An Abstraction for
Version Control Systems

Matthias Kleine, Robert Hirschfeld, Gilad Bracha

Technische Berichte Nr. 54

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\y\‘wersl}«é.
. ‘ Hasso
i Plattner
A <D Institut
° &Q’am IT Systems Engineering | Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fur
Softwaresystemtechnik an der Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts far
Softwaresystemtechnik an der Universitat Potsdam | 54

Matthias Kleine | Robert Hirschfeld | Gilad Bracha

An Abstraction for Version Control Systems

Universitatsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet Uber http://dnb.de/ abrufbar.

Universitatsverlag Potsdam 2012
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitiat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts fur Softwaresystemtechnik
an der Universitat Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschutzt.

Online veroffentlicht auf dem Publikationsserver der Universitat Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/5562/

URN urn:nbn:de:kobv:517-opus-55629
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55629

Zugleich gedruckt erschienen im Universitatsverlag Potsdam:
ISBN 978-3-86956-158-5

Version Control Systems (vcss) allow developers to manage changes to
software artifacts. Developers interact with vcss through a variety of client
programs, such as graphical front-ends or command line tools. It is desir-
able to use the same version control client program against different vcss.
Unfortunately, no established abstraction over vcs concepts exists. Instead,
vcs client programs implement ad-hoc solutions to support interaction
with multiple vcss.

This report presents Pur, an abstraction over version control concepts
that allows building rich client programs that can interact with multiple
vcs. We provide an implementation of this abstraction and validate it by
implementing a client application.

Contents

1 Introduction
1.1 Contributions e
1.2 ReportStructure. oo oL

2 Background
2.1 Choice of Version Control Systems
2.2 Version Control System Architectures Compared
23 Requirementso L.
24 Summary

3 Pur—An Abstraction for Version Control
3.1 Storesand Snapshots L.
3.2 Versionso
3.3 Historians and Repositories
3.4 PurbyExample
3.5 SUMMATIY . . . v v v

4 Implementing Pur for Concrete Back-ends
4.1 Abstract Implementation. 0 0L
4.2 Implementation for Back-Ends

5 Pur for Newspeak—PNS
51 Snapshots
5.2 SEOTES e e e e e e e e e
5.3 Diffing Algorithm
54 UserInterface
55 Outlook.
56 Summary

6 Evaluation
6.1 Provide Rich Semantics
6.2 Version Control System-agnostic Interface.
6.3 Minimal Interface o L.

11
11
12
28

30

31
32
32
32
32
35

6.4 State-based Non-linear History Model
6.5 Consistent BranchingModel
6.6 Conclusion

7 Related Work
7.1 Software Configuration Management
72 VersionControl,
7.3 Implementations of Version Control System Abstractions . .

8 Summary and Outlook

Bibliography

66

73

75

List of Figures

2.1 A simplified view of Subversion’s architecture
2.2 Git and Mercurial unify repositories and clients
2.3 Representing history as a directed acyclic graph of snapshots .
2.4 Cherry picking the changes madeby bontox
2.5 Example Subversion revisions visualized
2.6 A simplified view of Git’s object model
2.7 A simplified view of Mercurial’s history model
2.8 A simplified model of the revlog abstraction used in Mercurial
2.9 Exemplary comparison of Mercurial’s and Git’s history models
2.10 An example of upstream branches in Git

3.1 Interfaces for the objects being versioned by Pur
3.2 Visualization of snapshots,
3.3 Visualization of a history graph. Two versions shown in detail .
3.4 Historians create new versions

4.1 Abstract classes provided by framework
4.2 Specializations for local repositories
4.3 Specializations for remote repositories

5.1 Implementation of snapshot interface for Newspeak
5.2 Implementations of store interface for Newspeak
5.3 Existing and required synchronization mechanisms
5.4 Classes of the diffing algorithm
55 Screenshotof PNS
5.6 Interaction choices between image and current historian
5.7 Changes were expanded and a commit message was entered

5.8 Interaction with the current historian and related historians . .
5.9 Interaction with other local historians
5.10 Interaction with remote repositories
5.11 Excerptof themerge UI

7.1 Eclipse’s hierarchical diffing UI.
7.2 Intelli] IDEA’s vcs-interaction menus for Subversion and Git .

31
33
34
35

List of Tables

2.1 Example for status of working copies 19
2.2 Subversion’s mergeinfo illustrated 25
4.1 Comparison of corresponding vcs commands 43
4.2 Implementation of extension commands 44

1 Introduction

Version Control Systems (vcss) help developers to manage changes to
software artifacts. They allow developers to document, share, and merge
changes. These tasks are critical to the success of software projects, because
they are both frequently recurring and prone to human error. Software
is built by teams of developers who work in parallel on the same source
code. The need to share and merge changes is thus omnipresent. Without
the assistance of vcss, developers can fail to communicate their changes
and must merge changes manually; changes become untraceable. vcss
address these problems by allowing developers to share their changes in a
structured and traceable way. Changes are recorded in the vcs and conflicts
can be solved by considering the history of changes. The potential for error
is thus reduced.

Developers interact with vcss through a variety of client programs. Such
client programs include command line interfaces, graphical front ends,
Integrated Development Environments (IDEs), project management web
applications, or information extraction tools, such as refactoring reconstruc-
tion systems. These client programs enhance the vcss by use-case specific
functionality, for example by providing a certain kind of user interface, or
by extracting certain data.

It is desirable to use the same version control client program against dif-
ferent vcss. The benefits provided by a client program are often applicable
across different vcss. For example, user interfaces that are provided by
IDEs, such as those to browse a project’s history or to show differences be-
tween versions are, to a large extent, independent of the concrete vcs being
used. This applies to other client programs, such as project management
web applications or graphical front-ends.

Unfortunately, no established vcs abstraction exists. Client programs
that want to interact with multiple vcss face the difficulty that vcs inter-
faces differ in terminology and concepts. These differences are addressed
by ad-hoc solutions that cannot be re-used across client programs. This
report contributes to the solution of this problem with the following:

1.1 Contributions

An Abstraction for Version Control We describe Pur, an abstraction for
vcss that captures concepts common to the vcss Subversion, Git, and
Mercurial. This abstraction is intended to maintain a sufficiently rich set of
concepts so as to serve as a basis for generic vcs client programs.

Version Control Abstraction in Newspeak We validate the practicabil-
ity of the abstraction by implementing it for Git and Mercurial in the
Newspeak programming language. Furthermore, we describe how to im-
plement it for Subversion.

Version Control Application in Newspeak We validate the applicabil-
ity of the abstraction by implementing a version control application that
provides a user interface to interact with Pur.

1.2 Report Structure

The report is structured as follows: First, chapter 2 analyzes and compares
the three vcss Subversion, Git, and Mercurial. Based on this analysis it
identifies requirements that must be satisfied by a common abstraction.
The resulting common abstraction Pur is presented in chapter 3. Next,
chapter 4 shows how this abstraction can be implemented in the Newspeak
programming language. Chapter 5 describes the implementation of the
version control application PNS that makes use of the Pur implementation.
Based on these implementations, chapter 6 evaluates Pur in respect to
the requirements initially identified. Next, chapter 7 compares Pur to other
approaches to abstract over version control. Chapter 8 sums up the findings
of this report and gives an outlook on future work.

10

2 Background

This chapter provides the background for the version control abstraction
Pur. It presents the vcss that Pur must support, identifies common con-
cepts of these systems, and extracts requirements that must be met by a
common abstraction.

2.1 Choice of Version Control Systems

The applicability of a version control abstraction depends on the set of vcss
that it supports. The set of supported systems itself depends on the choice
of vcss that are analyzed to establish requirements for Pur. The selection
of such vcss can be made with several criteria in mind. An analysis of
a large number of vcss can guarantee that a wide selection of concepts
is considered but will at the same time reduce the resources available for
the analysis of each single system. In contrast, the opposite approach of
analyzing a small number of vcss can guarantee a higher depth of analysis
for each system but can only produce relevant results if the selection of
vcss is relevant to many users.

The selection of vcss that is analyzed for Pur is restricted to a small set
of popular vcss. We identify popular vcss by surveying recent research
and actual usage of vcss. In 2007, Apache Subversion was found to be
the leader in the standalone Software Configuration Management (scm)
market [Schoy], where scm provides the wider context for version con-
trol [MWE10]. While no research known to us suggests that Subversion’s
prevalence has declined in proprietary software development, a strong
trend towards Distributed Version Control Systems (pDvcss) can be ob-
served in open source projects [DASog]. Unlike centralized systems, such
as Subversion, Dvcss replicate history across repositories [OGgo, Carg8].
Big projects such as the Linux kernel, Google’s Android, Qt, or VLC now
use Git' and projects such as Python, OpenOffice, or Vim now use Mercu-
rial®.

Thttps://git.wiki.kernel.org/index.php/GitProjects — last checked 01.12.2010
2http://mercurial.selenic.com/wiki/ProjectsUsingMercurial — last checked 01.12.2010

11

In open source projects, Subversion, Git and Mercurial appear to be the
most widely used systems. This is indicated by the number of projects
found on open source hosting platforms. The website Ohloh3 collects statis-
tics on open source projects. It suggests that over 70 % of projects are using
Subversion or CVS, over 25 % use Git, followed by more than 2 % using
Mercurial. These statistics suggest that by choosing Subversion, Git, and
Mercurial the version control concepts needed by most projects can be
regarded in the analysis. This is also suggested by the results reported
by [Malio]. Consequently, we analyze Git, Subversion, and Mercurial to
form the basis of Pur.

2.2 Version Control System Architectures Compared

This section compares the three systems Git, Mercurial, and Subversion in
order to establish requirements for a common abstraction. The comparison
is structured by aspects that are relevant across the three systems. This
section gives a brief introduction of these aspects, followed by a comparison
of the vcss along these aspects.

vcss allow developers to manage changes to software artifacts. Software
artifacts whose changes are tracked are said to be versioned. The chosen
vCss expose software artifacts to the user as a file hierarchy. The history of
this file hierarchy is stored in repositories. In the chosen vcss, repository
architectures fall into two categories. Subversion stores the history of a
project in a single central repository. Git and Mercurial allow replicating
the history across multiple repositories.

All three vcss allow developers to access versioned files through work-
ing copies, also known as work spaces [Estg6]. A working copy is a copy
of the versioned directory hierarchy that is under control of a developer.
Working copies additionally store meta data that indicates what repository
the working copy corresponds to and how the files in the working copy
relate to the history stored in that repository.

Working copies allow recording changes. A developer can modify files
in a working copy without affecting the repository. Changes are only trans-
ferred to the repository and recorded in its change history on explicit
request by the developer. This action is often called “commit” and usually
requires the developer to enter a message describing the changes. Uncom-
mitted local changes can be undone by restoring the working copy to a
previous state that is stored in the repository.

3http://www.ohloh.net — last checked 11.08.2011

12

When changes are made in more than one working copy in parallel,
development is said to branch. Depending on the changes being performed,
it may be desirable to keep branches separate for a certain time, and thus
version the history of branches separately. Typical scenarios for this are
branches that contain new and unstable features and are therefore not to
be used by anyone but those developing these features.

A history model specifies how the history of changes to software arti-
facts is represented in a vcs. The history models employed by the three
vcss fall into two distinct categories. Git’s and Mercurial’s history models
have inherent support for representing branching development. In contrast,
Subversion represents branches on top of the history model.

On top of the history model, the branching model specifies how branches
are exposed as named entities. The branching model can be distinguished
from the history model. A history model may be able to represent the
existence of branches, but does not specify how branches are exposed as
named entities. Being able to identify branches by name is often desirable,
as it allows developers to communicate interaction between branches. For
example, it might be desirable to ask the vcs to merge the changes from
the “development” branch into the “stable” branch. A clear distinction of
history- and branching model can only be found in Git and Mercurial. It
is nevertheless desirable to distinguish branching- and history model, as it
simplifies comparing Git and Mercurial, which have near-identical history
models but diverging branching models. The following sections analyze
how the three vcss differ in the way that they address the various aspects.

2.2.1 Repositories

The three vcss exhibit two distinct ways of organizing repositories. In
Subversion, a project has exactly one repository whereas in Git and Mercu-
rial, each developer has his own repository. Centralized and decentralized
repositories have different properties. Centralized repositories allow bet-
ter control over how and by whom history is interacted with. In contrast,
decentralized repositories replicate history and thus allow developers to
version their personal changes without having access to a shared repository.
They thus facilitate distributed development. Replicated history addition-
ally allows many operations to perform faster but requires additional tools
to synchronize history.

13

Subversion Subversion’s architecture is based on a client-server model.
As shown in fig. 2.1, a project that is versioned using Subversion has a
central repository, which can be accessed by multiple clients. The repository
is the only location that stores the complete history of the project.

Client 1 Client 2 Client 3
Working Copy Working Copy Working Copy
Repository

Revision Store

Figure 2.1: A simplified view of Subversion’s architecture

A single central repository has desirable consequences. A central reposi-
tory acts as a gateway to a project’s history. It can thus be used to regulate
access to the history, for example, by granting permission to access his-
tory. As such, a central repository can play a role in the implementation of
security policies.

The limitation to one central repository also results in undesirable conse-
quences. Storing the complete history in a single place makes the central
repository a bottleneck. Operations that need access to a project’s history,
such as finding the author who last changed a file, depend on access to the
history. In case of remote repositories, such operations are limited by net-
work access bandwidth and can thus require a noticeable amount of time
to complete. Furthermore, several operations are disabled when the reposi-
tory cannot be reached. For example, it is not possible to write changes to
the history without a connection to the repository.

Git and Mercurial Git and Mercurial are based on very similar architec-
tures. Both systems are based on a peer-to-peer model. As illustrated in
tig. 2.2, the distinction of client and repository that can be found in Subver-
sion does not exist. Instead, every peer has its own working copy as well as
replication of the project’s history. In bvcss, peers are commonly named
repositories.

14

Repository 1 Repository 2 Repository3

Working Copy Working Copy Working Copy
|

Figure 2.2: Git and Mercurial unify repositories and clients

The absence of a central repository has desirable consequences. The lack
of a central authority encourages distributed development. This can be
beneficial in open source scenarios, where it allows developers to version
the history of their personal changes to a project without requiring write
access to public repositories of this project. Furthermore, history replication
increases availability and performance. Local history storage allows history-
reliant operations to perform without network access and thus faster.

History distribution can also have undesirable consequences. Without
a central repository, no single gateway to a project’s history, and as of
such no single point to implement access control exists. The distinction of
local and remote repositories furthermore increases the complexity of the
required tool-set, which has to offer additional operations to synchronize
repositories.

In summary, the weight of the beneficial and undesirable properties of
centralized as well as decentralized repositories depends on concrete use
cases. A central repository can be beneficial if access control is of concern,
but can at the same time be undesirable, if no central authority for a project
exists, and diverging development is encouraged.

2.2.2 History Models

This section analyzes how the chosen vcss model the history of changes
made in working copies. History models can be categorized using certain
aspects [CW0g8]. History models can be extensional or intensional. Exten-
sional history models expose a set of objects that they version. An exten-
sional history might for example be h = (v1, v2, v3), with v, being variations
of the same object. Intensional history models instead provide means to is-
sue parameterized history queries. An intensional history model might for
example expose an interface getRevision(OperatingSystem, Database, Locale).
The three chosen systems provide extensional versioning.

15

Moreover, history models can be state- or change based. While state-based
systems expose the history of a project as revisions of the versioned artifacts
as they existed at various points in time, change-based approaches expose
the changes made to versioned artifacts. All three vcss are state-based.

Many state-based history models expose history as a Directed Acyclic
Graph (pAG) of revisions [CWg8], as illustrated in fig. 2.3. A revision
consists of a snapshot and meta data. A snapshot is an immutable copy of
the versioned file hierarchy. The DAG is formed by the parent relation that
connects child to parent revisions. The snapshot of a revision is assumed to
be a merged and modified copy of its parent revisions” snapshots. Concrete
state-based history model may limit the maximum number of parents. A
revision’s meta data may include information such as author of changes,
time of commit, or a comment describing the changes.

. a /
Revision : README
Parent { 0 src Snapshot
b L— main.c
comment = “Updated README”
/\ author = matthias.kleine Meta Data
c d date = 2010-09-28

Figure 2.3: Representing history as a directed acyclic graph of snapshots

A history model may be able to represent that branching development
was merged back together. Figure 2.3 shows the representation of a merge
in a DAG-based history model, revisions ¢ and d are merged into revision
e. In state-based history models, merging two revisions is often performed
by finding a common ancestor revision and merging the changes that
were made in relation to this common ancestor. Merging of files can be
performed by an external tool, such as a diff3 tool [KKPo7].

DAG-based history models have only limited support for representing
operations that act on changes [O’Sog]. This includes transferring single
changes across branches, so called cherry picking. Figure 2.4 shows an ex-
ample for cherry picking. The original history graph is shown on the left.
In this example, the developer wants to extend revision x with the changes
introduced by revision b, without introducing the changes made by a. As

16

seen in the middle history graph, merging x with b is not a solution as it
introduces the changes made by a. Alternatively, the developer can copy
the changes made by b into a new revision b'. The resulting history graph
is shown on the right. The fact that both b and b’ are the result of the same
changes is not captured in the history model. It can thus not make use of
this knowledge, for example when comparing or merging revisions.

X a X a X a
1 1 1 1 1
b b b’ b
1 1
C y C C
Original After Merge After Cherry Pick

Figure 2.4: Cherry picking the changes made by b onto x

Finally, the history model that is exposed to the user must be distin-
guished from the storage model employed by the vcs. In fact, all three
vCss expose a variation of the state-based approach to the user but use a
change-based approach underneath to reduce storage requirements.

Subversion Subversion has a linear state-based history model. The parent
relation is not modeled explicitly. Instead, revisions are numbered sequen-
tially. Revisions contain a snapshot of the complete directory hierarchy.
Thus, by writing changes to one or more files back to the repository, a new
revision of the complete directory hierarchy is created. If a file is changed
by a revision, this revision is said to be operative for this file. Clients can
request to read a specific revision of files stored in the repository. In ad-
dition to a directory hierarchy snapshot, revisions also contain meta data,
so called revision properties. Revision properties are exposed as key-value
lists and are used to store information, such as author of change. Apart
from revisions, individual files can be associated with meta data in the
form of key-value lists, so called properties. These are used to indicate
information such as line ending convention or merge history.

17

Figure 2.5 shows an abstract example for Subversion’s revisions. The
example shows three sequential revisions next to each other. Each revision
is visualized as a box that contains revision identifier and commit mes-
sage. Below, the directory hierarchy is listed and the contents of the file
“src/main.c” that exists in all three revisions is shown. As can be seen, the
second revision adds the file “util.h” and the third revision makes use of
this new file in “main.c”.

Revision 1
Initial Commit

Revision 2
Added util.h

Revision 3
Using util.h

trunk
E README
src

L— main.c

trunk
E README
src
main.c
util.h

trunk
README
I: src
main.c
util.h

src/main.c

src/main.c

src/main.c

int main ()

int main ()

#tinclude “util.h”

{ { int main ()
return 0; return 0;
} } useUtil();
return 0;

}

Figure 2.5: Example Subversion revisions visualized

Subversion’s linear history model cannot represent branching of revi-
sions. Thus, changes that are made within a working copy can only be
committed to the repository once they have been merged with the changes
from the most recent revision. This requires working copies to store their
relation to the history.

Subversion’s working copies track their relation to the history by asso-
ciating each file with the revision that it is based on. This prevents clients
from accidentally committing over changes made by others. When a part of
the working copy is restored to a revision from its repository, the working
copy marks the local files as being based on that revision. Once changes
are to be transferred to the repository, Subversion can determine whether
the user is trying to overwrite files that were changed in the repository
since the working copy was last updated. If this situation occurs, the user

18

must first get the current revision of the affected files from the repository
and merge the remote changes with the local changes. Only then can the
changes be transferred to the repository.

The following example illustrates the operation of working copies in
Subversion. Given are two developers who work on the repository shown
in fig. 2.5. Each developer has his own working copy. The status of the
working copies is shown in table 2.1. In this example, both working copies
are initially updated to revision 3. Next, both developers modify “src/
main.c”. As a result, files in both working copies are based on revision 3
but have local changes. Next, developer 1 commits his changes and thus
creates revision 4. The snapshot of the directory hierarchy associated with
revision 4 is exactly the snapshot that developer 1 had in his working copy.
At this point, developer 2 still has a working copy that is based on revision
3 and that has local changes. As he has changed “src/main.c” and as this
file has also been changed in the repository, he cannot yet commit his
changes. Instead he updates his working copy to revision 4, thus merging
the changes he made with that of revision 4. By updating his working copy
he discards the information that his changes were originally developed
against revision 2. Once the changes are merged, the linearized history can
be committed, creating revision 5.

Table 2.1: Example for status of working copies

Action Working Copy 1~ Working Copy 2
Rev 3 Rev 3

Change working copy Rev 3 + Changes Rev 3 + Changes

Developer 1 commits changes Rev 4

Developer 2 merges changes Rev 4 + Changes

Developer 2 commits changes Rev 5

In summary, Subversion provides a linear state-based history model. Re-
visions are not ordered by an explicit parent relation, but are addressed
by sequential numbers. As of such, Subversion cannot represent branching
development as revisions with multiple child revisions. Correspondingly,
developers can transfer changes to the repository only after merging them
with the latest revision on the repository. Unmerged changes are not repre-
sented in the history.

19

Mercurial and Git Git and Mercurial use non-linear state-based history
models. The need for a non-linear history model arises from the system’s
distributed nature. pvcss’s history models must be able to represent that
revisions were created in parallel and are thus based on the identical revi-
sion.

The need for a non-linear history model becomes apparent when trans-
ferring the example shown in table 2.1 to Git or Mercurial. Again, two
developers start out with separate working copies that are both based on
the same revision. This time, both developers can modify their working
copy and commit their changes to their own repositories without affecting
the other developer’s repository. If that happens, the two repositories will
contain two different revisions that are both based on the same shared
revision. This is not possible with a linear history model as that used by
Subversion. In Subversion the fact that changes were performed in parallel
is discarded and history is linearized.

Both systems implement a history model based on a pAG of snapshots. In
contrast to Subversion, revisions are not forced to be ordered linearly. Both
systems thus have intrinsic support for branching development. Merging of
branches is performed by creating revisions with multiple parent revisions
and merging the snapshots.

Distributed history models require revisions to be identifiable across
repositories. For example, serializing revisions across repositories relies on
being able to identify revisions across repositories. As distributed develop-
ment requires a non-linear history model, revisions cannot be identified
across repositories as single sequential numbers. A version identification
scheme that relies on a central authority that issues revision identifiers is
undesirable in distributed versioning. Thus, each repository must be able
to generate globally unique revision identifiers. This can be achieved by ad-
dressing revisions using their content, i. e., associated file snapshots, meta
data, and parent revisions. Both vcss achieve this goal using cryptographic
hashes across a revision’s content to generate revision identifiers. This so
called compare-by-hash strategy ensures that identical revisions that are
stored in different repositories will generate the same identifier and at the
same time reduces the possibility of using the same identifier for different
revisions [Blao6].

In summary, Git and Mercurial provide a DAG based history model.
Both systems can thus represent the history of branching and merging
development. They do not require developers to merge changes before

20

committing. As a consequence of the non-linear history model, revisions
must be assigned globally unique identifiers.

Differences of Git and Mercurial Git and Mercurial provide different
implementations of a directed acyclic graph snapshot model. Up to now,
the history models of Git and Mercurial were explained only at an abstract
level. This section describes how the concrete history models deviate from
the abstract model.

ObjectWithldentifierGit

identifier() : Integer

+ tree
Commit —1>| Tree Blob
+parents | » [author * | +entries | content
S| committer >
message TreeEntry
name
mode
treeOrBlob

Figure 2.6: A simplified view of Git’s object model

Git’s history model has three kinds of objects: Commits, trees, and blobs.
Figure 2.6 shows a simplified visualization of these kinds of objects. Fig-
ure 2.9 illustrates an instance of this model. All three kinds of objects are
addressed using an identifier that is generated from their content. A blob
consists of arbitrary binary data. A tree represents a file system hierarchy.
It mainly consists of a mapping of names to either blobs or trees, each
referred to using their identifier. A commit corresponds to a revision. It
consists of a tree, a list of parent commits, both again referred to using
their identifiers, and various meta data such as commit message or author
of change.

Mercurial’s history model has three kinds of objects, file contents, man-
ifest, and changeset, as illustrated in fig. 2.7. A manifest is a mapping of
path names to file contents. A changeset refers to a manifest and contains
additional meta data, such as author and commit message. Mercurial uses
a generic DAG-based model to represent history for any of these objects. As
of such, revision graphs exist for all three kinds of objects. Objects do not

21

directly reference other objects, but instead refer to revisions of objects. For
example, a manifest does not directly refer to a file contents but instead
refers to a revision of a file contents.

ObjectWithldentifierHg
identifier() : Integer

AN
I I I
Changeset Manifest FileContents

nodeld nameToBlob : content
manifest Dictionary
user
time
files
comment

Figure 2.7: A simplified view of Mercurial’s history model

The generic history model employed by Mercurial is based on the revlog
concept [Maco6]. Revlogs are an efficient implementation of a bAG-based
history model for files. As illustrated in fig. 2.8, vertices correspond to
snapshots of a file’s contents and can be referred to using globally unique
identifiers. Edges indicate the parent relationship. Each Mercurial reposi-
tory has one revlog for changesets, one revlog for manifests, and revlogs
for versioned files.

- entries + content,
Revlog _*>| RevLogEntry I—> ObjectWithldentifier

A 1
revision(id) : Object 0..2 | + parents identifier() : Integer

Figure 2.8: A simplified model of the revlog abstraction used in Mercurial

Git’s and Mercurial’s history models differ in the abstractions that they
use to describe history. As illustrated in fig. 2.9, Git stores history only
on the level of revisions, whereas Mercurial stores history on the levels
of files, file hierarchies, and revisions. The bold arrows indicate parent
relations. As a consequence of this, Mercurial’s history model has inherent
support for capturing copy or move operations on files. If a file is moved or
renamed it is still versioned in the same revlog. This allows tracking back
changes across renames. Git relies on heuristics to do so but has the benefit

22

of a simpler model. Heuristics are needed in both systems, if movement of
content at a granularity smaller than files is to be detected. In conclusion,
both models have small differences, but are very similar when contrasted
with Subversion’s history model.

Mercurial Git
Changeset, Manifest, File Contents Commit, Tree, Blob
1
Revision 1 - Revision 2 ! Revision 1 - Revision 2
Initial Commit Added util.h i Initial Commit Added util.h
7) ;) 7
1
/ / L/ /
C readme C readme ! C readme C readme
src - src ! src src
— main.c main.c i — main.c main.c
util.h i util.h
1
J J ; y y
src/main.c g~ src/main.c i src/main.c src/main.c
1

Figure 2.9: Exemplary comparison of Mercurial’s and Git’s history models

History Models Summarized The history models of the chosen vcss
fall into two categories. Subversion relies on a linear history model. Even
though changes do happen in parallel in Subversion in multiple working
copies, committing them to the repository discards the information that
changes were performed in parallel.

In contrast, Git and Mercurial provide a bAG-based history model. The
history models can represent that changes were made in parallel, a prereq-
uisite for pvcss. The history models of Git and Mercurial apply a nearly
identical approach to solve this problem. Revisions have unique identifiers
and can thus be addressed and transferred across repositories.

2.2.3 Branching Models
The three systems provide different means for identifying branches. Git

and Mercurial provide branching models that are separated from their
history models. This separation does not exist in Subversion.

23

Subversion In Subversion, branches are represented as well as identified
by directories of the versioned file hierarchy. Each revision stores the state
of all branches. Branches are created by copying directories, and merged
by merging the changes of one directory to another one. Representing
branches on top of the history model is necessary, as Subversion’s history
model cannot represent branching revisions. Subversion does as of such
not clearly separate the notions of history- and branching model.

The naming and organization of branch directories is governed by best
practices. By convention, the top-level directory that is being versioned has
the three subdirectories “trunk”, “branches”, and “tags”. This convention
assumes that a single central branch is shared by all developers. This is the
“trunk”. If other branches are required, they are created by copying the di-
rectory of an existing branch to a new subdirectory of “branches”. Copying
is performed using Subversion’s “copy” command. This command creates
a new revision with meta data that indicates where newly added files
were copied from. This information is later on used to establish common
ancestors during merging.

Subversion allows branches to be merged. As a first step of merging
branch “branches/a” into branch “branches/b”, Subversion identifies all
operative revisions of “branches/a” that have not been merged into “branch-
es/b”. In order to identify these revisions, Subversion keeps track of past
merges. Each directory can have a so called mergeinfo meta data property.
This property stores a list of branches and revisions that have been merged.
Thus, the mergeinfo property can represent that only single revisions were
merged across branches, so called cherry picking. The actual implementa-
tion of mergeinfo is more complex and must deal with various exceptions,
such as partial merging of branches*.

Table 2.2 illustrates Subversion’s mergeinfo with an example. The reposi-
tory in this scenario contains two branches a and b. The table lists repository
actions and their result on the operative revisions and mergeinfo of both
branches. Up to action 4, both branches are created and diverging develop-
ment was performed. Branch a was modified in revisions 1 and 3. Branch
b was modified in revisions 2 and 4. Action 5 merges a into b. The merge-
info of b is updated to reflect this. The mergeinfo is extended to cover
non-operative revisions. This is done to keep the mergeinfo easier to read

4http://www.collab.net/community/subversion/articles/merge-info.html
— last checked 20.12.2010

24

Table 2.2: Subversion’s mergeinfo illustrated

Action Operative Revisions Mergeinfo
a b a b

1. Init Repo (1)

2. Create b (1) (2)

3. Modify a (1,3) (2)

4. Modify b (1,3) (2,4)

5.Mergeaintob (1,3) (2,4,5) a:2-4

6. Modify a (1,3,6) (2,4,5) a:2-4

7.Mergeaintob (1,3,6) (2,4,5,7) a:2-6

after consecutive merges. For example, after modifying a4 in action 6 and
merging these changes to b in action 7, b’s mergeinfo is set to includes a’s
revisions 2-6.

The result of a merge is a single revision that integrates the changes from
merged revisions into the files on the destination branch. A merge revision
cannot be distinguished from a revision that manually added all changes
made in the source branch. It is therefore not possible to merge the destina-
tion branch back to the source branch by identifying unmerged revisions,
as outlined above. Subversion does thus not support repeated bi-directional
merges. For example, if branch “branches/test” is created as a copy from
“trunk”, changes on “trunk” can be repeatedly merged into “branches/test”,
but changes on “branches/test” cannot repeatedly be merged back into
“trunk”. Instead, Subversion offers a so called “integration merge” that
performs a 3-diff merge using the files in both branches and the original
revision when the branch was created as a common ancestor. After an
integration merge, the source branch is to be discarded.

In summary, branches are implemented in Subversion as directories.
The history of merging is stored on a per-directory basis using so called
mergeinfo properties. Mergeinfo properties can represent that only single
revisions were merged across branches. Subversion can thus represent
cherry-picking of changes across branches. Yet, it does not allow repeated
bi-directional merges.

Git In Git, each repository maintains a mutable dictionary of branch
names to revision identifiers. For example, a repository might store that

25

branch “main” corresponds to revision “715” and that “test” corresponds
to revision “825”. We name this style of branch-representation label-based
branching. In addition to its own branch dictionary, a repository stores
copies of the dictionaries of other repositories. These are exposed to the user
by prefixing branch names with the name of the repository that they are
owned by. For example, “origin/main” is the branch “main” on the reposi-
tory “origin”. These local branches that correspond to remote branches are
called tracking branches.

Git additionally allows each local branch to have a so-called upstream
branch. If a branch has its upstream branch set, Git’'s commands provide
information on how the two branches evolved in relation to each other.
For example, the local branch “master” can have its upstream branch
set to branch “master” on repository “origin”. If a new commit is made
on both branches, Git’s status command will report “Your branch and
‘origin/master” have diverged, and have 1 and 1 different commit(s) each,
respectively.” Git’s “branch” command can report similar information for
all branches contained in a repository.

Upstream branches are helpful when interacting with more than one
repository. This is common in open source projects where central repos-
itories can only be written by trusted developers. Untrusted developers
must use their own repositories to share changes and can request trusted
developers to use their changes.

Figure 2.10 illustrates a concrete example. On the left it shows a public
repository that can be read by anyone. This repository has two branches
that contain a stable as well as an untested version of the product. The
public repository can only be written by selected developers. The devel-
oper “Contributor” works on a new feature but cannot write to the public
repository. He must employ a mediator to publish his changes. He keeps a
local branch “publish” that always points to a commit that he wants to be
published and asks a developer “Integrator” to watch this branch.

The developer “Integrator” is amongst those who can write to the public
repository. His role is to integrate changes made by others. His repository
contains branches that correspond to the branches on the public reposi-
tory, as well as a branch “contrib” that has “publish” on “Contributor”’s
repository as its upstream branch. Thus, Git will notify “Integrator” when-
ever this branch changes. It will furthermore simplify merging changes
from an upstream branch. Thus, Git helps keeping track of branches that
correspond to each other and simplifies interactions between them.

26

Public Integrator Contributor
stable |[¢ stable feature
test |« test /—-’ publish
contrib
[Fmmmmmmmmmmmmmmm———————————————————————————————
i
i Legend -
i Repository
—>
E Upstream Branch Branch 1
E Branch 2

Figure 2.10: An example of upstream branches in Git

In summary, Git provides a label-based branching representation. A
branch is a label that points to a single revision. In Git, repositories cache
branches of remote repositories. A branch can furthermore have an up-
stream branch, to which it is compared and merged with by default.

Mercurial Mercurial’s revisions store the name of the branch that they
belong to as part of their meta data. For example, a revision may store that
it belongs to branch “default”, whereas another may store that it belongs
to branch “testing”. As such, Mercurial does by default not have an explicit
reification of a branch’s current revision. Multiple childless revisions with
the same branch-name may exist. A branch name can still be used to
identify a revision. Given all revisions that belong to a branch, the revision
that was added most recently to the repository is said to be the current
revision of that branch. As the current revision of a branch depends on
the order that revisions were added to a repository, two repositories can
report different current revisions for a branch, even if they contain exactly
the same revisions.

Mercurial’s lack of an explicit reification of a branch’s current revision
forces developers to perform certain tasks outside of the vcs. For example,
it can be desirable to investigate revisions from another repository with-
out changing information about local branches. As Mercurial’s branching
model cannot separate transferring revisions to a repository from changing
the current revisions of branches, it is impossible to refer to both the remote
as well as the local current revisions of a branch by name.

27

Mercurial can be extended to support a branching model similar to that
of Git with the help of the “bookmark” extension. Bookmarks also offer a
name to revision mapping. Yet, unlike Git’s branches, bookmarks are not
owned by repositories. In Git each repository has its own namespace for
branch names, so that a branch named “main” can have a different version
than a branch with the identical name on a different repository. Mercurial’s
bookmarks share one global namespace. Transferring revisions from one
repository to another one automatically changes bookmarks with the same
names on the destination repository. If one wants bookmarks to be visible
to other repositories but at the same time wants bookmarks with identical
names to point to different revisions, one has to enforce this manually.

In summary, Mercurial provides a revision-based branching model. Each
revision stores the name of the one branch that it belongs to. This branching
model does thus not have an explicit reification of a branches” current
revision. A branching model similar to that of Git exists as an extension of
Mercurial, so called bookmarks.

2.2.4 Summary

This section analyzed and compared the three vcss, with special focus on
the concepts of repositories, history-, and branching models. The analyzed
vcss exhibit differences in all of these concepts. Two kinds of repository
organizations exist, centralized and distributed. Two kinds of history mod-
els exist, linear history and paG-based history. Three kinds of branching
models exist, manual directory-based branching, label-based branching,
and revision-based branching.

Given the analysis of the three systems, the next step is to extract require-
ments that are the basis for an abstraction that can be implemented in all
of these three systems.

2.3 Requirements

Pur should provide an abstraction that is sufficiently rich to be the basis for
client programs that perform consistently across vcs. This can be guaran-
teed by satisfying various requirements, foremost providing an abstraction
that has sufficiently specified semantics and that does not expose specifics

28

of supported vcss. This sections presents and discusses these and other
requirements.

2.3.1 Provide Rich Semantics

In order to be the basis of complex version control client programs, Pur
must have sufficiently rich and specified semantics. For example, it is desir-
able to provide a construct for identifying branches that behaves uniformly
across vCss. As a consequence of requiring rich semantics, providing ab-
stractions that deviate from concrete vcss is preferable to providing ab-
stractions with no specified semantics. For example, it is preferable to
provide a branching model that for Mercurial must be implemented using
the non-standard bookmarks to providing a branching model that behaves
differently across vcss.

2.3.2 Version Control System-agnostic Interface

Pur must not expose details of supported vcss that are not relevant to other
vcss. For example, although branching development is implemented using
directories in Subversion, this implementation details must not be exposed
by Pur, as it is irrelevant to Git and Mercurial. By not exposing specifics
of underlying vcss, client programs are guaranteed to work against any
supported system.

2.3.3 Minimal Interface

Pur should not cover aspects that are relevant only to particular client
programs, such as convenience methods that can be reconstructed from
other methods, nor should it cover aspects that are relevant only to imple-
mentors of Pur for concrete vcss, such as concepts of version identifiers or
the distinction of local and remote repositories. By making minimality one
of the design goals of Pur, an overly complex architecture and resulting
drawbacks can be prevented. This is desirable, as superfluous complexity
is likely to hamper the adaption of Pur.

29

2.3.4 State-based Non-linear History Model

The analyzed vcss all rely on a state-based history model. The abstraction
thus must also provide a state-based history model. In order to support
Git’s and Mercurial’s non-linear history, the model must be able to repre-
sent arbitrary directed acyclic graphs.

2.3.5 Consistent Branching Model

It is desirable to have a branching abstraction in Pur whose semantics
are specified to a degree that allows branches to work consistently across
various vCs back-ends. In particular, calculating a branch’s current revi-
sion should be consistent across back-ends. Furthermore, distinguishing
between local and remote branches should be handled consistently.

2.4 Summary

This section provided the background for an abstraction over version con-
trol concepts. Three vcss were analyzed for common concepts and re-
sulting requirements for an abstraction were established. The following
sections describe and evaluate how Pur addresses these requirements.

30

3 Pur—An Abstraction for Version
Control

This chapter introduces Pur (IPA [pu:e]), an abstraction over version control
constructs. Pur abstracts over the concepts of the vcss Git, Mercurial, and
Subversion. Client programs can interact with any of these vcss through
Pur, without requiring knowledge of the vcs’s specifics. Pur is designed
to address the requirements identified in the previous chapter.

Pur is specified as a set of object oriented interfaces. This set consists
of interfaces for versioned objects, history of versioned objects, branching,
and repositories. This chapter introduces these interfaces in this order. The
specification of the interfaces is concluded with concrete examples of Pur,
which aim to give a practical understanding.

Figure 3.1 illustrates the interfaces of Pur using a UML-like notation.
Role-names do not indicate that referencing objects must store references
as fields/instance variables. Instead, role-names indicate that referencing
objects must provide access to the referenced object via message send.
Furthermore, all operations provided by the interfaces can fail. It is the
caller’s responsibility to deal with failures.

<<interface>> <<interface>>
Repository Store
newHistorian(String name, Version v) captureSnapshot() : Snapshot
delete(Historian h) restoreToSnapshot(Snapshot s)
1| +repository i produces / loads
\V,
<<interface>>
Snapshot
* + historians
- + snapshot
<<interface>>
Historian + version <<interface>>
name() : String 1 Version .
setVersion(Version v) metadata() : Dictionary

+ parents

Figure 3.1: Interfaces for the objects being versioned by Pur

31

3.1 Stores and Snapshots

A store is a mutable object that is to be versioned. A snapshot is an im-
mutable deep copy of a store. A store can capture its current state as a snap-
shot and can restore its state to that captured in a snapshot by loading it.

3.2 Versions

Pur represents history as a directed acyclic graph of snapshots represented
by versions. A version consists of a snapshot, a list of its parent versions,
and meta data, such as commit message, author, or time of creation. The
parents of a given version v are said to have v as its child. The terms
“ancestors” and “descendants” are used to refer to the transitive closure of
the parent (respectively child) relation.

3.3 Historians and Repositories

Pur provides label-based branching through historians. A historian has a
name, a version, and can be requested to be set to a different version. A
historian is owned by a repository. A repository owns a set of historians
that it exposes. It allows creating new historians and deleting existing ones.

Historians are not named “labels” to underline the fact that a historian is
not merely a name and a version but also encapsulates access to this version.
Historians are furthermore not named “branches” to avoid confusion what
constitutes a branch across vcss.

3.4 Pur by Example

So far only an abstract description of Pur was given. The following section
aims to provide a more practical understanding of Pur with the help of a
few example scenarios. First, practical examples of stores and snapshots
are given. Next, visual examples illustrate the history model of Pur as well
as the interaction with it.

32

3.4.1 Stores and Snapshots

Stores reify the objects being versioned. For this example we assume a file
based environment. Thus a store corresponds to the versioned directory
hierarchy and a snapshot to an immutable copy of it. We visualize snap-
shots as boxes with text that corresponds to the contents of the files, as
seen in fig. 3.2. This visualization does not show any information about
how the snapshot is synchronized, diffed, or merged. It is nevertheless a
useful visualization to show differences between snapshots.

class Main = ()() class Main = ()(
foo = ())

Figure 3.2: Visualization of snapshots

3.4.2 Versions

Figure 3.3 shows a history graph of versions with two consecutive versions
shown in detail. The topmost version labeled a has no parents, a snapshot
of an empty store, and no meta data. The version b has a as its only parent.
Its snapshot contains the source code of the class “Main”. The only child
of this version is version c. The child has a different snapshot that contains
an additional method, as is also indicated by the version’s comment.

Versions can represent branching development. The versions 4 and e the
same parent version. The changes of both versions are merged back into
one version f.

3.4.3 Historians

When developing branches it becomes desirable to assign names to diverg-
ing branches. Pur addresses this need with historians. Historians provide
label-based branching and thus allow identifying versions that are currently
being worked on. For the sake of simplicity, all historians in this example
are assumed to be owned by a single repository. Figure 3.4 shows a version
graph at different points in time. Part 1 shows the initial version graph.
Only one version is shown, the rest of the version graph being left out.
There is exactly one historian, named “share” that has this one version as
its version. In this example, team members agreed that naming a historian

33

i class Main = ()()

b comment = “Initial Commit”
'y author = matthias.kleine
date = 2010-09-28

N

class Main = ()(

run = ())
¢ comment = “Added run method”
//ZN\\\ author = matthias.kleine
date = 2010-09-28
d e
'\/’ [T
1
! Legend
1
f i Version —> Parent
1
1
1

Figure 3.3: Visualization of a history graph. Two versions shown in detail

“share” indicates that the historian’s version is sufficiently stable to be used
by all developers.

At this point in time a developer performs a large refactoring that
changes interfaces that are used by other developers. It is desirable to
record the refactoring as a series of versions, as it allows dividing the
refactoring into logically separated steps. The intermediate versions con-
tain incomplete refactorings that the developer does not want to share
with other developers. The changes thus cannot be made using the “share”
historian. Instead the developer creates a new historian named “refac-
tor” that initially has the identical version as “share”, as can be seen in
part 2.

As shown in part 3, the developer next starts working on the refactor-
ing, thus creates new versions and advances the “refactor” historian. The
developer continues to create new versions using the “refactor” historian.
Simultaneously, other developers advance the “share” historian by creating
new versions. The resulting state is shown in part 4. Finally, the developer
decides that he wants to share his changes with other developers and thus
merges them with the version of the “shared” historian. He furthermore

34

®

(or)

[share] [refactor]

L1 L]
share

refactor

—> Parent — Current Version

D Historian D Version

Figure 3.4: Historians create new versions

sets the “shared” historian to this newly created version. This can be seen
in part 5.

3.5 Summary

This section introduced Pur, an abstraction over version control concepts.
Pur is specified as a set of object oriented interfaces that cover various ver-
sion control concepts. Based on these interfaces, concrete implementations
of Pur as well as client programs that make use of Pur can be built. Both
kinds of implementations form the basis for the following sections.

35

4 Implementing Pur for Concrete
Back-ends

This chapter describes Pur implementations for Git and Mercurial in the
Newspeak programming platform [BAB'08]. It thus validates the imple-
mentability of Pur. The Newspeak programming platform encompasses
the Newspeak programming language, an 1DE, and various libraries. The
implementation of Pur within Newspeak serves as a basis for the version
control application PNS that is described in chapter 5.

This chapter is structured as follows. Implementation guidelines are
discussed that were followed during the implementation to achieve main-
tainable and extensible code. Next, the implementation of the concrete
back-ends is explained. Currently, back-ends for Git and Mercurial are
implemented. An implementation strategy for Subversion is outlined.

4.1 Abstract Implementation

It is desirable to make the implementation of Pur extensible and maintain-
able. These goals can be achieved by applying software engineering’s best
practices, such as modular design. This section analyzes possible design
choices and explains how these properties can be achieved by implement-
ing Pur as a framework.

4.1.1 Implementation-specific Requirements

Pur does not include concepts that are relevant only to either vcss or client
programs. Instead Pur addresses concepts that are shared by both. For ex-
ample, Pur does not include version identifiers, nor does it include diffing
algorithms. Concrete Pur implementations must provide these concepts
both on top of and below Pur. Some of these concepts are relevant across
vcss, respectively, vcs clients. For example, a construct for version iden-
tifiers can be found in any of the supported vcss. Diffing algorithms are
relevant to multiple vcs clients.

37

Implementing these shared concepts separately for each vcs and client
program would result in repeated implementation effort. The implemen-
tation effort can be kept low by implementing Pur as a framework that
captures and orchestrates shared concepts both on top of and below Pur.
Concrete vcss can specialize this framework and thus can rely on the
shared implementation provided by the framework. The following section
explains the design of this framework.

4.1.2 Architecture Overview

Pur is implemented as a framework that is provided by a set of abstract
classes that implement parts of the interfaces described in chapter 3. These
abstract classes can again be divided into a generic implementation of Pur
on the one hand, and specializations for repositories that are accessed via
working copies and repositories that are accessed through the working
copy of another repository. We name the former local repositories and the
latter remote repositories. The benefits of this distinction are explained in
section 4.1.3.

This section first describes the generic implementation and later on the
specializations for local and remote repositories. Figure 4.1 depicts the
classes provided by the generic part of the framework. The notation is
based on UML, the difference being that methods shown in gray must
be implemented by subclasses. Additionally, slots as well as methods are
expected to be accessible via message sends. Thus, a slot can be a valid
implementation of a message required by an interface. The names of the
classes are identical to those of the interfaces. If not stated otherwise, this
section refers to classes.

The class version serves as a base for all implementations of the version
interface. It provides common methods, such as compareTo, which calculates
the differences to another version, or versionsIncomingFrom, which takes a
version v and returns all ancestors of v that are not part of the receiver’s
history. These common methods require the concrete subclasses to imple-
ment the methods marked as missing. E. g., compareTo must first calculate
a common ancestor of the two versions being compared which itself relies
on parents being implemented.

The abstract class Historian is the base class for all historians. A historian
stores its owning repository and its name as fields. The abstract class
Repository does not provide any implementation at all. Instead it merely
defines the required interface.

38

Repository Version

newHistorian(String, Version) compareTo(Version) : DiffResult
historians() : List<Historian> isAncestorOf(Version) : Boolean
versionsincomingFrom(Version)
commonAncestorWith(Version)

Historian)
: equals(Version)
repository parents
name metadata
version() : Version snapshot

setVersion(Version v)

Figure 4.1: Abstract classes provided by framework; gray indicates methods that
must be implemented by subclasses

4.1.3 Local and Remote Repositories

Pur distinguishes local and remote repositories. Only local repositories
expose a working copy. Using this working copy, local repositories allow
users to read and write versions, including their snapshots. In contrast,
remote repositories expose only partial information about the versions that
they store, including the versions’ identifiers, but not their snapshots. In
order to access the snapshot of a version stored in a remote repository,
this version first must be transferred to a local repository. As found in
section 2.2.2, repositories assign unique identifiers to versions. Using these
identifiers, versions can be transferred across repositories.

Local Repositories The classes provided by the specialization for local
repositories are shown in fig. 4.2. The class LocalRepository is the base class
of all local repository implementations. As its superclass Repository, it does
not provide any concrete implementations. Instead it extends the interface
that has to be provided by concrete implementations. It adds a method to
retrieve a version from the back-end using a back-end specific identifier,
and two further methods to transfer versions to and from other repositories.
Both of these act on version identifiers instead of on versions.

The class LocalRepositoryVersion captures common concepts for versions
that are accessed through a local repository. A local repository version
stores its repository, a version identifier and meta data as fields. Special-
izations of LocalRepositoryVersions can assume the presence of these fields
and must provide access to snapshots and version identifiers of parent
versions. Operations for accessing parent versions or comparing versions

39

Version | | Historian | | Repository

A A A

LocalRepositoryVersion LocalHistorian LocalRepository

repository version versionAt(Internalld) : Version
internalld import(Internalld, Repository)
metadata setVersion(Version) export(Internalld, Repository)

equals(Version) : Boolean
parents() : List<Version>
snapshot
parentinternallds

Figure 4.2: Specializations for local repositories

for equality using version identifiers can then be implemented once in
LocalRepositoryVersions and thus prevent duplicate implementation.

The class LocalHistorian is the base class for all local historians. A local
historian stores its version as a field that contains a LocalRepositoryVersion.
LocalHistorian does provide an extendable implementation for setversion
that stores the version in this field. Subclasses can extend this implementa-
tion as to reflect the change in version in the concrete back-end.

Remote repositories Figure 4.3 depicts the specializations of the frame-
work for remote repositories. Remote repositories are represented as in-
stances of RemoteRepository. Accessing versions stored in a remote repository
requires access to a local repository. A RemoteRepository thus always has a
LocalRepository, to and from which versions can be transferred. This is per-
formed via the import and export methods which make use of the local
repository’s corresponding methods.

Historian | Repository |
RemoteHistorian RemoteRepository
versionld localRepository

version() : Version

import(InternallD)
setVersion(Version)

export(InternallD)

Figure 4.3: Specializations for remote repositories

40

Intelli] IDEA provides a history model that separates history from re-
visions. A VcsFileRevision provides access to the contents of a file at a
certain revision, together with meta data such as author, time stamp, and
commit message. A VcsHistoryProvider can open a VesHistorySession that
allows listing past revisions of a file. The history model is at this point
linear. The generic history viewer thus can only show a list of revisions. No
abstraction for branches exists. As such, vcs back-ends implement their
own abstractions and user interfaces.

Figure 7.2 shows the menus that the integrations for Subversion and Git
provide. As can be seen, the interaction possibilities are customized to the
back-ends. For example, the Git integration allows users to make use of
Git’s rebase operation, which rewrites history. These operations are not
available in the Subversion back-end.

Figure 7.2: Intelli] IDEA’s vcs-interaction menus for Subversion (left) and Git
(right)

In conclusion, Intelli] IDEA allows building vcs-integrations that pro-
vide tools custom to each back-end. Interaction with common tools is
provided in a limited fashion. The lack of abstractions for non-linear his-
tory or branches hinders the implementation of history viewers that would
be appropriate for Mercurial and Git.

68

7.3.3 Emacs DVC

GNU Emacs [Staoz] is a text editor that is designed to be extended by its
users. Several extensions to interact with vcss exist. This section analyzes
DV (3, a version control application that acts as a front-end for various
vcss by providing a single set of user-interface operations. DVC is imple-
mented for several back-ends, including GNU Arch, Bazaar, Git, Mercurial,
and Monotone.

DVC relies on a common abstraction that must be implemented by every
back-end that is very close to the actual user interface provided by DV C.
As such, it includes operations to print a revision, to print the diff between
revisions, or to switch to another branch.

DVC does not require back-ends to provide structured access to revi-
sions besides being able to list and print them. This allows DV C to support
vcss with different history models. For example, implementations for sys-
tems that are not based on snapshots but on patches, such as Darcs [Rouos],
can be implemented. This is different from Pur, which assumes that history
can be represented as a directed acyclic graph.

DV C stands out of the other vcs abstractions by providing a common in-
terface to interact with branches. Back-ends must implement operations to
create a new branch and to switch branches. This interface carries only lim-
ited semantics about what a branch actually is and thus is not restricted to
any branching model. For example, the Git back-end implements branches
using Git’s label-based branches whereas the Mercurial back-end uses
Mercurial’s commit-message based branches. As a consequence, a certain
knowledge of the back-end is required to know how branches behave.

When compared to Pur, DVC can support a wider variety of vcss. This
is achieved through an abstraction that leaves details about history- and
branching model unspecified. This at the same time limits the applicability
of DVC. Its abstractions are designed to be the base of one concrete ver-
sion control application. The lack of a clear separation of an intermediate
model and the version control application itself hinders the implementation
of other applications on top of DVC. Finally, the semantics of branches
depend on the back-end and thus require the user to be familiar with it.

3http://download.gna.org/dvc/ — last checked 20.10.2010

69

7.3.4 Other Abstractions

Various other vcs abstractions exist that to some extent aim to address the
requirements addressed by Pur. The following list of implementations of
vcs abstractions is presented in less detail than the ones presented so far,
either because they aim to address other goals than Pur or because their
applicability is limited.

anyvc Anyvct is a library that provides an abstraction to interact with
various vcss. It has been implemented for Bazaar, Mercurial, Git, and
Subversion. Anyvc is being used by the Pida 1DE>.

Anyvc provides an abstraction for non-linear history similar to Pur’s. A
Revision has parents, meta information, and allows accessing files. An ab-
straction for branches does not exist yet, but is considered future work. As
such, Anyvc does not address the requirement of providing rich semantics.

pyves Pyvcs aims to be a “minimal VCS abstraction layer for Python”.
Its goal is to provide an abstraction to allow browsing code at arbitrary
revisions in various vcss. As such, it does not implement abstractions for
branches. It is implemented for Mercurial, Git, Subversion, and Bazaar.

MR MR 7 is a “Multiple Repository management tool”. It allows running
identical commands across multiple repositories. For example, it allows
committing changes made in several working copies at once. MR can run
commands across repositories of different VCS, providing support for
Subversion, Git, CVS, Mercurial, Bazaar, and Darcs.

The commands exposed by MR are mapped to commands of the concrete
vcss. MR supports commands, such as “update”, “status”, “commit”, and
“diff”, but does not include any branching abstractions. As such, it does

not address the requirement for providing rich semantics.

VCI—The Version Control Interface VCI?® is a library that provides an
abstraction for various vcss. It has been implemented for Bazaar, Mercurial,
Git, CVS, and Subversion. VCI provides an abstraction for history, but
none for branches.

4http://bitbucket.org/RonnyPfannschmidt/anyvc/ — last checked 25.10.2010
Shttp://pida.co.uk/ — last checked 25.10.2010
http://github.com/alex/pyvcs/blob/master/README. txt — last checked 25.10.2010
7http://kitenet.net/~joey/code/mr/ —last checked 15.11.2010
8http://vci.everythingsolved. com — last checked 25.10.2010

70

It separates abstractions for revisions and history. Revisions can be ac-
cessed using a structured interface that exposes information such as com-
mitted data, author, and time stamp. The history abstraction supports only
linear history. According to VCI’s documentation, abstractions for both
branching and non-linear history are considered future work.

Visual Studio Microsoft Visual Studio? is an 1DE developed by Microsoft.
It provides two ways to integrate vcss into it'. First, by implementing
a custom user interface that does not rely on any shared version control
abstractions by creating a so called VSPackage. Lacking any abstractions,
this approach allows complete control over the integration but at the same
time does have none of the benefits of a shared abstraction.

The second approach to integrate a vcs is to implement a so called
Source Control Plug-in. Visual Studio provides a minimal source control
user interface that allows initiating interaction with a plug-in. For example,
a user can request to see the history of a file. A source control plug-in
must provide call backs that are invoked when a user requests one of these
actions. It is the plug-ins responsibility to construct an appropriate user
interface. As such, a plug-in must provide most of its own user interface.
The set of actions is fixed and contains actions that are not relevant for all
vcss, for example actions to lock files exist, but no actions to synchronize
repositories exist. As such, this approach is limited in the set of vcss that
it supports.

7.3.5 Summary

Several implementations of version control abstractions exist. None of these
abstractions addresses all of Pur’s requirements. Most abstractions rely on
implementations exposing v cs-specific concepts. Only few of these abstrac-
tions provide constructs for both history and branching. No abstractions
exists that provides a branching model with semantics specified to the
degree that Pur does.

9https://www.microsoft.com/visualstudio/en-us/ — last checked 26.10.2010
IOhttp://msdn.microsoft.com/en-us/library/bb164701(v=VS.80) .aspx
— last checked 26.10.2010

71

8 Summary and Outlook

This report presents the version control abstraction Pur and evaluates it
for practicability and applicability. This chapter gives a summary of the
contributions presented by this report and based on that gives an outlook
on future work.

Pur captures essential version control concepts as a set of interfaces that
can be implemented for concrete vcss, such as Git, Mercurial, and Sub-
version. Pur allows version control clients, such as I1DE tools or web status
reports, to support all of these concrete vcss through a single set of inter-
faces and thus eliminates the need to build custom implementations for
each vcs. Unlike most other abstraction for vcss, Pur exposes constructs
that help organizing branching development.

Pur has been tested for practicability by implementing it within the
Newspeak programming platform. Implementations exist for Git and Mer-
curial, with a implementation strategy for Subversion having been de-
scribed. An evaluation of these implementations for applicability was per-
formed by implementing the version control application PNS as a Pur
client.

The research on Pur has led to new questions becoming relevant. The
following paragraphs give an outlook on possible next steps.

Implement Support for Subversion This report proposes a strategy for
implementing Pur for Subversion. This strategy has not been tested for
practicability. As of such, final judgment must be deferred until concrete
implementations exist.

Build Other Pur Clients The version control application PNS is cur-
rently the only client that makes use of Pur. Pur is designed to provide
an appropriate abstraction for various kinds of vcs clients. Possible other
clients include web-based status report tools or information extraction
tools. While these tools are expected to be implementable on top of Pur, a
concrete evaluation can only performed once such implementations exist.

73

Extend Pur Pur is not intended to solve all version control abstraction
challenges. Yet, Pur can serve as a basis for experimentation with solutions
for remaining issues, such as finding abstractions that are relevant to only
some vcCss or client programs. This report has already shown first ideas
for such extensions. Our implementation extends Pur both on the back-end
side, through the distinction of local and remote repositories, as well as on
the client program side, through extensions such as upstream historians.
All of these extensions require further evaluation. Additional Pur imple-
mentations and client programs are needed in order to better evaluate the
applicability of such extensions.

74

Bibliography

[BAB'08] G. Bracha, P. Ahe, V. Bykov, Y. Kashai, and E. Miranda. The

[Blao6]

Newspeak Programming Platform. Technical report, Cadence
Design Systems, 2008.

J. Black. Compare-by-Hash: A Reasoned Analysis. In Proceed-
ings of the Annual Conference on USENIX ‘06 Annual Technical
Conference, pages 85—90, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[BMZ"05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and

[Brao7]

[Braog]

[Byko8]

[Carg8]

[CO]

Giinter Kniesel. Towards a Taxonomy of Software Change. Jour-
nal of Software Maintenance and Evolution: Research and Practice,

17(5):309-332, 2005.

Gilad Bracha. Executable Grammars in Newspeak. Electronic
Notes in Theoretical Computer Science, 193:3—-18, 2007.

Gilad Bracha. Source Control and Synchronization. Unpub-
lished Manuscript, February 2009.

Vassili Bykov. Hopscotch: Towards User Interface Composition.
In 1st International Workshop on Academic Software Development
Tools and Techniques, 2008.

Antonio Carzaniga. Design and Implementation of a Dis-
tributed Versioning System. Technical report, Dipartimento di
Elettronica e Informazione, Piazza Leonardo da Vinci, 32, 20133
Milano, Italy, 1998.

Eclipse Contributors and Others. Eclipse Documentation:
Class Differencer. http://help.eclipse.org/helios/index.jsp?
topic=/org.eclipse.platform.doc.isv/reference/api/org/
eclipse/compare/structuremergeviewer/Differencer.html.

75

