order, considering the type of the wrapper as
well as the hierarchy of their originating aspects:

• Around advice/wrappers (most-specific first)
o Before parts of before-after advice/wrappers (most-specific first)

� Handler advice/wrappers activation (most-specific first)
� Compiled method (base computation)

AspectS – Aspect-Oriented Programming with Squeak 225

� Handler advice/wrappers (least-specific first)
o After parts of before-after advice/wrappers (least-specific first)

• Around advice/wrappers (least-specific first)

An advice is more specific than another if it is defined in an aspect that is more
specific than the aspect the other advice is defined it. If two pieces of advice are either
defined in the same aspect, or if their aspects are not related to each other via a direct
or transitive inheritance relationship, the specificity between them is undefined. The
complexity of the computation of an advice’s ‘most/least-specific’ property dependent
linearly on the number of wrappers installed at the specific join point and the depth of
the aspect class hierarchy. This computation is performed only once per wrapper
during the installation of its aspect, not during actual message sends themselves.

5.3 Advice Activation

According to the attributes stated in an advice qualifier, a Method Wrapper is
configured with one or more activation blocks. Each activation block, represented by
a Smalltalk block, is provided with the aspect instance associated with the wrapper,
and the base level activation context (base sender)5 that allows access to not only the
receiver of the message, but to the whole chain of activation contexts (Smalltalk’s
stack). Depending on this information, the activation block evaluates to a Boolean
value, either true or false.

In the current implementation, Method Wrappers combine the results of all activation
blocks via the Boolean AND operator, meaning that all activation blocks have to
evaluate to true to put the wrapper into an active state:

AsMethodWrapper>>isActive
| baseSender |
baseSender := thisContext baseSender.
^ self activators notEmpty

and: [self activators allSatisfy: [:aBlock |
aBlock value: self aspect value: baseSender]]

While an inactive wrappers passes execution control on to its client method (if any),
an active wrapper is allowed to execute additional code before, after, or instead of its
client method (if any).

The following examples will illustrate some of the activation blocks currently in use
in AspectS. A receiver-class-specific activation block always returns true since it
states that the wrapper’s computation can be carried out for all instances of the
receiver’s class:

5 A base level activation context is an activation context whose receiver is neither a Method

Wrapper nor a block context.

226 R. Hirschfeld

AsMethodWrapper class>>receiverClassSpecificActivator
^ [:aspect :baseSender | true] copy6

A receiver-instance-specific activation block determines the actual receiver of the
message and checks if this receiver was registered with the aspect instance:

AsMethodWrapper class>>receiverInstanceSpecificActivator
^ [:aspect :baseSender | aspect hasReceiver: baseSender receiver] copy

A cflow-first-class activation block examines the base context chain for one or more
senders that belong to the same class as the receiver. Activation happens if there is
only one such class in the context chain, meaning that the receiver is the first instance
of its class in the call sequence:

AsMethodWrapper class>>cfFirstClassActivator
^ [:aspect :baseSender |

| lastCfPoint allCfPoints |
lastCfPoint := AsCFlowPoint

object: baseSender receiver class
selector: baseSender selector.

allCfPoints := thisContext allBaseClientsWithSelector collect: [:each |
AsCFlowPoint object: each key class selector: each value].

(allCfPoints occurrencesOf: lastCfPoint) = 1] copy

The following method shows the usage of the activation test by a before-after
wrapper, a specialized Method Wrapper, that can perform additional code right before
and right after a method invocation:

AsBeforeAfterWrapper>>valueWithReceiver: anObject arguments: anArrayOfObjects
| client active return |
client := thisContext baseClient.
active := self isActive.
active ifTrue: [self beforeBlock copy valueWithArguments: (Array

with: anObject
with: anArrayOfObjects
with: self aspect
with: client)].

return := self clientMethod
valueWithReceiver: anObject
arguments: anArrayOfObjects.

active ifTrue: [self afterBlock copy valueWithArguments: (Array
with: anObject
with: anArrayOfObjects
with: self aspect
with: client
with: return)].

^ return

For more details, the reader is referred to the actual AspectS implementation [8].

6 One of the issues with Squeak’s blocks is that no new evaluation structures are created for

their evaluation, and with that the parallel evaluation of the same block would lead to a
runtime error indicating the attempt to evaluate a block that is already being evaluated.
Copying the block avoids that situation.

AspectS – Aspect-Oriented Programming with Squeak 227

6 Examples

The following examples demonstrate basic mechanisms of AspectS. In the first
example, selected message sends are reported to the transcript. In the second example,
aspects are used to instrument recursive calls.

6.1 Tracing

In the first example, the goal is to monitor all mouseEnter: and mouseLeave:
messages sent to instances of Morph and its subclasses by logging them to the system
transcript. In a plain Squeak image (version 3.0) there are 23 implementers of
mouseEnter: and 20 implementers of mouseLeave. 22 of the 23 of mouseEnter:
methods and 19 of the 20 of mouseLeave: methods are found in Morph and its
subclasses. One would have to put the same code into 41 different places. If this code
changes, it has to do so in all of the 41 locations.

Without aspects or any other type of meta-programming, the solution might look like
this: One determines all the implementers of mouseEnter: and mouseLeave:
methods, selects the ones that are Morph or its subclasses, and then modifies the
method implementations to report every message reception. This very manual
procedure affects many parts of the system in an uncoordinated way. As a result, code
is duplicated and tangled all over the image instead of being stated once in a single
location. Depending on the rate of change, keeping all adjustments in sync might
become a challenge.

Aspects are a convenient way to address this challenge. An aspect called
AsMorphicMousingAspect traces the reception of mouseEnter: and mouseLeave:
messages by instances of Morph and its subclasses. All aspects are subclasses of
AsAspect, and so is AsMorphicMousingAspect.

Advice to trace the reception of mouseEnter: and mouseLeave: messages are stated
in two advice methods. The convention here is that an advice method’s selector
matches ‘advice#*’7 with no arguments, and that the method returns an instance of
AsAdvice or one of its subclasses. Here, an AsBeforeAfterAdvice object is created
that allows to set behavior before and after the invocation of a method. Once the
advice object is created, it is further qualified via #receiverGeneral to execute the
additional computation for all receivers described by the specified join points:

7 ‘advice#*’ describes a pattern that matches with strings that start with ‘advice’ and contain

at least one more character.

228 R. Hirschfeld

adviceMouseEnter
^ AsBeforeAfterAdvice new

qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
pointcut: [

Morph withAllSubclasses
select: [:each | each includesSelector: #mouseEnter:]
thenCollect: [:each | AsJoinPointDescriptor

targetClass: each
targetSelector: #mouseEnter:]]

beforeBlock: [:receiver :arguments :aspect :client |
self

showHeader: ’>>> MouseENTER >>>’
receiver: receiver
event: arguments first]

In adviceMouseEnter join points are collected by querying the system for all classes
that are subclasses of Morph and implement mouseEnter:. The block to be executed
before the actual invocation of mouseEnter: sends a message to the aspect itself to
echo the receiver of the mouseEnter: message and its event parameter to the
Transcript. An adviceMouseLeave advice works likewise for the reception of
mouseLeave: messages. showHeader:receiver:event: performs the actual printout
to the Transcript. Note that both the pointcut selection and the advice code can be
factored out into separate methods to be called from within this or other advice
methods and with that reusable elsewhere.

To activate the AsMorphicMousingAspect, one creates an aspect instance sends it
an install message. The send of an uninstall message deactivates the aspect.
Activation and deactivation is allowed to happen on-demand at any time during
runtime.

6.2 Cflow: Object and Method Recursion

In this simple example, aspects are going to be used to instrument recursive calls.
Cflow directing advice is applied to visualize object and method recursion in the
calculation of factorials. While for object recursion the receiver of the message sent
recursively is a different object, for method recursion the message is sent recursively
to the same object. One implementation of factorial is that of Integer:

factorial
self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: ’Not valid for negative integers’.

This implementation uses object recursion for its calculation since every subsequent
factorial message is sent to a different instance of Integer. To echo the initial
reception of a factorial message to the Transcript, leaving out all internal invocations
to calculate the factorial of the next smaller instance of Integer (Fig. 10),
adviceFactorialInFirst is applied. For that, a #cfFirstClass attribute has to be
provided:

AspectS – Aspect-Oriented Programming with Squeak 229

adviceFactorialInFirst
^ AsBeforeAfterAdvice

qualifier: (AsAdviceQualifier
attributes: { #receiverClassSpecific. #cfFirstClass. })

pointcut: [OrderedCollection
with: (AsJoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock: [:receiver :arguments :aspect :client |
| msg |
msg := String cr, ’#factorial-in: ’, receiver printString.
self traceFirst: self traceFirst, msg.
Transcript show: msg]

factorialfactorial

factorialfactorial

factorialfactorial

factorialfactorial

factorialfactorial

factorialfactorial

5
<Integer>

4
<Integer>

3
<Integer>

2
<Integer>

1
<Integer>

0
<Integer>

Fig. 10.

To report all but the initial reception of a factorial message in such scenario, an
advice like adviceFactorialInAllButFirst can be utilized. Here, a
#cfAllButFirstClass advice qualifier attribute has to be set:

adviceFactorialInAllButFirst
^ AsBeforeAfterAdvice new

qualifier: (AsAdviceQualifier
attributes: { #receiverClassSpecific. #cfAllButFirstClass. })

pointcut: [OrderedCollection
with: (AsJoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock: [:receiver :arguments :aspect :client |
| msg |
msg := String cr, ’*factorial-in: ’, receiver printString.
self traceAllButFirst: self traceAllButFirst, msg.
Transcript show: msg]

AsFactorial2 implements the calculation of factorials differently using method
recursion by sending every subsequent factorial: message to itself:

230 R. Hirschfeld

factorial: anInteger
anInteger = 0 ifTrue: [^ 1].
anInteger > 0 ifTrue: [^ anInteger * (self factorial: anInteger - 1)].
self error: ’Not valid for negative integers.’.

adviceFactorialInFirst applied will echo the initial reception of a factorial: message
by a particular instance to the Transcript, leaving out all subsequent sends of
factorial: to self (Fig. 11):

adviceFactorialInFirst
^ AsBeforeAfterAdvice new

qualifier: (AsAdviceQualifier
attributes: { #receiverClassSpecific. #cfFirstInstance. })

pointcut: [OrderedCollection
with: (AsJoinPointDescriptor

targetClass: AsFactorial2
targetSelector: #factorial:)]

beforeBlock: [:receiver :arguments :aspect :client |
| msg |
msg := String cr, ’#factorial2-in: ’, arguments first printString.
self traceFirst: self traceFirst, msg.
Transcript show: msg]

factorial: 5

factorial: 4

factorial: 3

factorial: 2

factorial: 1

factorial: 0

anAsFactorial2
<AsFactorial2>

Fig. 11.

7 Tool Support

Most of the code browsers of the Squeak environment were extended to support
aspect-oriented programming, both via regular object-oriented techniques and by the
use aspects. AspectS browser extensions assist in bidirectional navigation from
classes and methods affected by aspects and advice code. Parts of the system that
were affected by the installation of one or more aspects such as methods with their
method categories and classes with their class categories are highlighted in browsers.
Menus of class and method lists were enhanced to allow for access to aspect classes
as well as their specific instances that originated the change of the classes and

AspectS – Aspect-Oriented Programming with Squeak 231

methods highlighted in the browsers. Starting from an aspect class or one of its advice
methods, one can explore pointcuts affected by the aspect or the particular advice.

8 Related Systems

AspectS is based on some of the ideas behind AspectJ. While AspectJ provides a
language extension to Java to express AOP concepts, AspectS modifies the Smalltalk
metaobject protocol (MOP). In contrast to AspectJ, weaving and unweaving in
AspectS happens dynamically at run-time. While AspectJ’s weaver performs code
transformation at compile-time, the AspectS weaver is based on metaobject
composition.

Dynamic Cool demonstrates the use of the Smalltalk MOP for the implementation of
an AOP system [4]. Interesting efforts to offer AOP support for Smalltalk
environments are AOP/ST for VisualWorks by Kai Böllert, Apostle for VisualAge for
Smalltalk by Brian de Alwis, and Andrew for Squeak by Kris Gybels [3, 5, 7].
AOP/ST provides a programming environment for developing aspect modules to
synchronize processes and to trace messages. Apostle aims to implement AspectJ in
Smalltalk with special language support for defining join points, pointcuts, and
advice. Andrew introduces a separate pointcut language based on logic meta
programming (LMP) and does weaving via code transformations at the meta-level.

9 Summary and Final Remarks

AspectS supports general-purpose AOP in the Squeak/Smalltalk environment with the
intent to allow for experimental aspect-oriented system development. It is built to help
understand issues that materialize for aspects in dynamic environments.

AspectS mainly draws on the results of AspectJ and MethodWrappers. It takes great
advantage of Smalltalk’s simple, elegant, and open architecture.

AspectS allows for coordinated meta-level programming, addressing the tangled code
phenomenon by providing aspect related modules. AspectS is realized using pure
Smalltalk, without extending neither the Smalltalk language nor its virtual machine.
With that, AspectS utilizes Smalltalk itself as a pointcut language. AspectS introduces
on-demand weaving as a technique to perform system transformations back and forth
every time wanted.

Tool support for AspectS is available through the extension of Smalltalk code
browsers to localize and examine all methods that are potentially affected by the
application of an aspect or one of its advice, and to easily locate those parts of the
system that have been affected after the application of aspects.

AspectS benefits from the expressiveness of Smalltalk, its elegance and power.

http://www.squeak.org/

232 R. Hirschfeld

Acknowledgements. Thanks are due to Cristina Lopes for her great support, to David
Simmons and Eliot Miranda for their insights and valuable remarks, to John Brant for
his MethodWrappers package AspectS makes heavily use of, and to Dan Ingalls for
solving a puzzle that allowed the port of MethodWrappers to Squeak. Thanks also to
Matthias Wagner, Kris Gybels, and the anonymous reviewers for their comments on
the paper.

References

1. AspectJ team: AspectJ homepage (http://aspectj.org)
2. Brant, J.; Foote, B.; Johnson, R.; Roberts, D.: Wrappers to the Rescue. In: ECOOP’98

Proceedings, 1998, pp. 396-417
3. Böllert, K.: AOP/ST homepage (http://www.theoinf.tu-ilmenau.de/~kaib/aop/)
4. Czarnecki, K.: Generative Programming: Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component Models.
Dissertation, TU Ilmenau, 1998 (http://www.prakinf.tu-ilmenau.de/~czarn/diss/)

5. de Alwis, B.: Apostle homepage (http://www.cs.ubc.ca/labs/spl/projects/apostle/)
6. Goldberg, A.; Robson, D.: Smalltalk-80: The Language and Its Implementation. Addison-

Wesley, 1983
7. Gybels, K.: Andrew homepage (http://prog.vub.ac.be/~kgybels/andrew/)
8. Hirschfeld, R.: AspectS homepage

(http://www.prakinf.tu-ilmenau.de/~hirsch/Projects/Squeak/AspectS/)
9. Ingalls, D. H. H.: Design Principles Behind Smalltalk. In: BYTE Magazine, August 1981
10. Jacobson, I.; Christerson, M.; Jonsson, P.; Övergaard, G.: Object-Oriented Software

Engineering – A Use Case Driven Approach. Addison-Wesley, 1993
11. JMangler team: JMangler homepage (http://javalab.cs.uni-bonn.de/research/jmangler)
12. Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, Ch.; Lopes, C. V.; Loingtier, J.-M.;

Irwin, J.: Aspect-Oriented Programming. In: ECOOP’ 97 Proceedings, 1997, pp. 220–242
13. Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W. G.: An

Overview of AspectJ. In: ECOOP’ 01 Proceedings, 2001, pp. 327–355
14. Lopes, C. V.: D: A Language Framework for Distributed Programming. Dissertation.

College of Computer Science, Northeastern University, Boston, 1997
15. Mendhekar, A.; Kiczales, G.; Lamping, J.: RG: A Case-Study for Aspect-Oriented

Programming. Xerox PARC. Technical Report SPL97-009 P9710044. February 1997
16. Brant, J,: MethodWrappers homepage

(http://st-www.cs.uiuc.edu/~brant/Applications/MethodWrappers.html)
17. Squeak homepage (http://www.squeak.org)
18. VisualWorks homepage (http://www.parcplace.com, http://www.cincom.com)

	1	Introduction
	2	Aspects
	3	Join Points
	4	Advice
	4.1	Kinds of Advice
	4.2	Advice Qualifier
	Receiver/Sender-aware Activation
	Cflow

	5	On-Demand Weaving
	5.1	Method Wrappers
	5.2	Weaving Aspects
	5.3	Advice Activation

	6	Examples
	6.1	Tracing
	6.2	Cflow: Object and Method Recursion

	7	Tool Support
	8	Related Systems
	9	Summary and Final Remarks
	Acknowledgements. Thanks are due to Cristina Lopes for her great support, to David Simmons and Eliot Miranda for their insights and valuable remarks, to John Brant for his MethodWrappers package AspectS makes heavily use of, and to Dan Ingalls for solving a puzzle that allowed the port of MethodWrappers to Squeak. Thanks also to Matthias Wagner, Kris Gybels, and the anonymous reviewers for their comments on the paper.
	References

