
Do Java Programmers Write Better Python? Studying
Off-Language CodeQuality on GitHub

Siegfried Horschig
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

siegfried.horschig@student.hpi.de

Toni Mattis
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

toni.mattis@hpi.uni-potsdam.de

Robert Hirschfeld
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
There are style guides and best practices for many programming
languages. Their goal is to promote uniformity and readability of
code, consequentially reducing the chance of errors.

While programmers who are frequently using the same pro-
gramming language tend to internalize most of its best practices
eventually, little is known about what happens when they casually
switch languages and write code in a less familiar language. Insights
into the factors that lead to coding convention violations could help
to improve tutorials for programmers switching languages, make
teachers aware of mistakes they might expect depending on what
language students have been using before, or influence the order
in which programming languages are taught.

To approach this question, we make use of a large-scale data set
representing a major part of the open source development activity
happening on GitHub. In this data set, we search for Java and C++
programmers that occasionally program Python and study their
Python code quality using a lint tool.

Comparing their defect rates to those from Python programmers
reveals significant effects in both directions: We observe that some
of Python’s best practices have more widespread adoption among
Java and C++ programmers than Python experts. At the same time,
python-specific coding conventions, especially indentation, scoping,
and the use of semicolons, are violated more frequently.

We conclude that programming off-language is not generally
associated with better or worse code quality, but individual coding
conventions are violated more or less frequently depending on
whether they are more universal or language-specific. We intend
to motivate a discussion and more research on what causes these
effects, how we can mitigate or use them for good, and which
related effects can be studied using the presented data set.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3214341

CCS CONCEPTS
• Social and professional topics → Quality assurance; Soft-
ware engineering education; • General and reference→Metrics;
• Software and its engineering→ Software defect analysis;

KEYWORDS
code quality, best practices, lint, github, explorative study

ACM Reference Format:
Siegfried Horschig, Toni Mattis, and Robert Hirschfeld. 2018. Do Java Pro-
grammers Write Better Python? Studying Off-Language Code Quality on
GitHub. In Proceedings of 2nd International Conference on the Art, Science,
and Engineering of Programming (<Programming’18> Companion). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3191697.3214341

1 INTRODUCTION
While writing programs in a modern programming language, pro-
grammers are confronted with numerous ways to obtain the same
behavior. Apart from algorithmic details and technical trade-offs,
code style plays an important role in selecting how a particular
concern is being implemented. For example, a programmer might
ponder on whether a data record justifies introducing a class or if a
tuple or dictionary is sufficient, whether to use accessor methods
instead of public fields, or whether to capitalize a name.

Style guidelines and coding conventions have been established by
most programming language communities to support such deci-
sions and maintain a uniform appearance of source code. Adhering
to guidelines promotes readability and, as a consequence, reduces
the chance for errors. In collaborative settings, best practices lower
barriers by minimizing surprises and maximizing recognizability
for potential contributors.

Problem statement. We assume that programmers which reg-
ularly use a language will eventually learn and internalize most
coding conventions. However, little is known about what happens
when they switch languages and write code in a language that is
not their “every-day language”.

Insights about factors leading to coding convention violations
could help to improve tutorials for programmers switching lan-
guages and give rise to tools that adapt to programmers’ main
language. In the context of teaching programming, this knowledge
might influence the order in which programming languages are
taught, or make teachers aware which errors they will likely en-
counter given the background of their students. Conventions that
are frequently violated can serve as counter-examples for language
designers.

127

https://doi.org/10.1145/3191697.3214341
https://doi.org/10.1145/3191697.3214341

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Horschig, T. Mattis, R. Hirschfeld

The opposite effect, i.e., off-language programmers being unex-
pectedly better at a casually used language than programmers with
that particular language as their primary language, can help to un-
derstand which concepts or conventions of their primary language
transfer well to the casually used language.

A GitHub-based study. Collaboration platforms like GitHub[1]
publicly host open source development processes, which provide
large amounts of data that can help to identify programmers that
are likely familiar with one language and occasionally develop in
another language. The off-language projects primarily maintained
by them can then be downloaded and analyzed for compliance with
coding conventions using existing analyzing tools, so called linters.

In the scope of this work, we define thresholds (as lines of code
contributed in the respective languages) that identify our subjects
among more than 14 million GitHub users and select their projects
from the total of about 40 million repositories. For further analysis,
we will restrict ourselves to the programming languages Python,
Java, andC++, and specifically analyze Python design defects caused
by programmers of all three languages.

1.1 Results
When reporting the defect rate per line of code, several defect
classes show statistically significant deviations depending on what
primary language has been used.

We observe that conventions which are more relevant in the
Python ecosystem are violated more frequently, especially those
regarding the 80-character line length, indentation, scoping, and
formatting of if/else-blocks. We found evidence that some obvious
mistakes are in fact more common, such as leaving semicolons at
the end of a Python line.

Surprisingly, C++ programmers tend to use undefined variables,
not use defined variables, and shadow variables from outer scopes
much more often than Python programmers do.

Java and C++ programmers are better than Python-only pro-
grammers at avoiding too large or too small classes (but not neces-
sarily complex methods), which may be caused by their experience
in object-oriented design that can be transferred to the Python
world. Also, formatting expressions with sufficient whitespace and
grouping import statements seems more intuitive for Java/C++
programmers.

2 APPROACH
2.1 A GitHub Data Set
A large part of today’s open source development is hosted by the
GitHub platform. Approximately 15 million users and organiza-
tional accounts maintaining 40 million public software repositories
accumulated more than 500 million versions1, i.e., Git commits.

GitHub provides an HTTP-based API that can be queried for
JSON data on any artifact (user profile, repository, commit, etc.),
the possibility to clone repositories including their full version
history using Git, and the newest version of each repository as
non-versioned ZIP archive for download. The fact that this data
is public and relatively accessible by standard web tools allows

1before 2017

quantitative studies of programming activities backed by large
amounts of real-world data.

Mirroring public GitHub. The GHTorrent project mirrors the pub-
lic GitHub timeline, collecting commits, projects, user profiles, is-
sues, and other related artifacts using the API [2]. They maintain
two databases, a smaller relational database with pre-processed
and normalized meta data, and a document-based database with
the full JSON replies returned from the GitHub API, including
commit contents. They provide CSV-formatted snapshots of the re-
lational schema compatible withMySQL as well as BSON-formatted
snapshots of the document-based schema meant to be loaded by
MongoDB.

Our setup is based on a relational database snapshot2 imported
into a PostgreSQL schema. Since this normalized schema is missing
most memory-intensive textual data (commit messages, file paths,
file patches), we imported additional commit data, such as commit
message, file names, and the serialized diff from the document-based
snapshot into the relational schema.

Merging both data sources was done by traversing the MongoDB
database dumps using the libbson library and inserting the in-
formation depicted in the right part of Figure 1 via a PostgreSQL
connector and the COPY bulk-loading facilities of the database. This
process required approximately three weeks and discovered mul-
tiple cases of invalid unicode, resulting in the field being skipped.
Another week was needed to remove exact duplicates and create
indexes. Surprisingly, we found about 50% more commits in the
imported table than in the relational GHTorrent schema.

2.2 Finding Candidate Users
Our first goal is to identify GitHub user profiles that match our
notion of having contributed a lot in one programming language
and a little in another language, e.g., 200 LOC Python code com-
pared to 10,000 LOC Java code. We also require them to not have a
significant contribution in one of the remaining languages under
consideration3 to better attribute effects to the primary language,
e.g. considering Java and C++ as primary languages, we would not
want programmers that have profound experience in both of them.

Our selection consists of two thresholds: the minimum number
lmin of lines of code required to be a secondary (casual) language
and a multiplier mpr im how much more LOC users has to have
contributed in their primary language. That means, given we sort
each users’ LOC counts per language in descending order (l1, l2, ...)
we look for all users matching all of the following criteria:

(1) l2 ≥ lmin LOC in their secondary language,
(2) l1 ≥ l2 ×mpr im LOC in their primary language,
(3) and ln < lmin in any other language n > 2.

Counting LOC. Since each commit retrieved from GitHub con-
tains the number of lines changed (i.e., overwritten or added) per file,
we can attribute all files with the respective language-specific ex-
tension (e.g. .py in Python, .java in Java, .cpp, .hpp in C++)
to a user/language combination and sum over the lines changed.
This does not include deletions.

2Snapshot timestamp: 2017-01-01
3Including all languages known to us would require distinguishing thousands of
languages in 8 billion contributions

128

Do Java Programmers Write Better Python? Studying Off-Language . . . <Programming’18> Companion, April 9–12, 2018, Nice, France

users

id: integer
login: string
type: {user, organization}
created_at: date

projects

id: integer
name: string
description: string

owner

forked

commits

id: integer
sha: string
timestamp: datetime

0 .. 1

1

1

author

project

commit

*

* project_commits

*

*
commit_parents

commit_data

sha: string
timestamp: string
message: string
email: string

patch_data

sha: string
filename: string
changes: integer
deletions: integer
diff: text

1

0..1 commit

parent

child

original metadata extracted

39,678,429
10 GB

14,380,149
2 GB

502,481,630
125 GB

4 × 109

622 GB

5 × 108

64 GB

747,310,965
210 GB

8.5 × 109

9042 GB

Figure 1: Relevant parts of our modified GitHub data set. GHTorrent relational data on the left side, additions extracted from
GHTorrent’s document database on the right. n-to-m relations are realized by join tables (broken line). Number of rows and
total size (including indexes) on disk are reported in dotted boxes, the large size of join tables is mostly caused by indexes
from both sides. Relations not depicted here include issues, pull requests, milestones, and user comments.

Control group. We also identify users that only contributed in the
language in which we measure code quality. We intend to use their
quality metrics as a baseline to compare off-language contributors
to.

A requirement for control group members is that they must
have contributed at least lmin ×mpr im LOC in that language and
less than lmin LOC in any of the other candidate groups’ primary
languages considered here. That means that the control group has
no secondary language.

To keep the studied groups of programmers comparable, we will
randomly select approximately as many control group members as
we have in each of the groups for the other primary languages.

Setting the minimum LOC lmin . Probing different values of lmin
(from 10 to 1000 in steps of 10) fixing mpr im = 1 and counting
the number of users fulfilling the above criteria yields an optimum
around lmin = 150 LOC (see Figure 2). For lower thresholds, we
observe that programmers are more likely to have a third significant
language and violate condition (3), for higher thresholds we find less
programmers having a secondary language according to condition
(1) at all.

Setting the factormpr im . Ideally, we want to find experts in one
language having orders of magnitude more contributions com-
pared to their second language to see the clearest effect. However,
the number of candidates exhibiting a usage factor between their
first and second most used language already drops sharply from

0 100 200 300 400 500 600 700 800

LOC threshold

350

400

450

500

550

600

650

700

750

ca
n

d
id

at
es

opt (150,754)

Figure 2: Number of candidates for different values of the
minimum LOC lmin .

mpr im > 1 (see Figure 3), so we fixedmpr im = 5 for now to trade
candidate numbers against expertise difference.

2.3 Finding Candidate Projects
After agreeing on a set of primary and secondary languages, we
collect all projects contributed to by users whose primary language
is within our scope, and select those that received contributions by
the users in their second language.

129

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Horschig, T. Mattis, R. Hirschfeld

2 4 6 8 10 12 14

expertise multiplier

100

200

300

400

500

600

700

ca
n

d
id

at
es

trade-off (5, 175)

Figure 3: Number of candidates for different experience-gap
multipliersmpr im .

For example, in the study presented in the remainder of this
paper, we will select projects edited by Java and C++ programmers
that are written in Python themselves, i.e., Python is going to be the
secondary (“switch to”) language and Java and C++ the primary
(“switch from”) languages.

Additionally we select the projects contributed to by our control
group to measure the code quality baseline. In our case, these will
be Python projects edited by Python programmers.

2.4 Measuring Violations of Coding
Conventions

Tomeasure code quality in terms of compliance with coding conven-
tions and best practices, we propose to use linters for the respective
secondary language. A linter apply a series of checks to a program,
reporting locations where code quality may be compromised. We
can count the prevalence of reported locations as an indicator for
code quality.

PyLint. An example for a widely used linter is the Pylint software
for Python [4]. Pylint can report the following message types, asso-
ciated with the file and line number where the problem occurred:

Fatal errors prevent Pylint from further processing the file
(e.g., unbalanced brackets),

Errors render the Python module invalid (e.g. duplicate ar-
gument names) or likely causes a runtime error when the
reported line of code is executed (e.g. variable use before
assignment),

Warnings are emitted for error-prone code or style issues (e.g.,
unreachable code, mutable default values in Python, overly
general exception handling),

Refactoring hints indicate code that is too complex or vio-
lates modularity (e.g. code that is nested too deeply, boolean
expressions that can be simplified),

Convention issues refer mostly to formatting and naming
(e.g., wrong number of spaces around an operator).

Each message has a unique ID, which is prefixed with either F, E,
W, R, or C depending on message type, followed by four digits. A

short string identifying the problem is typically provided in addition
to the code, e.g. the error
E0110 abstract-class-instantiated.

For each candidate project, we collect location and message ID
for each occurrence of a message reported by the linter.

Defect Rates. For each project analyzed by the linter, we deter-
mine a relative rate for each of the reported message IDs. That is the
number of times we encountered this particular message divided
by the total number of lines reported by the linter.

For each message ID, we obtain a set of per-project data points
between 0 and 1 for each primary language and one for the control
group. These sets capture inter-project variability in defect rates.

Statistical Significance. To compare such a set of off-language de-
fect rates to the control group, we use theWilcoxon-Mann-Whitney-
Test against the null hypothesis that the off-language defect rates
are a sample from the control group’s distribution.

This test is done for each primary language and each message ID
and we reject the null hypothesis at p < 0.05. We drop any message
ID from the results that shows no significant difference.

3 RESULTS
3.1 Data Breakdown
In this analysis, we only used Python as secondary language (both
2.x and 3.x versions) and Java and C++ as primary languages. From
the approximately 18 000 users that had contributions in Python
and one of the other languages, we selected:

• All 84 Java candidate users meeting the criteria described
above,
– all 45 Python projects edited by those users, of which
– 40 Python projects were actually reachable at the time of
download from GitHub.

– In total 2363 source files with 480 875 LOC4.
• All 91 C++ candidates,
– all 41 Python projects edited by them, of which
– 33 Python projects were reachable.
– In total 661 source files with 175 402 LOC.

• 100 Python control-group candidates from 1 800 qualified
Python experts,
– all 420 projects edited by them, of which
– 380 were reachable.
– In total 12 197 files with 1 335 220 LOC.

On the one hand, the candidate users making up only 0.0019% of
GitHub users in total might be regarded too few for a representative
sample, on the other hand the required minimum experience and
experience gap between two languages is a very strict precondition.
If we cannot demonstrate effects in this group, relaxing the require-
ment will unlikely lead to more salient results without switching
to sophisticated statistical models.

3.2 Code Quality Issues
We report on a selection of defects that were significantly more
or less prevalent in the Java and C++ candidate groups compared
to the Python control group. The summary in Table 1 reports the

4Lines of code excluding comments and blank lines

130

Do Java Programmers Write Better Python? Studying Off-Language . . . <Programming’18> Companion, April 9–12, 2018, Nice, France

Table 1: Ratio of defect rates compared to the Python control
group.

Code quality issue Java group C++ group
long line 3.59 1.44
invalid name 1.43 1.52
wrong import order – 1.83
ungrouped imports 0.16 0.14
bad whitespace – 0.38
semicolon 4.42 20.62
redefined builtin 0.57 –
bad intentation 3.39 3.28
redefined outer name 1.68 2.21
undefined loop variable – 3.28
unused import 0.63 0.81
unused variable 1.56 2.25
complex function 0.84 1.48
too many public methods 0.26 0.46
too few public methods 0.34 0.58
no else return – 1.52
undefined variable – 1.55
assignment from no return 28.27 –

comparison as quotient between average defect rate in Java/C++
candidates’ projects and average control group defect rate. Values
less than 1.0 indicate an improvement in defect rate. Values that
did not pass the significance test (p ≥ 0.05) are not reported in the
table.

Line too long (C0301). In Python, lines should not exceed 80
characters in length. Both C++ and Java candidates have higher
rates of too long lines (p < 0.001) in Python.

Invalid name (C0103). Naming conventions in Python state that,
e.g., class names are capitalized while method and field names start
with lowercase letters. Programmers from both primary languages
tend to violate naming conventions almost one and a half times
more often than Python programmers (p < 0.001).

Wrong import order (C0411). Module imports in Python are or-
dered so that standard library goes first, followed by third-party
libraries, and eventually local imports.

C++ programmers violate this convention 83% more likely than
Python programmers (p < 0.01), while Java programmers show no
difference at all.

Ungrouped imports (C0412). In Python, multiple import state-
ments from the same package should be grouped together. Java and
C++ programmers group their imports much more often than our
Python control group, violating this convention only at 16% and
14% of the control group’s rate respectively (p < 0.001).

Bad whitespace (C0326). C++ programmers have a 62% lower
chance ofmissing or placing toomuchwhitespace around operators,
brackets, or blocks (p < 0.05). Java programmers also seem to
use whitespace more reliably than Python programmers, however
effects where not significant.

Unnecessary Semicolon (W0301). It does not come as a surprise
that programmers from C-like syntax tend to use semicolons in
other languages by mistake. In Python, a semicolon is a logical
line delimiter having no effect when put at the end of a line. C++
programmers are 20 times more likely to introduce an unnecessary
semicolon (p < 0.0001). Java programmers have a 4 times higher
density of semicolons (p < 0.0001).

Redefining built-in names (W0622). Especially when not familiar
with Python, there is a tendency to name things the same way as
those in the built-in namespace. Typical examples include naming
a variable input, which is the built-in function to read a line from
terminal, or naming a string argument str, which is the name of
the string type. This may lead to unexpected or confusing errors
when the built-in construct is later used the way it was intended.

One might assume that being unfamiliar with Python increases
the chance, but Java programmers show about half the frequency
of this issue (p < 0.01). We believe that Java programmers are used
to more sophisticated programming environments and will likely
use one to write Python as well. In general, such environments
highlight built-ins in a way that accidental use of them would
become apparent immediately.

Bad indentation (W0311). Since Python has indentation seman-
tics, using indentation consistently is crucial. Swapping spaces for
tabs or using a different number of spaces at different code blocks
can still have unambiguous semantics, but is considered bad style.
Both Java and C++ Programmers are about 3.3 times more likely to
introduce inconsistent indentation (p < 0.05).

Redefining outer name (W0621). Shadowing a name from an outer
scope is a common cause of errors in Python and thereby discour-
aged.

Java programmers are 58% more likely to redefine an outer name
(p < 0.01), C++ programmers are 2 times as likely (p < 0.01).

Undefined loop variable (W0631). Using a loop variable outside
the loop can be useful to inspect the value it had after the last loop
run. However, when the loop never ran, this variable is undefined.

C++ programmers are 3 times more likely to use loop variables
outside the loop (p < 0.05). An influence might be the fact that in
C++ that follows C practices, loop variables are often declared at
the start of a function, making them available before and after a
loop and.

Unused import (W0611). C++ programmers are 24% less likely
to import something they do not use within the module (p < 0.05).
However, since imports are at file level and not something anyone
would consider doing per line, this statistic is questionable. Typically,
the amount of imports does not scale linearly with the length of
a file, hence a redundant import in a smaller file has much higher
impact on the statistic than one in a larger file.

Unused variable (W0612). Java programmers tend to forget about
a previously defined variable 55% more often than the control group
(p < 0.05), C++ programmers have a 124% higher rate of this par-
ticular warning (p < 0.0001).

Complex method/function (R1260). PyLint considers a method or
function too complex when its cyclomatic complexity exceeds 10.

131

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Horschig, T. Mattis, R. Hirschfeld

This happens to C++ programmers 67% more often than to Python
programmers (p < 0.05). The Java group had approximately the
same complexity ratings as the control group.

Too many public methods (R0904). This message is emitted when
classes have more than 20 public methods. Java and C++ pro-
grammers tend to make smaller classes, thereby producing this
refactoring hint at less than half the rate of Python programmers
(p < 0.0001).

Too few public methods (R0903). This code smell indicates a class
has been created only for the purpose of storing data. In such
a case, Python programmers should use simpler structures, e.g.,
tuples, dictionaries, or instances of the namedtuple meta-class.
Alternatively, this can be a symptom of state processing happening
somewhere else, when it should be a responsibility of the class.

Both Java and C++ programmers are less likely to produce data
classes (p < 0.001) in Python. Both languages enforce object-
oriented design in a stricter way than Python does. Especially in
Java, programmers need to decide which class their method belongs
to, while Python programmers can simply put a function at module
level outside a class (in Java, a comparable design would require
making a method static).

No else return (R1705). In Python, having an else statement
right after an if-branch returns is considered bad style as it in-
creases complexity. C++ candidates tend to use the redundant else
branch more often (p < 0.05). The example below illustrates a viola-
tion of this coding convention:

Listing 1: The second return statement should not be nested
in a redundand else branch.
if condition:

return a

else:
return b

3.2.1 Errors.

Undefined variable (E0602). Using a potentially undefined vari-
able is a common phenomenon, even Python programmers do this
in about 6 out of 1000 LOC. Often, these are situations not reachable
by the intended control flow, but during program evolution these
control flows may emerge and lead to errors later on.

C++ programmers have a 55% higher rate of using undefined
variables (p < 0.001). Java programmers are about 20% less likely,
but high variance makes the result insignificant.

Assignment from no return (E1111). Java candidates sometimes
use functions without return value in an assignment or as an ex-
pression (p < 0.05). In Python, such a function would return None.
Especially, if only some code paths return a value and the program
is fine with the None result in some cases (e.g. because it would
be interpreted as false in a boolean expression), the error might
remain undetected at run-time, while compile-time checks would
have found the mistake in Java. In C++, this would be undefined
behavior and not necessarily caught by compilers, so C++ program-
mers might be wary here.

Listing 2: Missing the last return is bad practice, but has no
effect if the function is used as condition.
def is_square(rectangle):

if rectangle.a == rectangle.b:

return True

if is_square(some_rectangle):

...

4 DISCUSSION AND FUTUREWORK
We identified a wide range of threats to validity and, as a direct
consequence, propose a number solutions that would improve confi-
dence in the results. Besides that, we will discuss interesting follow-
up questions resulting from this initial study.

4.1 The GitHub Data Set
Studies like this demonstrate the capabilities of having a compre-
hensive GitHub data set at hand.

The study also showed several weaknesses of the data set: A
re-occurring problem is keeping a large database up-to-date. The
longer we used the 2017 snapshot, the more projects became un-
reachable because they have been relocated (e.g. from a user account
to an organization), removed, or renamed, or their owner’s pro-
file does not exist anymore. As another side effect, our candidate
selection is based on commit data that was available through all
of 2017, while the linting results are done on more recent project
versions. Original contributions we were hoping to measure could
be overwritten in the meantime. This should be addressed in fu-
ture studies by doing a fully version-controlled “Git clone” of each
project, and subsequently rolling back to the last version that the
currently loaded GHTorrent data set knows about.

Updating the database regularly would consume a significant
amount of bandwidth, storage, and computational resources, reduc-
ing the availability to researchers, and undermining long-running
analyses that assume their view on the data does not change from
one day to the next. Addressing the trade-off between (transac-
tional) data consistency needed by long-running analyses, repro-
ducibility with original data, and replicability with up-to-date in-
formation is a challenging topic for future work.

4.2 Candidate and Project Selection
To keep the candidate selection as intuitive as possible, we accepted
a number of threats to validity concerning our candidate set:

• The candidate sets are small compared to the size of GitHub’s
user base. Relaxing the requirements would give us more
programmers at the cost of a smaller experience gap. A sta-
tistical model that would be able to report how defect rates
shift depending on how many lines the programmer has
written in each language could help to separate the effects
of each individual language on code quality, for example via
logistic regression or analysis of variance (ANOVA).

• The off-language programmers may have programmed a
little bit of Python before they switched to Java or C++ com-
pletely. Then, their later primary language would have had

132

Do Java Programmers Write Better Python? Studying Off-Language . . . <Programming’18> Companion, April 9–12, 2018, Nice, France

no impact on their Python skills. Using commit dates, we
would need to check to which degree this might be the case.

• Programmers might have copied external Python files and
dependencies into their otherwise less pythonic repository,
causing a large number of LOC being attributed to a user
not actually writing that much Python.

• The degree of collaboration in some projects might be high
enough that most of the code is from other programmers
and not the candidates themselves. Since linters operate on
full projects rather than individual contributions, we could
improve accuracy by comparing line numbers of reported
defects to the lines that have been changed by our candi-
date users and remove those that were introduced by non-
candidate users.

4.3 Statistics
We did not analyze source code on a finer level of granularity, as
project sizes can vary by substantial amounts. For example, half
of our Python code written by Java off-language programmers is
from a single project (a large-scale biology lab data processing
infrastructure) that would have too much impact if we reported,
e.g., file-based defect rates. Now, this large project is just a very
accurate data point among 44 other projects.

However, some defects were rare in some projects (less than 10
occurrences in total), or the projects were small, which means that
dividing by the total number of lines gives an estimate that is highly
sensitive to fluctuations in the underlying code.

Error rates might also be biased due to project-internal guide-
lines that differ from the default style guide checked by the linter.
To address this, a per-project comparison would be needed, e.g.,
comparing code contributed to the same project by authors with
different language background. The project selection for this study
did not yield any overlapping projects between control group and
Java/C++ groups, though. Locating projects withmixed-background
contributors is a challenge left for future work.

4.4 Selection of Programming Languages
We considered the Python language as the currently most popular
non-JavaScript dynamically typed language in comparison to the
two major statically typed languages.

In one sense, we may have measured some effects that occur
when switching from statically to dynamically typed programming
languages. To support this hypothesis, we would need to analyze
more than a single dynamically typed secondary language, e.g.,
including Ruby and PHP.

Furthermore, switching primary and secondary languages, e.g.,
quantifying Java defects caused by Python programmers, would be a
complementary study that could potentially identify corresponding
effects, e.g., if Java programmers violated less object-oriented best
practices in Python than Python programmers, canwe find evidence
that Python programmers write inferior object-oriented code in
Java?

By contrast, a challenge when linting languages is the C family
of languages, since without running the preprocessor and having
all header files ready, one cannot even guarantee balanced brackets.

4.5 Qualitative Analysis
Analyzing a considerably sized data set helps to statistically dis-
tinguish anomalies, like the difference in defect rates, form “back-
ground noise”, and allows to correlate them with the primary lan-
guage of the programmers. Nevertheless, this approach cannot
explain why and through which process the effects manifest them-
selves.

4.6 Measuring Bad vs. Good Features
In this work, we only focused source code features reported by lin-
ters. According to community consensus, they are associated with
code that is harder to maintain. Code quality has been measured as
the absence of such bad features.

For future work, we propose to analyze good (or neutral) features
as well, for example, the use of functional concepts over for-loops,
patters and built-in modularity concepts over tightly coupled mod-
ules, expressive names, and other indicators of proficiency in a
programming language and programming in general. This idea
gives us two main directions to continue this work:

• Measuring expertise by used language concepts rather than
lines of code. For example, Python programmers who regu-
larly write Python for their job, but rarely contribute to open
source projects, would easily slip through our LOC-based
candidate filter. However, using advanced Python features
in their few contributions, or improving modularity metrics
rather than worsening them, can reveal that they are experts.

• Measuring how paradigms transfer across languages. Instead
of pointing out errors made by off-language programmers,
a follow-up study could try to find evidence for advanced
language concepts, or specific styles (e.g., functional, object-
oriented), that are recognized and readily picked up by pro-
grammers from other languages.

5 RELATEDWORK
Studying development processes and effects on code quality in large
scale data sets like GHTorrent is a recent development. Examples
include the work from Ray et al. where effects on software quality
were traced back to language design aspects, controlling for a wide
range of factors [5]. Moreover, quantifying the amount of code du-
plicates, which is as an important aspect of code re-use and quality,
has been done at large scale using a GitHub data set comparable to
ours in the DéJàVu project by Lopes et al. [3].

Several interesting aspects of how programmers might mis-
interpret a programming language’s semantics have been uncov-
ered by Tunnell Wilson et al.[7] in an effort to crowdsource lan-
guage design. Some of them do not match the actual behavior of
programming languages, giving rise to errors.

One of the first quantitative studies on whether open source
development differs in code quality at all and which impact mod-
ularity has on the process as well as user satisfaction has been
published by Stamelos et al. [6].

6 CONCLUSION
Comparing the code quality of Python projects edited by Java or C++
programmers to those edited by Python programmers has a visible
effect regarding code quality. Our data supports the assumption that

133

<Programming’18> Companion, April 9–12, 2018, Nice, France S. Horschig, T. Mattis, R. Hirschfeld

being knowledgeable in Java or C++ can actually make someone
a better Python programmer regarding commonly accepted and
object-oriented best practices, but not necessarily with respect to
Python-specific conventions.

We also demonstrated that the GHTorrent data set can be used to
study such phenomena without the need to recruit programmers for
a user study, but the observations are much less reliable compared
to controlled studies and require assessment of several random
factors influencing code quality. While trying to minimize the room
for errors, we were left with only a handful of programmers to
study and still need to address severe threats to validity in our next
steps.

Nevertheless, we are confident that this type of repositorymining
can be replicated to study a wider range of phenomena, such as
programmers’ readiness to pick up advanced language concepts
or programming styles and in which way this is influenced by the
languages they already know. We hope that such studies help to
improve teaching activities and materials in the long run.

REFERENCES
[1] GitHub. 2018. Build software better, together. (2018). https://github.com
[2] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of

the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE Press,
Piscataway, NJ, USA, 233–236. http://dl.acm.org/citation.cfm?id=2487085.2487132

[3] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéJàVu: A Map of Code Duplicates on
GitHub. Proc. ACM Program. Lang. 1, OOPSLA (Oct. 2017), 84:1–84:28. https:
//doi.org/10.1145/3133908

[4] Pylint. 2018. Pylint - code analysis for Python. (2018). https://www.pylint.org
[5] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.

A Large Scale Study of Programming Languages and Code Quality in Github. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2014). ACM, New York, NY, USA, 155–165. https:
//doi.org/10.1145/2635868.2635922

[6] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris.
2002. Code quality analysis in open source software development. Information
Systems Journal 12, 1 (Jan. 2002), 43–60. https://doi.org/10.1046/j.1365-2575.2002.
00117.x

[7] Preston Tunnell Wilson, Justin Pombrio, and Shriram Krishnamurthi. 2017. Can
We Crowdsource Language Design?. In Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! 2017). ACM, New York, NY, USA, 1–17. https:
//doi.org/10.1145/3133850.3133863

134

https://github.com
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3133908
https://www.pylint.org
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1145/3133850.3133863
https://doi.org/10.1145/3133850.3133863

	Abstract
	1 Introduction
	1.1 Results

	2 Approach
	2.1 A GitHub Data Set
	2.2 Finding Candidate Users
	2.3 Finding Candidate Projects
	2.4 Measuring Violations of Coding Conventions

	3 Results
	3.1 Data Breakdown
	3.2 Code Quality Issues

	4 Discussion and Future Work
	4.1 The GitHub Data Set
	4.2 Candidate and Project Selection
	4.3 Statistics
	4.4 Selection of Programming Languages
	4.5 Qualitative Analysis
	4.6 Measuring Bad vs. Good Features

	5 Related Work
	6 Conclusion
	References

