
Sophie—Tools and Materials in Multimedia Book Creation

Norman Holz∗, Robert Hirschfeld∗, Jens Lincke∗, Michael Haupt∗ and Michael Rüger†

∗Hasso-Plattner-Institut, University of Potsdam
Potsdam, Germany

{norman.holz, hirschfeld, jens.lincke, michael.haupt}@hpi.uni-potsdam.de

†Impara GmbH
Magdeburg, Germany

m.rueger@acm.org

Abstract

Sophie is an authoring tool for interactive multimedia
books. The Sophie user can combine different kinds of
media and synchronize them with events and time. Such
highly interactive systems are difficult to design and to
implement. The large amount of functionality provided has
to be balanced with a significant ease of use. The standard
software engineering approaches for the construction of
large software systems are insufficient concerning the special
requirements of interactive systems. The Tools and Materials
pattern language is an alternative approach to design inter-
active systems. This paper exemplifies the use and benefits
of Tools and Materials by the Sophie application.

1. Introduction

What distinguishes your favorite application from the
alternatives? Interactive software systems are designed and
built to help users solving their problems. Often the users can
choose between several applications to accomplish specific
tasks. The users will prefer the application that provides the
most efficient way to solve their problem. Thus the preferred
application gives competence to accomplish certain tasks in
a comfortable and efficient manner.

Sophie is an authoring application for multimedia books
[1]–[3]. It unites the features of a word processor and an
application like Adobe’s Director. Sophie users can combine
text with several kinds of media, such as images, movies,
and audio streams. Media can be synchronized with time
and events to create an interactive multimedia book. Sophie
is designed to be intuitively and comfortably used without
any special knowledge or even programming skills.

Sophie is developed by impara Magdeburg [4]. The core
team of five developers started their work in summer 2004
and Sophie 1.0 was released recently. Sophie is open source,
implemented in Squeak [5], and available for Mac OS, Linux
and Windows.

The field of software engineering provides several ap-
proaches to designing and realizing large software systems
as Sophie. A very common one is the 3-Tier Architecture.
This approach divides the application into three main layers.
At the bottom level, the application is based on a data
layer responsible for persistency and data management. The
application layer comprises the objects altering these data.
On top, the user interface layer describes everything related
to the user interface. This approach is general enough to fit
on almost every larger software system. In order to think and
speak about an interactive software system appropriately, a
more detailed point of view is required.

A finer-grained approach is the Tools and Materials
pattern language, developed by Dirk Riehle and Heinz
Züllighoven [6]. This paper introduces the Tools and Materi-
als pattern language in general and exemplifies the practical
use of the abstract principles by means of Sophie. As a
conclusion the benefits of Tools and Materials for the design
of interactive software systems are elaborated.

2. Tools and Materials Pattern Language

In this section, the Tools and Materials pattern language is
introduced generally. The most important design metaphors
and design patterns are discussed in order to establish a
formal basis for the examination of the Sophie application.

The pattern language is based on the Tools and Materials
metaphor. This metaphor is an approach with a specific
underlying view of human work [6]–[8]. The main idea is
characterized by craftsmen using tools to work on materials
in an environment. They have the necessary skills and
organize their work and environment accordingly.

This metaphor is transferred to the field of software
engineering and the construction of large software systems
by Dirk Riehle and Heinz Züllighoven by means of their
pattern language. Its basis is provided by fundamental design
metaphors, which are described in the following.

2009 Seventh International Conference on Creating, Connecting and Collaborating through Computing

978-0-7695-3620-0/09 $25.00 © 2009 IEEE

DOI 10.1109/C5.2009.16

20

2.1. Design Metaphors

Design metaphors are defined by Dirk Riehle and Heinz
Züllighoven as patterns governing the perception of the
application domain and as a guide for designing the future
system.

Tools and Materials’ central notions are the two design
metaphors “Tool” and “Material”. They describe a concep-
tual distinction between materials as things to be worked
upon and tools as the means of work. Tools are considered to
be active entities, providing information about their current
state and giving feedback to the users. Materials are passive
entities, which are modified and transformed during work.
Materials can be accessed via tools only.

Often one tool can be used to work on several materials
and a specific material can be treated in different ways by
different tools. The Tools and Materials pattern language
uses the concept of “Aspects” to make the relationship
between tools and materials explicit. Aspects define the nec-
essary operations to work properly with materials concerning
specific tasks. Thereby they provide an abstraction from
concrete tools and concrete materials. Based on the design
metaphors Tool, Aspect, and Material, the pattern language
provides certain design patterns, which we will discuss next.

2.2. Design Patterns

Design metaphors are useful to perceive and design the
future system, whereas design patterns provide a kind of
“micro architecture” in the technical construction process
[6]. The Tools and Materials pattern language distinguishes
between patterns for constructing tools and patterns covering
the tool integration into the environment. In the following,
the different design patterns are introduced and visualized
by the notation shown in Fig. 1.

Aspect

A rectangle represents
 an abstract concept.

Aspect

Material

The fact that a Material
embodies an Aspect is
visualized by a triangleAn arrow shows a use-

relationship

Figure 1. General notation.

2.2.1. Tool Construction. The future system can be seen
as a tool itself, consisting of subtools comprising further
subtools. This hierarchic structure corresponds to the Tools
and Materials design pattern of Tool Composition and helps
to split up the whole system in several subparts with related
responsibilities and implementation issues. The idea of Tool
Composition is very close to the universal principle of divide
and conquer in software engineering.

A tool works on a set of materials. As already mentioned
above, the relationship between tools and materials is defined

by aspects exclusively, which relates to the design pattern of
Tool and Material Coupling. Most materials embody several
aspects and therefore several tools can work on them. Due to
this indirect coupling mechanism, different tools can work
on the same material in the context of the same aspect. A tool
implementing a certain aspect can be used to work on several
materials relating to this aspect. Generally, this approach
allows a flexible composition of tools to build up the system.

At the bottom level, a compound tool comprises simple
tools that do not consist of further subtools but implement
a specific functionality. For the appropriate construction of
simple tools the pattern language defines the pattern Sepa-
ration of Powers. This pattern divides the simple tool into a
functional and an interaction part. The functional part alters
the material according to the material’s aspect, whereas the
interaction part manages the tool’s user interaction. With
respect to the Tool design metaphor the interaction part
presents the material and informs the users about the tool’s
current state. Additionally the users will get feedback to
their recently performed actions on the material. This design
pattern can be mapped to the Model-View-Controller pattern
[9]. The interaction part acts as the View as well as the
Controller, whereas the functional part together with material
and aspects is considered as the Model.

Both parts need to inform each other about relevant
changes. This communication should not result in directly
coupling the two components. Preferably, an event-based
communication mechanism, e. g., using the Observer pattern
[10], should be used instead. This loose coupling provides
the possibility to have several interaction parts working with
one functional part or to change the implementation of the
functional part independently. Figure 2 gives an overview of
the collaboration of the design patterns for tool construction.

Tool Composition

Subtool

Interaction
Part

Functional
Part

Tool Composition

Separation of Powers

Tool

Aspect

Aspect

Material

Tool and Material
 Coupling

Observation

Figure 2. Patterns for Tool Construction [6].

In addition to the design patterns for tool construction, the
pattern language defines further design patterns to integrate

21

the constructed tools to built up the whole system. These
design patterns for tool integration are described in the
following.

2.2.2. Tool Integration. The place where tools, materials
and their collaboration are organized is described by the
Environment design pattern. The environment creates, ini-
tializes and presents the tools and materials to the users,
waiting for them to start working.

Besides the presentation of accessible materials in the
environment, it has to be clarified by whom the materials are
supplied and where the materials are kept after manipulation.
This is realized by the design pattern of the Material Admin-
istration. The material administration supplies the material
to the environment and manages the persistency. For this
purpose, it uses several Material Providers to offer materials
from different sources.

In complex systems, certain dependencies may exist
among related materials. In order to maintain the loose
coupling of tools and the system’s flexibility, material de-
pendencies are managed at the material level, instead of at
the level of tools. The Material Container design pattern
defines a container that collects the dependent materials and
maintains the material constraints.

After this introduction to the concepts of Tools and
Materials, their use is illustrated by the example of Sophie
in the next section.

3. Tools and Materials in an Interactive System

Sophie is an interactive system with a large number of
features. In the context of the Tools and Materials pattern
language, Sophie is considered a very powerful tool to work
on the material of multimedia books. Sophie uses the Tools
and Materials approach both at the level of implementation
and the level of user interface design.

3.1. Tools and Materials in User Interface Design

At the user interface level, the natural metaphor of Tools
and Materials helps the users to understand the system and
to accomplish their tasks intuitively.

Sophie uses a workspace to provide a working envi-
ronment for its users [1]. Within this workspace, Sophie
presents the currently opened Sophie book as the material
and gives access to different functionalities embodied by the
corresponding tools.

Besides the pure functionality necessary to create media-
rich books, Sophie is designed to be used in an easy and intu-
itive manner. Although an application offers a large number
of powerful functionalities, users will not use them if they
cannot find the corresponding tools or have to access them
in an inconvenient way. In order to make user interaction
with Sophie comfortable, the Sophie user interface design

follows intuitional ways to present the available tools and
materials.

General tools—for instance the spell checker, and the
materials the Sophie book embeds—are collected in flaps
[1]. Flaps, as shown in figure 3, can be seen as drawers
within the user’s tool box containing related objects. These
drawers can be opened and closed on demand.

Figure 3. Flaps containing objects.

Sophie users start creating a Sophie book by dragging a
book template from the library flap into the workspace. Then
they change to the resource flap and add a picture or movie
to the Sophie book. Finally, the users get an overview of the
book’s pages in the pages flap and can check the spelling
via the spell checker accessible via the tools flap. Due to the
fact that the tools assembled in an opened flap and the titles
of closed flaps are always visible, users get a quick view
on the tools and materials available. Therefore they do not
have to inconveniently search in nested structures of menus
and modal dialogues.

Sophie gives access to tools corresponding to a specific
material item, for instance a piece of text or an embedded
image, by the means of halos and head-up displays (HUD)
[1]. Halos are small icons that show up close to the selected
object. As an example, a piece of text can be altered in
terms of its font and layout. Both aspects are displayed to
the users in the form of a small halo button. On mouse
click, these halo buttons give access to a HUD that offers
the tools suitable in this context. Often only a subset of the
offered tools is used frequently, therefore the HUDs show
the very common functionality at first and can be expanded
to access the more special and thus rarely used tools on
demand. Figure 4 on the next page shows the halo buttons
used to alter the text’s font settings.

HUDs are a direct realization of the Tool metaphor. The
font HUD, shown in figure 5 on the following page, provides
state information, for instance the current font size. It gives
feedback to recent user actions by updating the displayed
values accordingly. Due to that spatial affiliation of tool and
material, the material itself and the performed changes are
comfortably presented to the users.

22

Figure 4. Halo buttons.

Figure 5. Head-up displays.

3.2. Tools and Materials in Implementation

When examining Sophie’s architectural design in the
context of Tools and Materials, the application is structured
in several subtools. As an example, the tool collections
responsible for media and resource management, or the tool
chain which builds the actual pages of a Sophie book, can
be identified easily. In the following, these parts of the
Sophie application are set into the context of the pattern
language to exemplify the use of the introduced concepts
for implementing an interactive system. For this purpose,
implementation examples of Sophie are chosen and visual-
ized by an extended notation. The elements added to the
general notation are shown in figure 6.

Sophie Book

A rectangle with round
corners represents
 a Sophie element.

The role of an abstract or Sophie
element, according to Tools and

Materials, is visualized by a speech
bubble.

Sophie Book
Material

Figure 6. Notation elements for the Sophie examples.

Sophie deals with different kinds of media. Besides the
media stored on the local file system, Sophie is able to
embed remote audio, video and image files in a Sophie book.
The Sophie Resource Manager [1] is responsible for media
retrieval and storage, relating to the design pattern Material

Administration [6]. It uses several material providers, each
responsible for a different kind of source, to provide trans-
parent access to the local file system, a remote server, or
even further sources such as an SQL database.

The embedded media of a Sophie book can be trans-
formed in many different ways. For instance, images can be
cropped, rotated, or scaled. Media transformation in Sophie
is generally implemented in the Transformation Manager [1].
From the Tools and Materials’ point of view, the Transfor-
mation Manager can be seen as the tool used to transform
the media material. Due to the fact that the Transformation
Manager should be able to deal with a great variety of
media, it consists of several subtools implementing specific
transformation routines for specific media objects, such as
image rotation or scaling video clips, as shown in figure 7
on the following page.

This implementation of the Tool Composition design
pattern provides the possibility to treat functionality encap-
sulated in tools independently from the rest of the system.
Sophie takes advantage of this mechanism to provide differ-
ent environments for authors and readers. In the authoring
environment the users are able to edit the Sophie book and
its components, whereas the reading environment is used
to read and interact with the Sophie book. Therefore, an
embedded video clip will start playing on mouse click in the
reading environment, instead of being selected for editing.
With respect to these different environments, the text editing
functionality is encapsulated in a single tool. Therefore, the
only action required to change from authoring to reading
environment, is to disable or remove the text editing tool
from the system.

When examining complex processes in Sophie with sev-
eral components participating, the Tools and Materials pat-
tern language is again very intuitive and natural. Generally,
Sophie is used to create multimedia books. The media
material provided by the resource manager is combined with
the text and style information material into a book page
by the page compositor tool. Book pages themselves are
the material a page renderer tool can work on. Since a
Sophie book can be displayed on-screen as well as be printed
on paper, two different tools, the screen renderer and the
postscript renderer, are used to work on the same material
concerning the rendering aspect. This mechanism, shown in
figure 8 on page 6, relates to the loose coupling of tool and
material via aspects.

4. Example: Text Editor with Auto Completion

To illustrate the benefits of the acquired understanding of
the Sophie system, we want to extend the text editing tool
already mentioned in section 3, and add an auto completion
functionality. Auto completion should be able to remember
a typed word and propose it again when we start to type its
first characters again. The proposal should disappear when

23

Rotation Routine Scaling Routine

ScaleableRotateable

Tool

Image

Aspect

Material

Transformation Manager

...

...

Figure 7. Tool Composition in the Transformation Manager.

it recognizes a character sequence that does not match any
of the stored words.

As already described the text editing functionality is
encapsulated in a single tool. Therefore our changes will
only affect this specific tool and the integration of our auto
completion functionality will be very straightforward.

As Sophie is implemented in Smalltalk, an object-oriented
language, adding further functionality while keeping the
original behavior can be done easily by means of inheritance.
Our extended text editor inherits the basic functionality from
the original one and is extended by a memory object that is
able to store typed character sequences.

As shown in listing 1, the typed character is sent to the
original text editor, and additionally logged and appended
to the currentWord. If it is a separator, such as a space
character, we know the current word is typed completely and
remember it. If we exceed a word length longer than four
we look for a word starting with this character sequence in
our memory.

In listing 2, the logged key strokes are sent to the original
text editor again, bypassing the logging mechanism, if a
matching entry is found in our memory. If not, we store the
character sequence ended by a separator in our memory. As
shown in listing 3 on the following page, the implementation
of rememberCurrentWord reasonably stores only words
exceeding a specified length to prevent auto completion from
constantly proposing very short completions.

Due to Sophie’s intuitive design using the Tools and Mate-
rials approach, its open-source implementation in Smalltalk

insertIn: pagePlayer character: keyEvent

super insertIn: pagePlayer character: keyEvent.

(keyEvent keyCharacter isSeparator)
ifFalse: [

"log letter keystrokes"
self currentWord add: keyEvent.

"Search current word in memory"
(currentWord size > 4)
ifTrue:
[self thinkAboutCurrentWord: pagePlayer].]

ifTrue: [self rememberCurrentWord]

Listing 1. Remembering the typed word.

thinkAboutCurrentWord: pagePlayer

"search for a matching word in memory"
(self memory match: self currentWord)
ifTrue: [
self insertIn: pagePlayer memorizedEntry:
(self memory matchingEntryFor: currentWord)]

Listing 2. Thinking about the current word.

and our understanding of the text editor tool, we could easily
extend the original tool with a convenient auto completion.
We have simply inherited from the original text editor tool
and added a few lines of code, most of them shown in the

24

EditableRenderable

Sophie BookMaterial

Tool

Screen Renderer Book Editor

Aspect

PostScript Renderer

Figure 8. Tools for a Sophie book.

rememberCurrentWord

"remember current word permanently"
(self currentWord size > 10)
ifTrue:[self memory add: currentWord].

"reset the current word log"
self forgetCurrentWord

Listing 3. Remembering the current word.

listings, without affecting further parts of Sophie.

5. Conclusion

The construction of large software systems is a difficult
and complex process. The field of software engineering
provides several approaches and concepts to handle that
complexity and to implement a system that works correctly.
Developing an interactive system meant to interact with
users to support them in accomplishing certain tasks is even
more complex and error prone. Even though a system may
work correctly, it may still fail in the field of user experience
and usability if it does not embrace suitable concepts to
implement and to offer the possible very large number of
expected features. The application people preferably use is
either the only application available or it is the most com-
fortable tool that makes people feel competent to accomplish
their tasks efficiently.

The Tools and Materials pattern language developed by
Dirk Riehle and Heinz Züllighoven is a fine-grained ap-
proach to construct interactive software systems. It refines
the coarse-grained 3-Tier Architecture by giving general
design metaphors to think and speak about the system. For

the system’s implementation, several design patterns are
provided. These refine commonly acknowledged software
design patterns and best practices, such as the Model-View-
Controller and Observer Patterns, and set them into the
context of building an interactive system.

The Tools and Materials metaphor helps to design an
interactive system at the level of implementation as well as at
the user interface level. According to the implementation the
developer will be able to understand the system as a whole
and can easily determine where to search for the details. The
actual users will again be able to understand the application
as a whole with the perception of a richly filled tool box.
With this, users can flexibly organize their workflows and
working environments in order to accomplish their tasks in
an efficient and comfortable manner.

Sophie is such a toolbox. As shown in this paper, Sophie
is a feature-rich and easy to use authoring software for mul-
timedia books, based on the Tools and Materials metaphor.
Due to its strengths, Sophie will be able to compete with
upcoming alternative applications in the competition for the
users’ preferences.

References

[1] “Sophie Project,” http://www.sophieproject.org/. [Online].
Available: http://www.sophieproject.org/

[2] “The Institute for the Future of the Book,” http://
www.futureofthebook.org/. [Online]. Available: http://www.
futureofthebook.org/

[3] M. Rüger, B. Stein, and D. Visel, “Sophie—The Fu-
ture of Reading,” in Proceedings of the Sixth Interna-
tional Conference on Creating, Connecting and Collaborating

25

through Computing (C5 ’08), R. Kadobayashi, H. Kita, and
R. McGeer, Eds. IEEE, 2008, to appear.

[4] “impara Magdeburg,” http://www.impara.de/. [Online].
Available: http://www.impara.de/

[5] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay,
“Back to the future: the story of squeak, a practical smalltalk
written in itself,” in OOPSLA ’97: Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. New York, NY, USA:
ACM Press, 1997, pp. 318–326.

[6] D. Riehle and H. Züllighoven, “A Pattern Language for
Tool Construction and Integration Based on the Tools and
Materials Metaphor,” in Pattern Languages of Programm
Design, J. O. Coplien and D. C. Schmidt, Eds. Addison-
Wesley, 1995, ch. 2, pp. 9–42.

[7] D. Riehle, Entwurfsmuster für Softwarewerkzeuge. Addison-
Wesley, 1997.

[8] D. Riehle, B. Schäffer, and M. Schnyder, “Design of a
Smalltalk Framework for the Tools and Materials Metaphor,”
Informatik/Informatique, vol. February, pp. 20–22, 1996.

[9] G. E. Krasner and S. T. Pope, “A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-
80,” Journal of Object-Oriented Programming, vol. Au-
gust/September, pp. 26–49, 1988.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

26

