
Efficient Layer Activation in ContextJS

Robert Krahn∗, Jens Lincke∗, and Robert Hirschfeld∗
Software Architecture Group
Hasso Plattner Institute

University of Potsdam, Germany
http://www.hpi.uni-potsdam.de/swa

∗Email: {firstname.lastname}@hpi.uni-potsdam.de

Abstract—Context-oriented programming (COP) describes
language extensions for modularizing behavioral or structural
variations that are to be composed at run-time. Different COP
infrastructures and implementations offer several strategies for
scoping, activation, and deactivation of such compositional units.
Often, the mechanisms employed cause substantial execution
overhead. In this paper we present an optimization technique
for ContextJS—our COP extension to JavaScript—that can
significantly reduce this overhead to run context-aware code
efficiently.

I. INTRODUCTION

ContextJS is a context-oriented programming (COP) exten-

sion with JavaScript as its host language. It is implemented as

a library using the meta-programming facilities of JavaScript

and does not require VM modifications. Similar to other COP

extensions to dynamically typed host languages, ContextJS

intercepts the runtime lookup mechanism for invoking behav-

ior variations. So far, this approach comes with a significant

impact on run-time performance. Micro-benchmarks [1] con-

firmed a performance loss of more than 99% compared to

un-instrumented code.

Although this overhead does not affect the entire system

but only methods made aware of behavioral variations, we

experienced that extensive use of ContextJS can make an

interactive system such as Lively Kernel [2], [3] noticeably

slower.

In the Lively Kernel runtime and development environment

we employ ContextJS for various applications. We can group

those applications broadly in the following three categories:

1) Global modularization and deployment. ContextJS lay-

ers are used to both modularize and deploy/un-deploy

structural and behavioral variations.

2) Object-specific behavior. ContextJS is used to selectively

add experimental code on a per-object basis during

development [4]. In self-sustaining systems like Lively

Kernel, this allows to keep changes separate so that

newly added erroneous code can be explored and re-

moved easily. In such systems, this is especially impor-

tant if programming tools like an editor might depend

on the code that is being changed.

This work has been supported by the HPI-Stanford Design Thinking
Research Program.

3) Tracing of system behavior. ContextJS provides in-

frastructure to selectively instrument and trace method

activation and deactivation within the dynamic extent

of a particular execution context [5]. It is often used

to separate tracing target and tracer logic so that self-

referentiality is avoided.

COP variations defined globally or on a per-object basis are

rather static since they do not depend on propagation within

dynamic extents at run-time but rather resemble partial class

and method definitions.

In dynamic extend-based scoping the system’s layer com-

position changes often, but for a single method the layer

composition may be the same for consecutive calls, because

the layers are (de-)activated in the same pattern. With that,

layer compositions for specific objects will not change most

of the time.

In this paper we present an optimization technique for

layer composition and lookup in ContextJS that can sig-

nificantly reduce method activation overhead. By using the

meta-programming facilities of JavaScript and Lively Kernel,

we reduce a composition of multiple related partial method

definitions to a single method. For all compositions that will

not change anymore, this compilation step removes all run-

time composition machinery and with that all its run-time

overhead.

This improvement does not restrict the expressibility or

change the semantics of ContextJS. Especially dynamic-extent

and object-based activations are optimized. To be able to react

to layer composition changes, a validation check is added

to the generated method. When the layer composition check

indicates that the layer composition, which the method was

compiled for, does not correspond to the current one, it will

invalidate the current optimization leading to the generation

of a new one.

The remainder of the paper is organized as follows. Section

2 gives a short overview of Context-oriented programming

and the mechanisms used to define and activate behavior

variations. Section 3 introduces our optimization mechanism.

In Section 4 we present our implementation and discuss design

decisions and implementation options. Section 5 evaluates our

approach. Section 6 discusses the related work and section 7

summarizes the paper and mentions topics for future work.

2012 10th International Conference on Creating, Connecting and Collaborating through Computing

978-0-7695-4672-8/12 $26.00 © 2012 IEEE

DOI 10.1109/C5.2012.20

76

1 Ob j e c t . s u b c l a s s (’ Pe r son ’ , {
2 i n i t i a l i z e : f u n c t i o n (fu l lName) {
3 t h i s . fu l lName = fu l lName ;
4 } ,
5 t o S t r i n g : f u n c t i o n (b eSho r t) {
6 re turn beSho r t ?
7 t h i s . fu l lName : ’ Pe r son (’+ t h i s . fu l lName + ’) ’ ;
8 }
9 }) ;
10

11 cop . c r e a t e (’ EmployerLayer ’)
12 . r e f i n e C l a s s (Person , {
13 t o S t r i n g : f u n c t i o n (b eSho r t) {
14 re turn cop . proceed (b eSho r t) + ’ (HPI) ’ ;
15 }
16 }) ;
17

18 cop . c r e a t e (’ Addres sLaye r ’)
19 . r e f i n e C l a s s (Person , {
20 a d d r e s s : f u n c t i o n () {
21 re turn ’ P r o f .−Dr.−Helmer t S t r . ’ ;
22 } ,
23 t o S t r i n g : f u n c t i o n (b eSho r t) {
24 re turn cop . proceed (b eSho r t) +
25 ’ (’ + t h i s . a d d r e s s () + ’) ’ ;
26 }
27 }) ;

Listing 1. Definition of Person class and two layers that refine the behavior
of its toString method.

1 var ob j = new Pe r son (’ John Doo ’) ;
2 ob j . t o S t r i n g (t r u e) ;
3 / / r e t u r n s " Pe r son (John Doo) "
4 Addre s sLaye r . beGloba l ()
5 ob j . t o S t r i n g (t r u e) ;
6 / / r e t u r n s
7 / / " John Doo (P ro f .−Dr.−Helmer t S t r .) "
8 cop . w i t hLaye r s (
9 [EmployerLayer] ,
10 f u n c t i o n () { re turn ob j . t o S t r i n g () }) ;
11 / / r e t u r n s
12 / / " Pe r son (John Doo) (P ro f .−Dr.−Helmer t S t r .) (HPI) "

Listing 2. Output of Person>>toString for different layer compositions

II. LAYER COMPOSITION AND METHOD ACTIVATION IN

COP

In this section, we give a brief introduction to COP [6]

and the method lookup and activation mechanism found in

ContextJS [4].

A. Activation of Behavior Variations

In the COP execution model, the program behavior depends

upon the context in which it is run. For integrating behavior

variations into the program COP introduces the layer con-

struct. Layers are a modularization concept that encapsulates

behaviors distributed over several objects or classes. The

behavior variations are defined inside layers by means of

partial method definitions. We use the term layered method

for the composition of at least one partial method and a base

method. Class or object slots are called layer-aware when there

is at least one layer definition with a partial method for that

slot, even if the layer is not activated.

The layered method compositions are based on the compo-

sitions of layers. Layer compositions are created at runtime by

(de-)activating layers, e.g. in the dynamic extent of a control

flow or globally. When layers are activated at runtime and a

message send reaches a layer-aware slot, the object-oriented

method lookup is extended by a sideways lookup. This lookup

is called layer composition and gathers corresponding partial

methods of active layers.

B. Layer Composition in ContextJS

ContextJS is a typical dynamic language COP implemen-

tation [1], because it is implemented only using the meta-

programming facilities of its host language JavaScript.

Listing 1 shows a class definition of a Person class1.

Its toString method returns a stringified representation and

can be parameterized using a boolean parameter. Two lay-

ers are defined afterwards that extend the behavior of

Person>>toString. The EmploymentLayer and AddressLayer
define partial methods to append to the result of preceding

partial method activations.

Listing 2 shows how the class is instantiated and how the

Person instances returns different results depending on the

activated layers.

In ContextJS the slots of a class or object are made layer-

aware at layer definition time. This means that for all layered

methods and properties a wrapper method is installed. In the

example the toString slot of the Person is made layer-aware

when the first layer is defined. The original implementation

is removed from the slot and replaced by a generic wrapper

method. Upon method activation this wrapper then computes

the current layer composition and performs the lookup and

activation of the partial methods belonging to the currently

activated layers.

Figure 1 illustrates the layer composition process for the

toString message call on line 10 in listing 2. While the address

layer is globally and employment layer dynamically activated,

Person>>toString is called (step 1). This activates the COP

method wrapper. Upon activation the wrapper accesses the

active layers and creates the corresponding layer composition,
i.e. the wrapper gathers the partial methods defined in Em-
ploymentLayer and AddressLayer as well as the base method
(step 2). The partial methods are ordered accordingly to the

activation order of their layers on a stack.

During the subsequent steps (3.1 - 5.1) the partial methods

are activated. When a proceed call is encountered the control

is handed back to the ContextJS meta level to fetch the

next partial method from the stack that is activated in turn.

This process continues until either a partial method does not

proceed or the base method is reached. When that happens

(step 6) the control is handed back to calling methods until

the method wrapper is reached. The wrapper returns the result

of the method activation to the call site.

1Using the Lively Kernel class system [2]

77

a Person

1: toString()
toString (Employment)

layer composition
for Person>>toString

toString (Address)

toString (base)
2: creates

toString: function(beShort) {
 return cop.proceed(beShort) + ' (HPI)';
}

toString: function(beShort) {
 return cop.proceed(beShort) +
 ' (' + this.address() + ')';
}

toString: function(beShort) {
 return beShort ?
 this.name : 'Person(' + this.name + ')';
}

3.1

3.2

4.1

4.2

5.1 6: return

wrapper for partial method
lookup and composition

call site partial methods

Fig. 1. Unoptimized method dispatch in ContextJS

obj

1: toString()

2: creates

function(beShort) {
 if (!isValid())
 return inlineMethodCreator.apply(arguments);
 return (function(beShort) {
 return (function(beShort) {
 return beShort ?
 this.fullName : 'Person(' + this.fullName + ')';
 }).call(this, beShort) + ' (' + this.address() + ')';
 }).call(this, beShort) + ' (HPI)';
}

inline creator (wrapper)

3: creates

4: invoke
and

return

toString (Employment)

layer composition
for Person>>toString

toString (Address)

toString (base)

call site inlined method

Fig. 2. Optimized ContextJS method dispatch on first call

obj

1: toString()

function(beShort) {
 if (!isValid())
 return inlineMethodCreator.apply(arguments);
 return (function(beShort) {
 return (function(beShort) {
 return beShort ?
 this.fullName : 'Person(' + this.fullName + ')';
 }).call(this, beShort) + ' (' + this.address() + ')';
 }).call(this, beShort) + ' (HPI)';
}

2: invoke
and

return

call site inlined method

Fig. 3. Optimized ContextJS on subsequent calls

The lookup mechanism depicted here is used on every

activation of a layered method. In the next section we will

discuss an approach for optimizing this process.

III. PARTIAL METHOD INLINING AND COMPOSITION

CACHING

Since recorded runtime information for our COP applica-

tions showed that layer composition changes do not happen

often for most objects, the default layer composition mech-

anism of ContextJS computes most of the time redundant

compositions. In this section we will present an adapted layer

composition and lookup mechanism that will only re-compute

layer compositions when necessary. Furthermore, we denote

what parts of the method composition and lookup mechanism

can be optimized.

1 f u n c t i o n t o S t r i n g (b eSho r t) {
2 i f (! c u r r e n t L a y e rCompo s i t i o n I sV a l i d ())
3 re turn i n l i n eMe t h o dC r e a t o r . app ly (
4 a rgumen t s) ;
5 re turn (f u n c t i o n (b eSho r t) {
6 re turn (f u n c t i o n (b eSho r t) {
7 re turn beSho r t ?
8 t h i s . fu l lName : ’ Pe r son (’ +
9 t h i s . fu l lName + ’) ’ ;
10 }) . c a l l (t h i s , b eSho r t) + ’ (’ +
11 t h i s . a d d r e s s () + ’) ’ ;
12 }) . c a l l (t h i s , b eSho r t) + ’ (HPI) ’ ;
13 }

Listing 3. The result of automatically inlining the toString method with our
approach.

A. Inlining

For a given layer composition, the partial methods and

the necessary COP infrastructure code are combined into a

78

single method. Each generated method corresponds to a layer

composition. After its creation the generated method is used

for all subsequent activations as long as the active layer

composition is similar to the method’s corresponding layer

composition.

Listing 3 shows the inlining result of Person>>toString for
the layer composition: EmploymentLayer, AddressLayer, base. Ac-

cording to the order of activated layers we inline each proceed

call with the partial method that the proceed call would activate

when executed. We directly embed the partial method and

not just its statements so that the inlined source code has its

own scope2. This also makes the source code transformation

simpler since the actual call to the partial method will not

be changed and parameters of the inlined partial method do

not need to be renamed. The normal JavaScript function call

semantic applies.

B. Composition Validation

A validation check is added as the first statement of the

generated method. The validation check is the only COP meta-

level code that is invoked. The validation check compares the

active layer composition to the corresponding layer composi-

tion of the generated method and invalidates it if necessary.

Invalidation means to remove the generated method from

the slot it is installed in and either generate and install a

new inlined method or install a common ContextJS method

wrapper3.

Since the validation check is invoked for every method

activation its efficiency is critical. We propose the usage of

fingerprints [7] for efficient comparison of layer compositions.

The fingerprint of a layer composition regarding an object slot

can be computed from unique layer identifiers and version

information about the partial methods and base method. Given

two layer compositions and an object slot their fingerprints

should be equal if both layer compositions include the same

layers in the same order and, regarding the slot, the partial

methods and the base method for that slot are equal. We

describe in the next section a possible implementation.

C. Composition Caching

The currently active layer composition must be accessed for

both the validation check and for the partial method lookup

while generating an inlined method. Since this must happen

at least once when activating a layered method, also this

operation should be efficient.

Layers can be (de-)activated globally and within the dy-

namic extent of a control flow. ContextJS also allows object

scoping [4], i.e. layers are activated and deactivated depending

on the receiver of a message send. Since object layer acti-

vations can be completely customized, e.g. be made random,

caching them is not possible without further constraints. How-

ever, when the receiver object does not implement its own

layer computation, only globally and dynamically activated

2JavaScript only provides function not block scope so a function is required
3Both composition mechanisms are interchangeable and can be used at the

same time in the running system

layers have to be considered when computing the active layer

composition. When those layers are stored in order of their

activation in a collection, e.g. a stack, it is possible to associate

a composition cache together with that data structure. The

cache can be invalidated whenever the collection changes.

IV. IMPLEMENTATION

This section presents our implementation. We will show in

detail how the optimization mechanism described previously

was applied to ContextJS and discuss problems we encoun-

tered.

A. Method Generation

The process of inlining partial methods of a layer compo-

sition to create generated methods as described in section 3.3

is the following:

When a partial method is defined and the slot in the refined

object or class was not yet made layer-aware, install a method

wrapper in that slot. The method wrapper will not handle the

partial method dispatch directly but is responsible for creating

an inlined function. We designate that method wrapper as

inlinedMethodCreator.
The first activation triggers the inlinedMethodCreator that

will then lazily build the inlined method. This involves the

following steps:

1) Access the current layer composition. If the object for

which the inlined method is built does customize the

active layer computation in a special way, the layer

composition has to be computed. If not, a cached

layer composition can be used. The global collection

cop.LayerStack holds all dynamically and globally acti-
vated layers. When the currently active layers have not

changed since a previous composition computation then

the composition is cached and can be reused. Otherwise

the cop.LayerStack has to be iterated and a new layer

composition has to be computed from all with and

without layer specifications.

2) Compute the fingerprint for the composition.

3) Gather partial methods from methods.

4) Inline partial methods by starting with the first partial

method (the partial method that is activated when the

layered method is executed) and inline partial methods

of the next nesting level. Repeat that until all partial

methods and the base method are transformed into

source code block. Add the validation check and create

a new function out of the transformed source code.

5) Call new inlined method.

For each subsequent method call do:

1) Access fingerprint of current layer composition. Either

using cop.LayerStack that is also used to store finger-

prints together with cached compositions or compute

layer composition and compute hash.

2) If the corresponding layer composition is equal to the

current layer composition continue running the inlined

method. Otherwise remove the inlined method from its

79

1 var va l u e = 5 ;
2 var f = f u n c t i o n () { re turn va l u e + 3 }
3 . b i n d s ({ v a l u e : v a l u e }) ;
4 f () ; / / 8
5 f . ge tVarMapping () ; / / { v a l u e : 5}

Listing 4. First class closures and closure introspection.

1 var spyObj = {
2 m: f u n c t i o n () { a l e r t (s e c r e t) }
3 }
4

5 cop . c r e a t e (’ S e c r e t L a y e r ’)
6 . r e f i n e O b j e c t (spyObj , {
7 m: f u n c t i o n () {
8 var s e c r e t = . . .
9 cop . proceed () ;
10 } ,
11 }) ;
12

13 f u n c t i o n i n l i n e d () {
14 . . .
15 var s e c r e t = . . .
16 (f u n c t i o n () { a l e r t (s e c r e t) })
17 . c a l l (t h i s) ;
18 }

Listing 5. First class closures and closure introspection.

slot and invoke inlinedMethodCreator again. This starts
the composition process again.

Figure 2 shows the process of installing the inlined method

using the Person example from listing 1 for the layer composi-

tion for the layer composition EmploymentLayer, AddressLayer, base.

Upon the toString message send, the inlinedMethodCreator is
activated. It inlines the partial methods found in the employ-

ment and address layers as well as the base method. When

this is done the inlined method is activated and its return value

passed back to the call site.

Following method calls with the same layer composition

are processed as shown in figure 3. The inlined method gets

directly activated and performs the validation check. Since the

activated layers have not changed, the method is still valid and

the control flow continues normally.

B. Dealing with Closures

Rewriting source code in JavaScript is an interesting chal-

lenge. Rewriting means that that existing functions are con-

verted into a string representation that is then parsed and

changed. Recompiling can be done by evaluating the function

source code so that a function object is the result.

In JavaScript, functions bind values to free variables at defi-

nition time and are therefore closures. Once bound, JavaScript

provides no means for introspection of the sub-method level4.

When transforming source code this becomes a problem since

bound variables cannot be transferred to rewritten code.

4Instrumenting a JavaScript VM would solve this problem but would make
our optimization mechanism less general

To provide a solution that allows code rewriting and closures

at the same time, we support first class closure objects. These

objects can be created alongside functions as is shown in

listing 4.

This mechanism allows to rewrite functions even with bound

variables. However, this burdens users to explicitly define

closures. The Lively Kernel is implemented using objects and

classes; closures on a per method level are rarely used so that

this was not a drawback up to this point.

C. Source Code Transformations

For the actual source code modifications we used OMeta-

based [8] JavaScript parser and AST transformer. However,

this approach introduced a lot of overhead for runtime layer

inlining.

Since the code transformations are simple — finding and

replacing the proceed statement, injecting a statement at the

method start — our current implementation uses regular ex-

pressions for parsing and rewriting.

A special case that can appear while transforming and that

is currently not covered by our implementation is that inlined

partial methods with unbound variables can lexically capture

variables defined in an outer function block. Listing 5 shows

an example. The method m of spyObj and SecretLayer are

inlined. In the generated method the inlined base method is

able to access the variable secret.
Solutions to that problem include applying mechanisms that

can be found in hygienic macros [9] or code generators [10].

Alternatively the inline mechanism could be adapted so that

it would not directly inline the source code but would replace

the cop.proceed with hard wired method calls. Thus, partial

methods could no longer accidentally access the lexical scope

of the generated method.

D. Composition Validation

The efficiency of the validation check is critical for the

overall performance characteristics of method inlining since

this check is invoked on every call.

Our current approach is the following: Each layer has a

unique identifier that consists of its name and a timestamp

of its last change, i.e. the point of time one of its partial

method were changed, added, or removed. These identifiers

are then concatenated for computing the fingerprint of the

whole composition. On method inline creation the fingerprint

layer composition is stored and later used for comparison when

subsequent calls activate the inlined method again.

We use string comparison for the validation check. To

improve its efficiency fingerprints should use better hashing

or fingerprint mechanism like Rabin fingerprints [7], [11].

V. EVALUATION

To evaluate the performance of the new layer inlining

approach we run benchmarks used to compare several COP

implementations [1]. The benchmarks measure the relative

performance of a layered method lookup compared to a non

layered method lookup of the host language. The results of

80

Fig. 4. Micro benchmark results of ContextJS with dispatch and with inline approach. The benchmark source is taken from the COP survey [1].

Fig. 5. A more realistic micro benchmark, comparing an Object-oriented
version that uses a context object passed in as parameter and if conditional
statements to express behavior variations, with two ContextJS versions that
use layers to express these behavioral variations.

the micro-benchmarks5 in Figure 4 show that the inlining

approach is up to 10 times faster when compared with dynamic

dispatch. However, relative to the not instrumented code the

overhead is still very significant since only 1–3% of its per-

formance is reached. Profiling shows that most of the time is

spend accessing layer compositions even though compositions

are cached. Further optimizations are needed here to get better

results.

The relative performance characteristics of running an layer-

aware method without any layer activations, compared to 1–

5All benchmarks were executed with Google Chrome 12.0.742.91 on a
MacBook Pro, Intel Core i7 2 GHz 4 Cores, 4 GB RAM.

1 / / 1 . run 1000 t ime s
2 on =! on ;
3 i f (on) BenchLayer1 . beGloba l ()
4 e l s e BenchLayer1 . beNotGloba l ()
5 benchmarkObj .m(’ ’)
6

7 / / 2 . r e s u l t s
8 / / 3 ms wi th Con t ex t JS d i s p a t c h
9 / / 557 .3 ms wi th Con t ex t JS i n l i n i n g

Listing 6. Benchmark that alternates the layer composition on every method
call.

5 nested layer activations, is for both approaches similar.

Interesting is that we consistently observed that a method with

one active layer is executed faster with inlining, than a method

without any active layers. This might be the result of using a

different path for executing a method without any layers, but

further investigation is needed here.

To measure the performance of our approach we developed

a new micro benchmark scenario: Our own benchmarks in

Figure 5 try to capture the performance in a more realistic

manner. We compare our implementation with a basic imple-

mentation that uses additional parameters and if statements

to express context-specific behavioral variations. Listing 7

shows the benchmark code. Compared to the first benchmark

scenario that used counters, string concatenation is generally

slower. Therefore the run-time ratio of the COP and OO

version is smaller. The benchmark also reduces the difference

between the inlining and the dispatching approach. Using

inlining, ContextJS can achieve 50% of the performance of the

hand coded version using if constructs. The dispatch approach
achieves only 10% to 20% compared to that version.

Since the layer composition is not changed in our bench-

81

1 / / 1 . B e h a v i o r a l v a r i a t i o n s e x p r e s s e d wi th
c o n d i t i o n a l s

2 benchmarkObj = {
3 m: f u n c t i o n (r e s u l t , c o n t e x t) {
4 i f (c o n t e x t . l 5) r e s u l t += ’ l 5 ’
5 i f (c o n t e x t . l 4) r e s u l t += ’ l 4 ’
6 i f (c o n t e x t . l 3) r e s u l t += ’ l 3 ’
7 i f (c o n t e x t . l 2) r e s u l t += ’ l 2 ’
8 i f (c o n t e x t . l 1) r e s u l t += ’ l 1 ’
9 r e s u l t += ’ base ’ ;
10 re turn r e s u l t ;
11 } ,
12 }
13

14 / / 2 . B e h a v i o r a l v a r i a t i o n s e x p r e s s e d wi th l a y e r s
15 benchmarkObj = {
16 m: f u n c t i o n (r e s u l t) {
17 r e s u l t += ’ base ’
18 re turn r e s u l t
19 } ,
20 }
21

22 cop . c r e a t e (’ BenchLayer1 ’) . r e f i n e O b j e c t (benchmarkObj ,
{

23 m: f u n c t i o n (r e s u l t) {
24 r e s u l t += ’ l 1 ’ ;
25 re turn cop . proceed (r e s u l t)
26 }
27 })
28 cop . c r e a t e (’ BenchLayer2 ’) . r e f i n e O b j e c t (benchmarkObj ,

{
29 m: f u n c t i o n (r e s u l t) {
30 r e s u l t += ’ l 2 ’ ;
31 re turn cop . proceed (r e s u l t)
32 }
33 })
34 / / e t c . . . t o BenchLayer5

Listing 7. Object and layer definitions that are used in the benchmark of
Figure 5. The first version of the benchmark object expresses the behavioral
variation with if constructs and a context object that is passed in as a
parameter. The second version uses layers to do the same.

mark in Figure 5, we measured how the performance can

degenerate if the layer composition changes on every method

call. In this extreme case the standard dynamic lookup out-

performs the inlining as shown in Listing 6. Because of

source code transformations and function generation com-

putation, costs of method inlining are very high. When the

layer composition changes every time the dynamic lookup is

around 200 times faster. One approach to solve this problem

is the introduction of an inlined method cache. The cache

stores generated inlined methods that were installed before

but invalidated later. When the object is activated with the

same layer composition the old methods are fetched from the

cache and re-installed so that source code transformations and

function creation becomes unnecessary. We implemented that

optimization prototypically but have not yet adopted it since

layer composition changes do not happen often and had not

yet a noticeable performance impact.

VI. RELATED WORK

A common implementation approach to extending object-

oriented programming languages with COP concepts is the

extension of method dispatch by yet another dimension [6].

Depending on the particular implementation strategy, the per-

formance overhead can be significant. In a benchmark using

the popular “figure editor” from the AOP community as an

example [12], ContextL[13] has shown that COP extensions

can perform competitively [14]. But due to other implemen-

tation constraints not all COP extensions can take advantage

of this particular optimization.

There are several COP implementations for Java that are

each implemented with different approaches. ContextJ [15]

uses compiler and preprocessor techniques. This allows for

example to directly compile the lookup code into the base

method. Other implementations like ContextLogicAJ [16],

and ContextJ* [6], an Java5 library based implementation of

COP concepts, are more restricted in their implementation

possibilities.

The cj prototype [17], [18] is an atypical COP implementa-
tion. It implements a minimal subset of ContexJ [14], [19] to

demonstrate a machine-model of multi-dimensional separation

of concerns [20]. In cj a layer activation directly changes the
method dictionaries of all affected classes. This is a very

expensive operation, but it eliminates layer composition at

message dispatch time. This approach is slow when layers

get often (de-)activated and when a layer refines methods

in many places, but it is fast if this does not happen often.

In our approach a layer composition change also invalidates

all inlined partial method compositions, but this invalidation

is only detected and handled lazily, making the actual layer

activation fast, but the next layered method executions slow.

Aspect-oriented programming (AOP) languages like

AspectJ[21] also change the method dispatch in object-

oriented programming. They are implemented on a

source code, byte code or the virtual machine level [20].

AspectScript [22] is an AOP implementation for JavaScript.

Since it allows for very expressive aspects, the implementation

has to instrument every method in the system. This is done

by parsing and manipulating the JavaScript source code of

the base system. This slows down the whole system by 5-6

times even when no aspects are active. Contrastingly, in COP

it can be statically determined which methods are refined

by layers. Therefore ContextJS only needs to change those

methods. Methods that are not refined run unaffected and

with their normal performance.

Inlining of methods is a well-known compiler optimization

for statically and dynamically compiled Object-oriented lan-

guages. For dynamic inlining in Self [23] it is argued that

with the help of type feedback the inlining of messages leads

to significant performance improvements because in pure OO

languages methods are typically very small and are called very

frequently [24]. In Self the inlining of methods is also done at

run-time but on the level of the virtual machine (VM). Since

our COP message dispatch is handled on the host language

level the approach cannot directly used in our implementation.

But since inlining of layer compositions in ContextJS makes

the execution of layered methods less dynamic, we expect that

optimizations in JavaScript VMs can be more often applied as

could be with a dynamic dispatch mechanism.

82

VII. SUMMARY AND OUTLOOK

COP language extensions enable behavior variations to be

modularized, dynamically activated, and scoped. Our lan-

guage extension ContextJS implements the COP paradigm in

JavaScript and is used in the Lively Kernel environment for

various applications. Regular ContextJS dispatch and compo-

sition mechanisms introduced a significant overhead for layer-

aware code at run-time.

To make ContextJS more efficient, we present an optimiza-

tion technique for ContextJS to improve run-time layer lookup

and composition performance. Based on our observation that

layer composition changes per object happen rarely, the opti-

mizations we implemented are targeted at making execution

traces fast that rarely include layer composition changes.

We propose the generation of a single method that has all

contributing partial and base methods inlined. This removes

all meta-level composition code apart from the validation

checks in layered methods. Since a validation check still has

to be included, we also presented techniques to optimize layer

composition access and checks for composition change.

Our evaluation shows noticeable performance improve-

ments. However, there is still a big performance gap to code

not instrumented that comes from the validation check that is

necessary to recompose layered methods on layer composition

changes.

A macro benchmark suite for COP implementations would

be of great help to guide further optimization efforts.

REFERENCES

[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid,
“A Comparison of Context-oriented Programming Languages,” in
International Workshop on Context-Oriented Programming, ser. COP
’09. New York, NY, USA: ACM, 2009, pp. 6:1–6:6. [Online].
Available: http://doi.acm.org/10.1145/1562112.1562118

[2] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikkonen,
“The Lively Kernel A Self-supporting System on a Web Page,” in
Self-Sustaining Systems, ser. Lecture Notes in Computer Science,
R. Hirschfeld and K. Rose, Eds. Springer Berlin / Heidelberg,
2008, vol. 5146, pp. 31–50, 10.1007/978-3-540-89275-5_2. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-89275-5_2

[3] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and K. Palacz,
“Lively Wiki a Development Environment for Creating and Sharing
Active Web Content,” in Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, ser. WikiSym ’09.
New York, NY, USA: ACM, 2009, pp. 9:1–9:10. [Online]. Available:
http://doi.acm.org/10.1145/1641309.1641324

[4] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld, “An Open
Implementation for Context-oriented Layer Composition in ContextJS,”
Science of Computer Programming, vol. 76, no. 12, pp. 1194 –
1209, 2011, special Issue on Software Evolution, Adaptability and
Variability. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167642310002121

[5] J. Lincke, R. Krahn, and R. Hirschfeld, “Implementing Scoped Method
Tracing with ContextJS,” in International Workshop on Context-Oriented
Programming, ser. COP ’11. ACM, 2011, to appear.

[6] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented Pro-
gramming,” Journal of Object Technology, vol. 7, no. 3, pp. 125–151,
March - April 2008.

[7] A. Z. Broder, Some applications of Rabin’s fingerprinting method.
Springer, 1993, pp. 143–152.

[8] A. Warth and I. Piumarta, “Ometa: an object-oriented language for
pattern matching,” in Proceedings of the 2007 symposium on Dynamic
languages, ser. DLS ’07. New York, NY, USA: ACM, 2007, pp. 11–19.
[Online]. Available: http://doi.acm.org/10.1145/1297081.1297086

[9] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba,
“Hygienic macro expansion,” in Proceedings of the 1986 ACM
conference on LISP and functional programming, ser. LFP ’86. New
York, NY, USA: ACM, 1986, pp. 151–161. [Online]. Available:
http://doi.acm.org/10.1145/319838.319859

[10] Y. Smaragdakis and D. Batory, “Scoping Constructs for Software
Generators,” in Generative and Component-Based Software Engineering,
ser. Lecture Notes in Computer Science, K. Czarnecki and
U. Eisenecker, Eds. Springer Berlin / Heidelberg, 2000, vol.
1799, pp. 65–78, 10.1007/3-540-40048-6_6. [Online]. Available:
http://dx.doi.org/10.1007/3-540-40048-6_6

[11] M. O. Rabin, “Fingerprinting by Random Polynomials.” TR-CSE-03-
01, Center for Research in Computing Technology, Harvard University.,
Tech. Rep., 1981.

[12] P. Tarr, M. D’Hondt, L. Bergmans, and C. Videira Lopes, “Workshop
on Aspects and Dimensions of Concern: Requirements on, and
Challenge Problems for, Advanced Separation of Concerns,” in
Object-Oriented Technology, ser. Lecture Notes in Computer Science,
G. Goos, J. Hartmanis, J. van Leeuwen, J. Malenfant, S. Moisan,
and A. Moreira, Eds. Springer Berlin / Heidelberg, 2000, vol.
1964, pp. 203–240, 10.1007/3-540-44555-2_16. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44555-2_16

[13] P. Costanza and R. Hirschfeld, “Language Constructs for Context-
oriented Programming: An Overview of ContextL,” in DLS ’05: Pro-
ceedings of the 2005 symposium on Dynamic languages. New York,
NY, USA: ACM, 2005, pp. 1–10.

[14] P. Costanza, R. Hirschfeld, and W. De Meuter, “Efficient Layer Acti-
vation for Switching Context-Dependent Behavior,” in Proceedings of
the Joint Modular Languages Conference 2006, ser. LNCS, D. Lightfoot
and C. Szyperski, Eds., no. 4228, Springer. Springer, 2006, pp. 84–103.

[15] M. Appeltauer, R. Hirschfeld, M. Haupt, , and H. Masuhara, “ContextJ:
Context-oriented Programming with Java,” Journal of the Japan Society
for Software Science and Technology (JSSST) on Computer Software,
vol. 28, no. 1, pp. 272–292, 2011.

[16] M. Appeltauer, R. Hirschfeld, and T. Rho, “Dedicated Programming
Support for Context-aware Ubiquitous Applications,” in UBICOMM
2008: Proceedings of the 2nd International Conference on Mobile Ubiq-
uitous Computing, Systems, Services and Technologies. Washington,
DC, USA: IEEE Computer Society Press, 2008, pp. 38–43.

[17] H. Schippers, M. Haupt, and R. Hirschfeld, “An Implementation
Substrate for Languages Composing Modularized Crosscutting
Concerns,” in Proceedings of the 2009 ACM symposium on Applied
Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp. 1944–
1951. [Online]. Available: http://doi.acm.org/10.1145/1529282.1529716

[18] H. Schippers, D. Janssens, M. Haupt, and R. Hirschfeld, “Delegation-
based Semantics for Modularizing Crosscutting Concerns,” in
Proceedings of the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and applications, ser.
OOPSLA ’08. New York, NY, USA: ACM, 2008, pp. 525–542.
[Online]. Available: http://doi.acm.org/10.1145/1449764.1449806

[19] M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara, “ContextJ:
Context-oriented Programming with Java,” in Proceedings of the JSSST
Annual Conference 2009, 2009.

[20] M. Haupt and H. Schippers, “A Machine Model for Aspect-Oriented
Programming,” in 21st European Conference on Object-Oriented Pro-
gramming, ECOOP 2007, ser. Lecture Notes in Computer Science,
E. Ernst, Ed., vol. 4609. Berlin, Heidelberg, Germany: Springer-Verlag,
August 2007, pp. 501–524.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An Overview of AspectJ,” in 15th European Conference
on Object-Oriented Programming, ECOOP 2001, ser. Lecture Notes
in Computer Science, J. L. Knudsen, Ed., vol. 2072. Berlin,
Heidelberg, Germany: Spinger-Verlag, January 2001, pp. 327–354.
[Online]. Available: citeseer.ist.psu.edu/kiczales01overview.html

[22] R. Toledo, P. Leger, and É. Tanter, “AspectScript: Expressive aspects
for the Web,” University of Chile, Tech. Rep. TR/DCC-2009-10, Oct.
2009.

[23] D. Ungar and R. B. Smith, “Self: The Power of Simplicity,” Lisp and
symbolic computation, vol. 4, no. 3, pp. 187–205, 1991.

[24] U. Hölzle and D. Ungar, “Optimizing dynamically-dispatched calls with
run-time type feedback,” in Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, ser.
PLDI ’94. New York, NY, USA: ACM, 1994, pp. 326–336. [Online].
Available: http://doi.acm.org/10.1145/178243.178478

83

