
Toward Studying Example-Based Live Programming in
CS/SE Education

Eva Krebs
eva.krebs@hpi.uni-potsdam.de

Hasso Plattner Institute

Potsdam, Germany

Toni Mattis
toni.ma�is@hpi.uni-potsdam.de

Hasso Plattner Institute

Potsdam, Germany

Patrick Rein
patrick.rein@hpi.uni-potsdam.de

Hasso Plattner Institute

Potsdam, Germany

Robert Hirschfeld
robert.hirschfeld@uni-potsdam.de

Hasso Plattner Institute

Potsdam, Germany

Abstract

Source code is inherently abstract. While this is necessary

to capture the generality of a program, it poses a barrier to

understanding and learning to use the underlying concepts.

In education, especially in abstract subjects like maths, the

use of concrete examples is considered instrumental to the

acquisition of knowledge and a frequently explored direction

for teaching computational concepts. Besides concreteness,

the importance of examples being close to their abstract

descriptions as well as the immediacy of feedback has been

highlighted.

Babylonian Programming (BP) is a type of example-based

live programming that ful�lls all three criteria by introduc-

ing concrete values, moving them as close as possible to

the code, and updating them immediately in response to

changes of either the example or the code. This makes BP a

promising tool in education, yet no studies on the suitability

of BP in a learning context have been conducted. Hence, we

propose to (1.) investigate usability of state-of-the-art BP to

minimize the friction of introducing BP in education, and (2.)

measure the learning e�ectiveness and quality of experience

of a BP environment in undergraduate software engineering

education. For these studies, we will use the Smalltalk-based

Babylonian/S as our environment.

Besides clearer guidelines on the design of BP and example-

based systems in general, we expect to shed light on the

qualities that teacher-provided examples need to exhibit and

the opportunities for learners to create their own examples

during experimentation with unknown concepts.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PAINT ’23, October 23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0399-7/23/10.

h�ps://doi.org/10.1145/3623504.3623568

CCS Concepts: • Software and its engineering → Devel-

opment frameworks and environments.

Keywords: live programming, exploratory programming,

example-based programming, babylonian programming, ex-

amples, squeak, smalltalk, education

ACM Reference Format:

Eva Krebs, Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2023.

Toward Studying Example-Based Live Programming in CS/SE Edu-

cation. In Proceedings of the 2nd ACM SIGPLAN International Work-

shop on Programming Abstractions and Interactive Notations, Tools,

and Environments (PAINT ’23), October 23, 2023, Cascais, Portugal.

ACM, New York, NY, USA, 8 pages. h�ps://doi.org/10.1145/3623504.

3623568

1 Introduction

The abstract nature of source code poses a challenge to teach-

ing programming and computational concepts. Fortunately,

abstract concepts can be conveyed e�ectively by the use of

examples, as the use of worked examples in both math and

CS education demonstrates. Most examples in programming

education either have the goal to illustrate the workings of

an algorithm or program using concrete values (code tracing

examples) or demonstrate how a program is supposed to be

constructed (code generation examples) [7]. In practice, both

learning objectives are interwoven: understanding the parts

of a larger program (e.g., the standard library) by seeing them

operate on concrete values can help learners form sub-goals

that help them solve new tasks requiring code generation.

Muldner et al. [7] identi�ed the problem of making exam-

ples available and semantically close enough to the learn-

ers’ task as a major open research direction. There is also

little research in how to e�ectively empower students to

self-explain and experiment with code and computational

concepts themselves. Moreover, the focus of the majority

of previous studies is on relatively self-contained algorith-

mic examples that provide excellent opportunities to make

use of rich visualizations due to their small scope, but such

approaches do not generalize to advanced topics, such as

teaching design patterns or complex libraries.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

17

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9089-7784
https://orcid.org/0000-0001-7024-9838
https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3623504.3623568
https://doi.org/10.1145/3623504.3623568
https://doi.org/10.1145/3623504.3623568


PAINT ’23, October 23, 2023, Cascais, Portugal Eva Krebs, Toni Ma�is, Patrick Rein, and Robert Hirschfeld

{

}

{

}

?

{

}

?

search

contextualize

Inspector

a: point(0, 0)

b: point(0, 1)

debug

{

}

?

?

External General purpose Example-centric Babylonian

proximity

spatial

temporal

semantic 

Figure 1. Spectrum of integrating examples into programming work�ows.

What is known, however, is that the e�ectiveness of exam-

ples is highly in�uenced by their proximity to the abstract

concept they illustrate: Examples that are separated from

what they illustrate are less e�ective. This is known as the

split-attention e�ect [3].

While the ideal situation of simultaneously presenting

an example for an abstract concept can only be achieved

by using sensorially di�erent channels (e.g. listening to in-

structions while seeing a concrete example unfold), using

the same medium, such as the computer screen, can likely

bene�t from bringing abstract and concrete elements closer

together in space - e.g., demonstrating the e�ect of a line

of code next to it - and in time - e.g., having up-to-date ex-

amples available immediately. A third dimension, semantic

proximity, can play an important role if the goal is to under-

stand a concept well enough to re-use it. Examples with a

large semantic distance are not perceived as applicable to a

problem (however, an exact semantic match invites copying

and does not contribute much to a learning outcome). For

instance, demonstrating a sorting algorithm with numbers

helps understand the algorithm itself, but not neccessary

how it can be used to sort composite data.

1.1 From Textbooks to Live Examples

Understanding source code involves mental simulation. Es-

pecially when learners lack su�cient experience to quickly

recognize plans, �ne-grained mental simulation can take

most of the e�ort to understand a program - sometimes to a

degree that requires pen and paper on the side. At the same

time, abstractions they encounter or need to use to solve a

task (e.g. standard library calls) might be opaque as long as

the vocabulary is still unknown. Although concrete exam-

ples might be available (e.g. textbooks, documentation, or

StackOver�ow), learners must deliberately seek them out,

recognize which are useful, and map them back into their

current task context, which is a distinct skill on its own.

IDEs and examples. Modern general-purpose program-

ming environments introduce interactivity to support both

mental simulation and understanding of abstractions to some

degree. A read-eval-print loop (REPL) might invite experi-

mentation, but learners must come upwith suitable examples

to try. Automated tests can contain relatively complete exam-

ples that run parts of the system, but they are often located

away from the code and thus harder to discover. The PyRet

language 1, in contrast, motivates tests directly following

the de�nition of a function via its where-syntax. Besides

the challenge of generating or �nding suitable examples,

learners are also facing the challenge of learning about how

the program operates on the example data. The print state-

ment is a ubiquitous way to observe dynamic behavior, but

the resulting log needs to be put back into context (which

might require careful formatting to recognize which state-

ment produced which output) and is typically limited to

textual representations. Most debuggers allow stopping the

program at any point and inspecting its state. This allows

learners to access a rich representation of composite data at

a particular point in time, unfortunately with little support

to easily keep track over time or quickly return to certain

point after changes have been made.

Example-centric programming. These problems have

subsequently been addressed by treating examples as �rst-

class entities in the programming environment rather than

an artifact that needs to be manually constructed from, e.g.,

tests and print statements. Example-centric programming [5]

�rst attempted to provide programmers with a side-by-side

view of how state evolves as code is being run, e.g., from a

1h�ps://pyret.org/

18

https://pyret.org/


Toward Studying Example-Based Live Programming in CS/SE Education PAINT ’23, October 23, 2023, Cascais, Portugal

test case. In Newspeak, Exemplars [1] are annotations that

provide examples to methods, so that code is always ready

for evaluation. By restricting the domain to certain data struc-

tures, richer visual representations of state evolution can be

used - an example is the Kanon [9] system that synchronizes

data structure visualization with step-wise code execution,

highlights changes, and maps them back to the code that

caused them. By maintaining the impression that the ob-

servable behavior of the example immediately responds to

changes to either the program or the example - which is

called liveness [13] - a class of systems named Example-

based Live Programming (ELP) encourages experimentation

and exploration by avoiding re-compile and re-run cycles.

Babylonian Programming. While side-by-side views of

code and example can implement rich visualizations on the

"example side", the program itself remains spatially separated

from the concrete state and behavior. Babylonian Program-

ming (BP) [10] is an ELP system that moves examples even

closer to the code by displaying concrete data at expres-

sion level. The example is always executable and reacts to

changes immediately, e.g., the displayed intermediate values

are always re�ecting the most up-to-date behavior.

In summary, examples in programming environments

form a spectrum with regard to how close they are to the

source code, with external documentation being the least

accessible and semantically the least related (see Figure 1).

General-purpose IDEs technically support examples but not

very well. Example-centric environments are designed to

support examples - often in a side-by-side view, and Baby-

lonian Programming further integrates �rst-class examples

into the code itself. However, BP has not yet been studied

in educational contexts, although it optimizes several di-

mensions that can appeal to learners: proximity of examples

minimizes the split-attention e�ect and displaying dynamic

information over time supports mental simulation. BP can

serve a double role in education as it allows educators to

annotate code as a form of live documentation and invites

learners to experiment due to its liveness.

2 Babylonian Programming

Babylonian Programming (BP) is inspired by the way ancient

Babylonians expressed their algorithms - in terms of concrete

examples right next to the instructions [10]. Fortunately, we

are not restricted to clay tablets anymore. A BP-enabled IDE

introduces several concepts: (1.) the Example2, (2.) Probes as

a way to observe concrete behavior, and (3.) Replacements

to override expressions with user-controlled values as illus-

trated in Figure 2.

Example. In BP, an Example provides concrete values to

be able to run a particular section of code and, optionally,

2We capitalize the term to refer to the live Examples in Babylonian Pro-

gramming rather than the generic term

Triangle » drawOn: aCanvas

aCanvas line: self a to: self b color: self color

aCanvas line: self b to: self c color: self color

aCanvas line: self c to: self a color: self color

Triangle a: 0@0 b: 1@0 c: 0.5@0.8

0@0

Canvas new

Color red

Color blue1@0

1

2 3

Figure 2. Core elements of Babylonian Programming: The

programmer-curated Example (1) provides an instance of the

class and arguments for the method call to construct a full

execution context. Probes (2) render dynamic data captured

during execution of the method – here, the content of the

canvas – and are always updated immediately after code or

Example changes. Replacements (3) allow programmers to

isolate the Example from irrelevant state by skipping the

execution of an expression and proceeding as if it evaluated

to certain value.

display its �nal result. In object-oriented environments, this

includes example instances of classes, so that a realistic value

of self can be assumed, as well as example arguments

needed by a method call. Examples can be created using

specialized tools, e.g., by writing their set-up code manually

or selecting and persisting concrete values observed during

run-time.

Probe. A Probe can be attached to any expression, show-

ing its value under the currently active Example(s). Probes

are updated immediately on each change, i.e., the a�ected

code path is being re-executed in the background. They can

use rich, domain-speci�c visualizations, e.g. displaying the

content of a drawing bu�er to help users trace its evolution.

If they are a�ected by multiple times (e.g. in a loop), they

can visualize their value’s evolution either textually or using

domain-speci�c representations again, such as sparklines.

Probes can be anywhere in the control �ow of an example,

allowing users to trace concrete behavior deep into method

calls.

Replacement. A Replacement can override an expression

and provide a �xed value instead. This can make an Exam-

ple more self-contained by avoiding unrelated computation,

e.g., bypassing user input by just assuming they provided

certain input. It also encourages experimenting with what-if

scenarios, e.g., by allowing to see the behavior if certain call

returned something else.

2.1 Implementations of Babylonian Programming

Babylonian Programming was initially implemented in the

web-based live programming environment Lively4 [6] for

the JavaScript language as Babylonian/JS [10]. A subsequent

19



PAINT ’23, October 23, 2023, Cascais, Portugal Eva Krebs, Toni Ma�is, Patrick Rein, and Robert Hirschfeld

extension of the Language Server Protocol (LSP) enabled

a language-agnostic implementation in Visual Studio Code

based on the GraalVM runtime [8]. The implementation with

the most complete integration into existing tools, however,

is an implementation in Squeak/Smalltalk called Babyloni-

an/S [12]. It provides access to examples, probes, and replace-

ments directly in the code editor, debugger, and inspection

tools. Figure 3 shows a screenshot of Babylonian/S. Due to

its seamless integration, we will use Babylonian/S for our

studies.

2.2 The Case for Babylonian Programming in

Education

The design of BP targets programmers in general, but we

argue that its core concepts lend itself to overcome learning

obstacles rooted in the split-attention e�ect. Additionally,

BP has the potential to support mental simulation by observ-

ing the e�ects of any statement or expression in terms of

concrete values.

Assisting sub-goal formation through live documen-

tation. Examples can be used to equip existing functionality

(e.g. from the standard library) with a live documentation

that helps learners identify the building blocks needed to

solve a programming task. By providing an example-based

big picture of the environment and its concepts, we expect

examples to provide cues that positively a�ect the forma-

tion of sub-goals [2] during programming tasks, e.g., seeing

a concrete demonstration what certain functions do might

be more approachable than traditional documentation and

learners might be encouraged to try out functionality they

might have missed or re-implemented otherwise. Hence,

we will explicitly study situations in which learners need

awareness of code available in their environment to solve a

programming task.

Assisting self-explanation through easier simulation.

E�ective learners often engage in self-explanation [4], a

process that draws on existing background knowledge and

newly generated hypotheses to make sense of a problem or a

solution presented as worked example "in their own words".

This may even include visualizing processes using pen and

paper. In the context of teaching programming, learners are

frequently observed to give explanations in terms of the

concrete dynamic behavior they observe - for example the

results of print statements [14]. BP has the potential to assist

self-explanation by making it easier to mentally trace what

a program does, possibly eliminating the need to use print

statements or minimize situations that demand pen-and-

paper self-explanations.

Learning non-localized concepts. Previous approaches

to improve the learning experience and e�ectiveness fo-

cus on individual algorithms and smaller programs. This

is needed for beginners and allows the use of rich special-

ized visualizations in live examples. BP has the potential to

better support advanced learning goals because Examples

can be traced through arbitrarily nested calls, allowing real-

istic examples to co-exist with small examples that illustrate

basic principles. For example, collection functions might be

documented using lists of integers as examples, while a part

of a game is equipped with a realistic example simulating

player behavior. If that part in turn uses collection functions,

learners can explore realistic usage scenarios with live data

as well. Teaching architectural concepts, e.g. design patterns,

can bene�t as well as BP easily scales to concepts spanning

multiple components.

Approaching other domains through programming.

The learning objectives supported by BP are not constrained

to programming concepts alone. Many programs eventually

model real-world domains. Working on such programs can

be an e�ective way to teach that domain (e.g. teaching basic

laws of ecosystems using a cellular automaton). BP allows

teachers to introduce executable domain-speci�c examples.

From this perspective, the program is a notation to formal-

ize the phenomena in the domain and Examples make this

notation approachable. Future implementations of BP might

even support domain-speci�c visualizations.

3 Studying Babylonian Programming

Babylonian Programming is a novel concept not yet estab-

lished in an industrial or educational context. Thus, we pro-

pose two studies: A study that aims to provide a broad un-

derstanding of how Babylonian Programming can be used

and a second study that is speci�cally designed to test its

use in an educational context.

While there are speci�c use cases for Babylonian Pro-

gramming and its tools, there is currently little knowledge

on when and how it is used in general because of its nov-

elty. In order to study the e�ect of examples and Babylonian

Programming in education, we �rst need to enhance our

understanding of it in general, such as which programming

domains it is most suitable for, in which ways developers

create and use examples, and so on. This study would also

uncover possible limitations of Babylonian/S, our chosen

Babylonian Programming environment, and its tools that

should be addressed before conducting a more specialized

study.

3.1 Study 1: General Usage of Babylonian

Programming

In this �rst study, we plan to observe how participants use

Babylonian Programming. We both aim to see in which sit-

uations or domains Babylonian Programming is especially

applicable for later studies as well as deepen our understand-

ing of how Babylonian concepts are used at all. This will also

enable us to address certain limitations of the concept or the

20



Toward Studying Example-Based Live Programming in CS/SE Education PAINT ’23, October 23, 2023, Cascais, Portugal

Figure 3. A screenshot of Babylonian/S. Examples are de�ned at the top of the method, probes are added for visualizations

directly in the code itself.

T

Q A Q A

Experimenter

Subject(s)

+ BP

Figure 4. Exploratory study design: Participants working on

a self-chosen task can request assistance and experimenters

can ask clarifying questions.

concrete tools before conducting further studies with and

on Babylonian/S.

Study Structure. We plan to observe participants work-

ing in a Babylonian/S system provided by us. We might ask

questions during the study to con�rm why participants de-

cided to do a speci�c interaction with the system, if they feel

blocked or unable to do something(see Figure 4). From this,

we hope to gather insights on when and how participants

use Babylonion Programming. Interesting topics include:

• In which program domains is it used? Is Babylonian

Programming suitable for the task the participant is

working on?

• In which programming situations is it used? Do par-

ticipants use it to explore the system? Is it used for

debugging?

• How do participants get examples? Do they e.g. write

scripts or they use live objects from the system? Do

they have trouble with creating examples?

• Which Babylonian/S tools and features are used?

• What do participants want to do but cannot?

Participants. We plan to recruit participants with vary-

ing knowledge levels from our faculty. As later studies, such

as the second study detailed in subsection 3.2, are aimed at

undergraduate students, people from that group will also

be recruited for this study. All participants will receive a

short training on Babylonian/S and the general live program-

ming features of Squeak/Smalltalk so that no pre-existing

familiarity with the system is required.

Task Design. As we want to observe how participants use

Babylonian Programming with as much freedom as possible,

we will try to observe them exploring the system or working

in self-chosen project. However, should we not �nd enough

participants with projects suitable to out study or should all

projects fall into only one or two domains, we will intervene

by preparing tasks that cover a large variety of domains.

21



PAINT ’23, October 23, 2023, Cascais, Portugal Eva Krebs, Toni Ma�is, Patrick Rein, and Robert Hirschfeld

T1 T2

T1 T2

T2 T1

T2 T1

+ BP

+ BP

+ BP

+ BP

Training Survey

Experimenter

S
u

b
je

ct
s

Figure 5. Controlled study design: Participants receive train-

ing and perform distinct tasks either under control con-

ditions (dotted boxes) or with Babylonian Programming

and Examples enabled (+BP) using a within-subject design.

Follow-up surveys sample their experience.

3.2 Study 2: The E�ect of Babylonian Programming

on Educational Tasks

This study aims to evaluate if Babylonian/S has the desired

e�ects on the completion of educational tasks by students.

More speci�cally, the goal of this study is to gain insights

on two major aspects of coding in an educational context:

(1) We would like to see whether Babylonian Programming

in�uences the learning e�ectiveness and (2) we would like

to see how it impacts the students programming experience.

We plan to focus on the following questions for evaluation:

• Does Babylonian/S improve the correctness of results

that students create?

• Does Babylonian/S improve how engaging students

perceive tasks to be?

• Does Babylonian/S decrease frustration with the task

in students?

• Does Babylonian/S improve the con�dence of the stu-

dents in their solution?

• Does Babylonian/S in�uence how long it takes stu-

dents to �nish a given task?

Study Structure. Tasks will be completed in one of two

experimental conditions: in the control condition, students

have access to a standard Squeak/Smalltalk image including

its live programming tools and features. In the experimental

condition, students are provided with a Squeak/Smalltalk

image that also includes Babylonian/S with all its features

and pre-prepared examples that are relevant to the given

task. These conditions aim to give us insights on whether a

Babylonian Programming system with some examples given,

as they could be e.g. by a teacher, has an e�ect on the pro-

gramming experience of the students (see Figure 5).

Participants. Our target demographic for this study are

undergraduate students in their fourth, or a later, semester

of study from our faculty. Because the participants are under-

graduate students, we expect them to be at a relative novice

level of programming that are still learning about some of

its core concepts. Because we are familiar with the teach-

ing program of our faculty, we can anticipate which base

concepts the students have already encountered in previous

courses and prepare tasks accordingly. In particular, we can

plan on all students having at least worked a little with a

Squeak/Smalltalk environment in a mandatory lecture in

their third semester.

Operationalization. In this study, we will equate "learn-

ing e�ectiveness" to whether students are able to correctly

solve the given task. We want to enable students to correctly

understand and answer the given tasks without, if possible,

slowing down the task solving process so considerably that

it becomes unviable in actual courses. To measure the impact

on learning e�ectiveness, we plan to record the time students

needed to create their solution as well as if their solution

provides the behavior or functionality required by the task.

But since education is not exclusively focused on the re-

sults but also on how students achieve these results and

how sustainable their learning experience is, we also plan to

study their "programming experience" with post-task ques-

tionnaires. We aim to provide question that gauge how frus-

trating completing the task was, how "fun" or engaging it

was, and how high their con�dence in their result and un-

derstanding of the system is.

To understand some underlying aspects of our environ-

ment, we also plan to record how often participants switch

context (in this case, methods or tool windows) and how

often as well as why they use Babylonian features. Context

switches usually negatively impact performance, as devel-

opers need to do a mental switch; if Babylonian reduces the

need for such switches, that might also in�uence participant

performance. The measures on our Babylonian/S tools will

provide us some background information on how they in�u-

enced the participants; for instance, if a participant decides

not to use Babylonian tools even if provided, a performance

boost in that task would not be the result of our system.

Lastly, while we will be able to predict some characteris-

tics and pre-experience of the expected participants, their

exact knowledge may vary. Participants may for instance

have additional experience from hobby projects or jobs out-

side of the university syllabus. Also, other factors such as

exactly how many semesters the students have been study-

ing, which courses they successfully passed, and their own

con�dence in their skills may vary as well. Because of these

possible variations, we will include a questionnaire for the

participants that besides demographical data will collect data

on their experience and prior knowledge.

22



Toward Studying Example-Based Live Programming in CS/SE Education PAINT ’23, October 23, 2023, Cascais, Portugal

Task Design. This study will include multiple educational

tasks suitable for our target demographic, e.g. feature cre-

ation tasks for a small game, a domain students would be

familiar with from previous courses. The exact tasks and

domain depends on the insights from our �rst study and pre-

viously outlined criteria[11] to ensure adequate complexity

and answer times. To get insights on each educational task

with both of our experiment conditions, we plan conduct

this study as a factorial experiment and as a within-subject

study.

Ideal would be tasks whose complexity is simple enough

for the participants to grasp in a session, while being com-

plex to include e.g. dynamic behavior or state. Enabling an

understanding of dynamic behavior of a system is both a

core potential of Babylonian Programming as well as integral

to our targeted participants, computer science students that

just �nished their programming introduction courses.

4 Outlook

Study implementation. First, we will design a concrete

plan for our �rst study design. We will then recruit �tting

participants and run the study. As this is an exploratory

study, we might change the study set-up between study runs

based on new insights. The study results will then both be

used to alter and improve Babylonian/S and gather knowl-

edge about the applicability and usefulness of Babylonian

Programming. The Environment used for the study will be

equipped with �ne-grained monitoring facilities that allow

us to learn whether, when, and how often participants in-

teracted with certain features of the base system and the

elements introduced by BP.

Using the insights gained from our �rst study, we will

then design tasks for and create a concrete plan for study.

This set-up will be tested with a few students in a pilot

study to �nd and �x �aws or problems that might occur.

The �nalized plan will then be used to run the study with

recruited undergraduate students.

Based on the results, further studies could potentially be

designed. For example, an entire seminar or lecture using

a BP-enabled programming environment in a longitudinal

study.

Expected improvements. We expect that such a study

helps us improve several aspects of BP itself, our Babyloni-

an/S implementation, and the opportunities students have

to learn a novel programming system like Smalltalk.

A common issue with tools that deviate from the standard

tool set is that they are unexpected and need to be designed

with a�ordance in mind.When viewed under the educational

lens, we expect to be able to tell helpful from less helpful

features, learn how to make Examples and the tools to work

with them more discoverable, which obstacles might prevent

learners from creating their own Examples, and eventually

arrive at an environment where Examples do not feel like a

separate tool.

While the quality of the BP environment and the examples

provided by teachers can confound learning e�ects, our dou-

ble study is designed to mitigate this e�ect in the �rst study

by allowing us to run the second study with a BP-enabled

environment devoid of serious �aws detected earlier.

Conclusion

The evolving integration of examples into programming

environments increasingly a�ords teachers and learners op-

portunities to illustrate abstract programs with concrete ex-

amples. Babylonian programming is a newer technique that

promises to empower teachers and learners due to the prox-

imity of examples to code, liveness, and applicability to larger

programs.

In this paper, we outlined the opportunities that come

with Babylonian Programming to support mental simula-

tion, sub-goal formation, and self-explanation in the context

of educational material and exercises. We subsequently pro-

posed an early design for two studies aimed at exploring

this promise and elaborated on the necessary preparations,

potential outcomes and consequences for both teaching and

programming environments.

Acknowledgments

This work is supported by the HPI-MIT "Designing for Sus-

tainability" research program3.

References
[1] Gilad Bracha. 2021. Enhancing Liveness with Exemplars in the

Newspeak IDE. h�ps://newspeaklanguage.org/pubs/newspeak-

exemplars.pdf.

[2] Richard Catrambone. 1998. The Subgoal Learning Model: Creating

Better Examples so That Students Can Solve Novel Problems. Journal

of Experimental Psychology: General 127, 4 (Dec. 1998), 355–376. h�ps:

//doi.org/10.1037/0096-3445.127.4.355

[3] Paul Chandler and John Sweller. 1992. The Split-Attention E�ect as

a Factor in the Design of Instruction. British Journal of Educational

Psychology 62, 2 (1992), 233–246. h�ps://doi.org/10.1111/j.2044-8279.

1992.tb01017.x

[4] Michelene T. H. Chi, Miriam Bassok, Matthew W. Lewis, Peter

Reimann, and Robert Glaser. 1989. Self-Explanations: How Students

Study and Use Examples in Learning to Solve Problems. Cognitive

Science 13, 2 (April 1989), 145–182. h�ps://doi.org/10.1016/0364-

0213(89)90002-5

[5] Jonathan Edwards. 2004. Example Centric Programming. ACM

SIGPLAN Notices 39, 12 (Dec. 2004), 84–91. h�ps://doi.org/10.1145/

1052883.1052894

[6] Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel

Taeumel, and Tim Felgentre�. 2017. Designing a live development

experience for web-components. In Proceedings of the 3rd ACM SIG-

PLAN International Workshop on Programming Experience, PX/17.2,

Vancouver, BC, Canada, October 23-27, 2017, Luke Church, Richard P.

3h�ps://hpi.de/en/research/cooperations-partners/research-program-

designing-for-sustainability.html

23

https://newspeaklanguage.org/pubs/newspeak-exemplars.pdf
https://newspeaklanguage.org/pubs/newspeak-exemplars.pdf
https://doi.org/10.1037/0096-3445.127.4.355
https://doi.org/10.1037/0096-3445.127.4.355
https://doi.org/10.1111/j.2044-8279.1992.tb01017.x
https://doi.org/10.1111/j.2044-8279.1992.tb01017.x
https://doi.org/10.1016/0364-0213(89)90002-5
https://doi.org/10.1016/0364-0213(89)90002-5
https://doi.org/10.1145/1052883.1052894
https://doi.org/10.1145/1052883.1052894
https://hpi.de/en/research/cooperations-partners/research-program-designing-for-sustainability.html
https://hpi.de/en/research/cooperations-partners/research-program-designing-for-sustainability.html


PAINT ’23, October 23, 2023, Cascais, Portugal Eva Krebs, Toni Ma�is, Patrick Rein, and Robert Hirschfeld

Gabriel, Robert Hirschfeld, and HidehikoMasuhara (Eds.). ACM, 28–35.

h�ps://dl.acm.org/citation.cfm?id=3167109

[7] Kasia Muldner, Jay Jennings, and Veronica Chiarelli. 2022. A Review

of Worked Examples in Programming Activities. ACM Transactions

on Computing Education 23, 1 (Dec. 2022), 13:1–13:35. h�ps://doi.org/

10.1145/3560266

[8] Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian

König, Kolya Opahle, Nico Scordialo, and Robert Hirschfeld. 2020.

Example-based live programming for everyone: building language-

agnostic tools for live programming with LSP and GraalVM. In Pro-

ceedings of the 2020 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Re�ections on Programming and Software,

Onward! 2020, Virtual, November, 2020. ACM, 1–17. h�ps://doi.org/10.

1145/3426428.3426919

[9] Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani. 2018. Live,

Synchronized, and Mental Map Preserving Visualization for Data

Structure Programming. In Proceedings of the 2018 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Re�ections

on Programming and Software (Onward! 2018). Association for Comput-

ing Machinery, New York, NY, USA, 72–87. h�ps://doi.org/10.1145/

3276954.3276962

[10] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert

Hirschfeld. 2019. Babylonian-style Programming - Design and Imple-

mentation of an Integration of Live Examples Into General-purpose

Source Code. Art Sci. Eng. Program. 3, 3 (2019), 9. h�ps://doi.org/10.

22152/programming-journal.org/2019/3/9

[11] Patrick Rein, Tom Beckmann, Toni Mattis, and Robert Hirschfeld.

2022. Toward Understanding Task Complexity in Maintenance-Based

Studies of Programming Tools. In Companion Proceedings of the 6th

International Conference on the Art, Science, and Engineering of Pro-

gramming (Programming ’22). Association for Computing Machinery,

New York, NY, USA, 38–45. h�ps://doi.org/10.1145/3532512.3535223

[12] Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus,

and Robert Hirschfeld. 2019. Implementing Babylonian/S by Putting

Examples Into Contexts. In Proceedings of the Workshop on Context-

oriented Programming - COP '19. ACM Press. h�ps://doi.org/10.1145/

3340671.3343358

[13] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias

Pape. 2018. Exploratory and Live, Programming and Coding. The Art,

Science, and Engineering of Programming 3, 1 (July 2018), 1:1–1:33.

h�ps://doi.org/10.22152/programming-journal.org/2019/3/1

[14] Vivian van der Werf, Efthimia Aivaloglou, Felienne Hermans, and Mar-

cus Specht. 2022. What Does This Python Code Do? An Exploratory

Analysis of Novice Students’ Code Explanations. In Proceedings of

the 10th Computer Science Education Research Conference (CSERC ’21).

Association for Computing Machinery, New York, NY, USA, 94–107.

h�ps://doi.org/10.1145/3507923.3507956

Received 2023-07-17; accepted 2023-08-07

24

https://dl.acm.org/citation.cfm?id=3167109
https://doi.org/10.1145/3560266
https://doi.org/10.1145/3560266
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3276954.3276962
https://doi.org/10.1145/3276954.3276962
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1145/3532512.3535223
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/3507923.3507956

	Abstract
	1 Introduction
	1.1 From Textbooks to Live Examples

	2 Babylonian Programming
	2.1 Implementations of Babylonian Programming
	2.2 The Case for Babylonian Programming in Education

	3 Studying Babylonian Programming
	3.1 Study 1: General Usage of Babylonian Programming
	3.2 Study 2: The Effect of Babylonian Programming on Educational Tasks

	4 Outlook
	References

