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a b s t r a c t

Context-oriented programming (COP) provides dedicated support for defining and
composing variations to a basic program behavior. A variation, which is defined within
a layer, can be de-/activated for the dynamic extent of a code block. While this mechanism
allows for control flow-specific scoping, expressing behavior adaptations can demand
alternative scopes. For instance, adaptations candependondynamic object structure rather
than control flow. We present scenarios for behavior adaptation and identify the need
for new scoping mechanisms. The increasing number of scoping mechanisms calls for
new language abstractions representing them. We suggest to open the implementation
of scoping mechanisms so that developers can extend the COP language core according
to their specific needs. Our open implementation moves layer composition into objects to
be affected and with that closer to the method dispatch to be changed. We discuss the
implementation of established COP scoping mechanisms using our approach and present
new scoping mechanisms developed for our enhancements to Lively Kernel.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The evolution of a software system is a critical task that often increases the application’s complexity. Projects typically
start out with a well defined set of requirements and target a specific user group. Over time, systems evolve; their core
functionality is extended to support additional features, or is customized for new users. This evolution often requires the
specification of variations of existing behavior depending on the context of the new usage. The representation of these
context-dependent behavioral variations at programming language level requires support for dynamic system adaptation
and composition of variations.

Context-oriented programming [18,12] (COP) extends object-oriented programming by providing dedicated language
abstractions for defining and composing variations to basic program behavior. Behavioral variations are encapsulated by
layers, modules that can crosscut classes. Layers can be dynamically de-/activated – and composed with other layers – for
the dynamic extent of a code block. This mechanism allows for scoping behavioral variations to specific control flows.

Although COP does not prescribe a certain implementation strategy, most of the COP implementations described in
the literature scope layer activations to the dynamic extent of a block of statements [12,17,4,3]. For many control flow
driven applications, dynamic extent-based layer composition is an appropriate mechanism. However, behavior adaptations
in general can also depend on scopes other than the control flow, such as a dynamic object structure or object state. Having
conducted several case studies inwhichwe applied COP to various projects [27,26] related to Lively Kernel [21],we identified
needs for scoping strategies different from what has been proposed and implemented so far.
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Fig. 1. Denotation of method kinds and sideways composition in COP.

In this paper, we make the following contributions:

• The identification of the need for new dynamic adaptation scopes,
• a generalization of the concept of (control flow specific) layer composition,
• an open implementation for layer activation allowing to customize adaptation rules,
• an implementation of our proposed approach for ContextJS, a COP extension to JavaScript, and
• several examples that serve to illustrate how our approach to domain-related composition rule adaptation eases the

expression of adaptations.

The remainder of the paper is structured as follows. Section 2 motivates the extension of state-of-the-art COP layer
composition mechanisms by example. Section 3 presents our solution towards a generalization of the composition
mechanism and introduces ContextJS, a JavaScript-based open implementation for COP. Its usage is illustrated by several
examples in Section 4. We discuss related work in Section 5. Finally, Section 6 provides a summary and conclusion.

2. Scoping of layer activation in context-oriented programming

In COP, layers are an encapsulation mechanism orthogonal to object-oriented decomposition. This meets the nature of
behavioral variations, whose implementation often affects various parts of a system and cannot be encapsulated by a single
object. We present an example for which we employed COP and discuss the benefits of layer-based adaptation. While COP
is helpful for control flow driven use cases, existing dynamic scoping mechanisms are not applicable to interactions not
centered on control flow.We discuss the inapplicability of existing layer activationmechanisms and the need for alternative
specifications in a second example.

2.1. Overview

In the COP execution model, a statement’s semantics depends upon the context in which it is evaluated. Behavioral
variations, such as variations of method executions, become explicit concepts in COP. Typically, context-specific behavior
requires adaptations at several points in a system, constituting its implementation as a crosscutting concern [30]. Behavioral
variations are definedwithin a layer allowing for themodularization of functionality that would otherwise be scattered over
an object-oriented decomposition.

Depending on the language’s features, behavioral variations are implemented by partial method, function, and/or class
definitions that encapsulate context-specific functionality; we will focus on partial method definitions. Fig. 1(left) illustrates
two classes defining partial methods. To distinguish between plain object-oriented and context-oriented definitions, we
introduce the terms layeredmethod definition and plainmethod definition. Layeredmethods consist of a basemethod definition
and at least one partial method definition. The former is executed when no active layer provides a corresponding partial
method. The execution of plain methods – methods that have no partial definition – is not affected by layers.

Layers can be activated and composed with others at run time. Therefore, the object-oriented method lookup, which is
based on a method’s signature, its object, and inheritance rules, is extended with a sideways lookup that considers partial
method definitions of active layers. This layer-aware method lookup is also denoted as sideways or layer composition.

In a layer composition, multiple layers may provide partial definitions of the samemethod. In that case, a partial method
can proceed to the next partial definition in the composition, or, if none exists, to the basemethod definition.When activated,
layered method calls are dispatched to the partial method provided by the layer. Partial methods can be executed before,
after, or around the base method definition. Fig. 1(right) shows a method dispatch of A.X while layers β and α are active.
Given that the partial methods proceed with the call, the partial method β is called before α and the base definition.

2.2. Background: programming with dynamically scoped layers

Our first example is an adaptation of a xUnit-like test runner2 [9]. The test runner as shown in Fig. 2(A) displays only
the execution time of whole xUnit test cases, but no fine-grained execution information of individual test methods within

2 The running example and implementation can be interactively explored at: http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/
testrunner.xhtml (visited 2010-10-28). The examples are best viewed with Google Chrome, Apple Safari, or other WebKit-based browsers.

http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/testrunner.xhtml
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Fig. 2. Test framework adaptation. (A) The test runner shows only the execution time of whole test cases. (B) A user adapted the test runner’s behavior by
measuring and displaying the execution time of individual test methods when a selected test case is run.

Fig. 3. UML Class diagram showing the adaptation of an xUnit test framework measuring and displaying the execution of each test method.

test cases. A straightforward object-oriented implementation would measure execution time whenever a test method is
executed. Therefore the class TestCase, which is responsible for the execution of test methods, has to be adapted. Since our
system contains a large number of tests, this static solution would decrease execution performance. Instead, measuring and
displaying of results should only be active for the execution of an explicitly selected test. Fig. 2 presents a screenshot of a
JavaScript-based unit test tool. Whenever the button Run TestCase (Fig. 2(C)) of the test runner is pressed, the measurement
adaptation should be activated, displaying the result in a separate window (Fig. 2(B)). When the test runner executes all
tests at once (Fig. 2(D)) or when test cases are used for other purposes, measuring and displaying should be disabled.

To address this adaptation of the test runner, COP layers can be employed. The core behavior of the test framework
is implemented in three classes: TestRunner, TestCase, and TestResult. As shown in Fig. 3, the behavioral adaptation is
implemented in two layers: TimeTestLayer and TimeEachTestLayer. Since time measurement should be implemented as a
separate concern, we do not modify the base method definition of runSelectedTestCase in the class TestRunner, but define a
partial method in the layer TimeTestLayer as a suitable entry point for the adaptation. To adapt the test runner behavior for
any execution of the Run TestCase button, we activate TimeTestLayer globally.

Measuring execution time of individual methods is the responsibility of the class TestCase. Its adaptation is defined
in the layer TimeEachTestLayer, which is dynamically activated in the runSelectedTestCase method. Fig. 4 shows how the
withLayers statement activates TimeEachTestLayer during the execution of an anonymous function, which is used as a
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Fig. 4. The refined runSelectedTestCase method activates the TimeEachTestLayer and thus refines runTest of the class TestCase for the
dynamic extent of this execution.

scoping construct. The withLayers statement allows for implicitly passing context information and changing the layered
method composition at the time the method runTest of the class TestCase is executed. The time each test method execution
takes is stored in an instance of the class TestResult, which was adapted by adding new behavior and new state as shown
in Fig. 3.

Our test case adaptation emphasizes an issue of object-oriented adaptation techniques. It requires extensions and
refinements of several methods and fields of the abstract class TestCase. Using plain object orientation, the adaptations
could be either specified within TestCase itself or in a new subclass. The former is not desirable with regard to separation of
concerns, since context-specific behavior should not be definedwithin an abstract superclass that handles core concerns. The
latter requires changes to the inheritance chains of all concrete test cases, letting them inherit from our new class. However,
we cannot assume to have access to the source code of all TestCase subclasses; thus, this strategy is fragile. Layers allow
for more fine-gainedmodularization using sideways composition, thereby supporting the definition of method refinements
and of new methods and state. Sideways composition extends object-oriented adaptation techniques; it can be used as a
delegation technique preserving object identities, and it can be applied where subclassing is not suitable.

2.3. Lack of alternative scoping mechanisms

While layers are useful for defining behavioral variations, the existing dynamically scoped layer activation is insufficient
in many situations. To demonstrate this issue, we provide an example of programming graphical objects using a Morphic
[29,33,28] implementation.

Morphic, known from Self [38] and Squeak/Smalltalk [20], allows for direct interaction with primitive graphical objects
such as rectangles, ellipses, and text fields, that can be composed to more complex objects up to rich user interface
applications. All graphical objects are calledmorphs; their classes inherit from the class Morph.

We use the example of developing a connector to demonstrate the need for new instance-specific and structural scoping
of layer activations. One example of a simple graphical object in Morphic is a line. Lines can be moved by dragging their
handles, which are small rectangles appearing at their ends. These handles – children of their corresponding line in the
Morphic scene graph – are instances of the class HandleMorph. This parent–child relationship, as depicted in Fig. 5, is an
example of how context is constituted by object structure. In the Morphic domain, the scene graph structure is manifested
by a bidirectional submorphs/owner relationship. There are other domains that have similar object structures, e.g., parse trees
that may define their object structure in different ways.

Based on Morphic lines, we want to implement connectors. A connector is a line that graphically connects two morphs.3
Our implementation has to consider two requirements. First, when one of the connected objects moves, the connector
should automatically update its position, as shown in Fig. 6. Second, a simple line can be moved by dragging its handle,
but a connector line should not only be moved but also be reconnected when the handle is dragged onto a new morph, as
shown in Fig. 7.

We considered modeling and implementing this scenario by providing special kinds of morphs applying basic object-
oriented techniques. We could either have included the new behavior into Morph, which would have bloated this already
large class. Alternatively, we could have subclassed Morph and restricted the potentially connectable graphical objects to
instances of this subclass hierarchy.

3 The running example and implementation can be interactively explored at: http://lively-kernel.org/repository/webwerkstatt/demos/contextjs/
connectors.xhtml (visited 2010-10-28).

http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
http://lively-kernel.org/ repository/ webwerkstatt/ demos/ contextjs/ connectors.xhtml
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Fig. 5. AMorphic scene graph of the connector example. Both startMorph and endMorph have instance-specific NodeLayer activations. startHandle
and endHandle are in the structural scope of the ConnectorLayer which is explicitly activated only in the connector.

Fig. 6. First requirement in connector example: connectors should update themselves when morphs change their position.

Fig. 7. Second requirement in connector example: dragging a handle (small rectangle) onto a third morph connects the line to that morph.

Instead, we want to use a layer-based sideways composition. Layers allow us to encapsulate our behavioral variation
without tangling the Morph class declaration and at the same time avoid unwieldy subclassing. We are convinced that layers
are a good way to express such class adaptations and to separate them as dedicated concerns.

However, COP’s standard scopingmechanisms are not applicable to our scenario. First,morphs need to dynamically adapt
node behavior when they are attached to a connector line. Second, handle behavior needs to be adapted when they are part
of a connector; i. e., when they are used in the context of a line playing the role of a connector.

With standard COP techniques, the respective layers would be activated upon initiation of the connector’s control flow.
However, user interface events can also influence the handle’s behavior but run in separate control flows that will not touch
the connector and its composition statements. This behavioral variation is not control flow centric, but rather depends on
specific objects and the structure of the morph object tree (scene graph).

We identified the following new layer activation scopes. First, there is a need for layer activations depending on a specific
object. Second, structural object hierarchies should be taken into account. Such structural context information should be used
in combination with instance-specific layer activation to extend scoping to object structures. Our desired behavioral adap-
tation should be defined in HandleMorph and activated for handles when they are children of connectors, as shown in Fig. 5.

The new scoping strategies require domain-specific information about structural hierarchies and instance-specific acti-
vation algorithms. Hence, we need a flexible implementation of layer activation for application- and domain-specific needs.

3. Open implementation of layer composition

As a result of our analysis, we identify new scoping strategies that must be accessible for application-specific
customization. We propose a holistic approach that integrates our new strategies with existing mechanisms. Our solution
is based on an open implementation [23,25] in which layer composition strategies are encapsulated into objects. Objects
can add other scoping mechanisms or disable layers completely, by overriding the default layer composition behavior.
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This enables developers to implement domain-specific scoping strategies. The definition of a strategy is optional; a default
implementation provides the original control flow-specific scoping mechanism.

Moving responsibility for adaptations to objects has some implications. Layer composition can be late-bound, being
computed upon layered method execution (contrary to the start of a dynamic extent), which allows for object-specific
adaptation within a control flow. However, providing more control can also lead to bad designs. Theoretically, one could
specify a different composition strategy for each object in a system, ending up with an unwieldy application design.
Nevertheless, we found a set of use cases for which we believe the benefits of such fine-grained and open adaptation
strategies to outweigh this drawback. For example, nodes in a tree can provide behavioral variations depending on their
position, i. e., structural context, affecting (only) their children; objects can be adapted to play a role independent of
their control flow; or specific objects can be closed against any adaptation by providing an empty layer composition. Our
experiences with our approach so far suggest that implementations of new scoping strategies require modifications of
relatively few classes or objects. Moreover, most applications will not require new adaptation scopes but resort to existing
ones. The implementation of new layer activation and compositionmechanisms ismeta-programming and therefore should
be used only where actually needed—specifying scoping strategies should not be part of a standard development process.

3.1. Context-oriented programming with ContextJS

ContextJS, our COP language extension for JavaScript, implements the aforementioned concepts. ContextJS is realized as
a library, using only mechanisms provided by JavaScript. It allows for defining behavioral variations of objects as partial
methods. In addition, it supports the definition of partial classes for a library-based class system.

ContextJS allows for defining layers that refine methods of objects and classes.4 ContextJS implements the class-in-layer
strategy [3], inwhich partialmethod definitions are stored inside a layer. Layers are first-class objects and instances of Layer.
Defining partial methods and classes is realized by calling library functions. The methods refineObject and refineClass of
the class Layer take an anonymous object containing these partial methods as an argument.

The following listing presents a simple example for the usage of ContextJS; a more complex one is shown in Section 4.1.
The layers LayerA and LayerB provide partial methods for m in class MyObject. Layers are created using a library function
(Lines 7, 14). Their partial method definitions for m (Lines 8–12, 15–19) make use of the proceed function to traverse a partial
method list at run time. The function proceed is prepended to the argument list. When m is invoked with the argument 2
without any layer composition, the call is dispatched to the plain method definition that returns 6 (Line 21). The execution
of m in the dynamic extent of an activation of LayerA (Lines 24–25) is first dispatched to LayerA’s partial definition of m. The
proceed expression (Line 10) delegates the call to the next partial method – in this case, to m’s default definition – and adds
4 to its result. If several layers are activated, for instance LayerB within the dynamic extent of LayerA (Line 26), the call is
first sent to the innermost layer (LayerB) and then (using proceed) passed to the next one. Besides dynamically scoped layer
activation, ContextJS supports global activation using the enableLayer function (Line 32). Globally activated layers are active
until they are explicitly deactivated using disableLayer.

During execution of refineClass, the corresponding plain method definition is made layer-aware by replacing it with
another function performing layer composition for that method execution and holding a reference to the base method
definition. This transformation is done by ContextJS automatically. State (properties) in JavaScript objects can also be layered
by defining special JavaScript getter and setter methods in layers.5

1 Object.subclass("MyObject", {
2 m: function(a) {
3 return a * 3
4 }
5 })
6
7 cop.create(’LayerA’)
8 LayerA.refineClass(MyObject , {
9 m: function(proceed , a) {

10 return proceed(a) + 4
11 }
12 })
13
14 cop.create(’LayerB’)
15 LayerB.refineClass(MyObject , {
16 m: function(proceed , a) {
17 return proceed(a * 2)
18 }
19 })

20 var o = new MyObject()
21 o.m(2) // -> 6
22
23 // Dynamically Scoped Layer Activation
24 withLayers([LayerA], function() {
25 o.m(2) // -> 10
26 withLayers([LayerB], function() {
27 o.m(2) // -> 16
28 })
29 })
30
31 // Global Layer Activation
32 enableLayer(LayerB)
33 o.m(2) // -> 12
34
35 withLayers([LayerA], function() {
36 o.m(2) // -> 16
37 })
38

4 Since JavaScript is based on prototypical inheritance between objects, classes are just a convention. The class refinements are therefore only syntactic
sugar for refining the class prototype object.
5 See 11.1.5 Object Initialiser in ECMA-262 [15].
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3.2. Global and dynamically scoped layer activation

In our library, objects can respond to the message activeLayers to compose layers and return a list of active layers. Layer
composition is only performed upon method lookup for layered method definitions, so activeLayers is only called for a
subset of all method invocations. Plain method definitions are not affected. Layering of the activeLayers method itself is
prohibited, since it would lead to infinite recursion. The sequence diagram in Fig. 8 illustrates a call of activeLayers in the
invocation process of an adapted runTest method.

In the following, we present the implementation of COP’s original scoping mechanisms. Our approach covers standard
context-oriented scoping mechanisms such as global and dynamically scoped layer activations. The listing below presents
an implementation of dynamically scoped layer activation. We use the variable LayerActivationStack to keep track of
dynamically scoped layer activations.6 The second variable, GlobalLayerActivations, stores the list of globally active layers.
The implementation of activeLayers uses the composeLayers algorithm that recursively composes the layer activation stack
and the global activations into an ordered list.

1 LayerActivationStack = []
2 GlobalLayerActivations = []
3
4 Object.addMethods({
5 activeLayers: function() {
6 return composeLayers(LayerActivationStack , LayerActivationStack.length - 1)
7 }
8 })
9

10 function composeLayers(activationStack , index) {
11 // 1. Global Layer Activations
12 if (index < 0) {
13 return GlobalLayerActivations
14 }
15 var activation = activationStack[index]
16 var layerComposition = composeLayers(activationStack , index - 1)
17 // 2. Dynamic Layer Activations
18 if (activation.withLayers) {
19 // reject duplicate layer activations
20 layerComposition = layerComposition.reject(function(ea) {
21 return activation.withLayers.include(ea)})
22 return layerComposition.concat(activation.withLayers)
23 }
24 // 3. Dynamic Layer Deactivations
25 if (activation.withoutLayers) {
26 layerComposition = layerComposition.reject(function(ea) {
27 return activation.withoutLayers.include(ea)})
28 return layerComposition
29 }
30 }

The layer activation stack is created by the two functions withLayers and withoutLayers presented in the following listing.
The list layers is explicitly (de-)activated for the dynamic extent of the closure func. Global and dynamically scoped layer
activations are available in ContextJS by default for all objects.

31 function withLayers(layers , func) {
32 LayerActivationStack.push(
33 {withLayers: layers})
34 try {
35 func()
36 }
37 finally {
38 LayerActivationStack.pop()
39 }
40 }

41 function withoutLayers(layers , func) {
42 LayerActivationStack.push(
43 {withoutLayers: layers})
44 try {
45 func()
46 }
47 finally {
48 LayerActivationStack.pop()
49 }
50 }

The list of globally active layers stored in the global variable GlobalLayerActivations can bemanagedby the two functions
enableLayer and disableLayer. These functions assure that a layer cannot be globally activated twice.

6 In multi threading environments such as Smalltalk or Java, this variable has to be thread-local, so that different threads will not interfere with each
other’s layer activations.
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Fig. 8. Sequence diagram for the layered execution of runTest in a TestCase (from the test runner example).

51 function enableLayer(layer) {
52 if (GlobalLayerActivations.include(layer)) {
53 return
54 } else {
55 GlobalLayerActivations.push(layer)
56 }
57 }
58
59
60

61 function disableLayer(layer) {
62 if (!GlobalLayerActivations.include(layer)) {
63 return;
64 } else {
65 GlobalLayerActivations =
66 GlobalLayerActivations.reject(
67 function(ea) {return ea == layer})
68 }
69 }

3.3. Instance-specific and structural layer activation

In Section 2.3, we motivated the need for new scoping mechanisms to leverage COP to new application domains, such
as graphical object structures in Morphic. Contrary to the two scoping strategies mentioned above, structural and instance-
specific scoping cannot be implemented in a generic way but require domain-specific modifications. To demonstrate the
flexibility of our open implementation, we implement these new scoping strategies for our Morphic scenario.

To change layer scoping for all graphical objects, we implement a new composition mechanism in class Morph. The
implementation of instance-specific layer activation is straightforward: morphs provide a fixed layer composition that is
returned when activeLayers is called. The list of layers is managed using accessors (get|set|add|remove)WithLayers. The
following listing shows the implementation of activeLayers and two accessor methods for the Morph class.

1 Morph.addMethods({
2 activeLayers: function () {
3 return this.getWithLayers()
4 },
5
6 getWithLayers: function() {
7 if (! this.withLayers)
8 return []
9 return this.withLayers

10 },

11 setWithLayers: function(layers) {
12 this.withLayers = layers
13 },
14 // other accessor methods
15 // are omitted here
16 ...
17 })
18
19
20

Instance-specific layer activation can be extended to consider structural information of object graphs; in our case, the
submorphs-owner relationship within a scene graph. The method structuralLayers of the next listing recursively walks up
the owner hierarchy (as shown in Fig. 5) and collects all instance-specific layer activations. To prevent multiple execution
of a partial method, the algorithm also assures that – like in the dynamically scoped layer activation – a layer is included
only once in the result (Line 7). Since this implementation of structural layer activation subsumes instance-specific layer
activations, we implement activeLayers for all graphical objects that allow for using both strategies.
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Fig. 9. Order strategies for different layer composition kinds.

1 Morph.addMethods({
2 structuralLayers: function () {
3 var layers = this.getWithLayers()
4 if (this.owner) {
5 var ownerLayers = this.owner.structuralLayers()
6 // reject duplicate layer activations
7 return layers.concat(ownerLayers.reject(function(ea){return layers.include(ea)}))
8 }
9 return layers

10 },
11
12 activeLayers: function () {
13 return this.structuralLayers()
14 }
15 })

The scoping strategies presented above allow us to implement the connector example as described in Section 4.2. To fully
support the default and new scoping mechanisms we have to combine them during layer composition.

3.4. Composition of layer activation strategies

Each layer activation strategy can produce a layer specific composition. When they are used in combination, we need
precedence rules. These rules can also be implemented in the activeLayers methods, which we will exemplify in the
following. The next listing shows a combination of (the default) dynamic extent-based scopingwith structural (and therefore
also instance-specific) scoping, that is, it includes dynamic and global layer activation mechanisms into one composition.

1 Morph.addMethods({
2 activeLayers: function () {
3 var defaultLayerActivations =
4 composeLayers(LayerActivationStack , LayerActivationStack.length - 1)
5 var structuralWithoutDefaultLayers = this.structuralLayers ().reject(
6 function(ea){return defaultLayerActivations.include(ea)})
7 return defaultLayerActivations.concat(structuralWithoutDefaultLayers)
8 }
9 })

If differently scoped layers do not refine the same method, the execution order does not need any further modifications.
Semantic conflicts occur if a method is layered by dynamically and globally activated layers at the same time. In this case,
we need precedence rules avoiding ambiguities. The precedence rule applied in our example proceeds from structurally
activated layers to dynamically and globally activated layers, as depicted in Fig. 9(B).

The implemented layer composition should provide developers with a coherent metaphor to better understand the
layering behavior. Dynamically scoped layer activation follows a stack-like discipline [12]; the stack metaphor as shown
in Fig. 9(A) can be stretched to include global layer activations as well:

1. The base layer (every class and method not in a layer) lies at the bottom of the stack,
2. global layer activations come next,
3. dynamically scoped layer (de-)activations are pushed onto the top.
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Fig. 10.Micro-benchmark results of various ContextJS activeLayer implementations. The chart displays the execution time of the various layer scoping
mechanisms relative to the execution time of an empty activeLayer method; high numbers are worse.

In this layer composition strategy, dynamically scoped layer deactivations can override global layer activations; i. e.,
globally activated layers can be deactivated by the dynamically scoped withoutLayers. However, depending on the
application, other ordering rules may be required as well. Depending on the domain, it may make sense to change the layer
composition so that dynamic layer (de-)activations come after the instance-specific and structural layer (de-)activations as
shown in Fig. 9(C). Thus, we found no general domain-independent solution for composition ordering. Instead, we allow
developers to change the default ordering for their application-specific needs.

By default, classes in ContextJS are open to layered adaptations. ContextL [12], the first COP language, prohibits default
adaptation but requires classes to be declared adaptable. ContextJS provides the inverse feature and uses the open
implementation to explicitly declare a class as non-adaptable. This encapsulation can be achieved by implementing an
empty layer composition. Therefore, a class or object can override the activeLayers method to return an empty list, with
the consequence that its methods are executed without any adaptations. The decision to move the layer composition into
objects hands back control over their method dispatch to them: a context can still change its behavior, but only if the class
or object controls its own adaptation.

3.5. Performance observations

Language support for dynamic adaptation requires additional lookups at run time, which affect performance. Tomeasure
the actual overhead of layered method definitions, we adopted a set of COP micro-benchmarks [3]. We ran the benchmarks
on a MacBook Pro equipped with MacOS X 10.6.4, 4GB RAM, and 3.06GHz Intel Core 2 Duo. We used Google Chrome (Dev
5.0.375.99) since it had the fastest JavaScript engine at the time of measurement.7

In the benchmark, we activate zero to five layers with the different layer activation mechanisms and measure their
execution time. All layers provide a partial definition for a method m and proceed to the next layer. The execution of m
is applied in a loop for two seconds to avoid startup noise within the measurement. Based on this data, we compute the
ratio of executions per millisecond. The results are shown in Fig. 10 as a chart of performance overheads of various layer
activation mechanisms relative to an empty activeLayer method. The absolute results of each benchmark are the layered
method executions per time (ops/ms), which are made relative to the method execution of an empty activeLayers method
which produced approximately 2000ops/ms. As shown in the table in Fig. 10, a method with empty method body executes
approximately 70,000ops/ms. This relatively high number of operations is a result of aggressive optimization techniques
applied to the JavaScript compiler.

In addition to the naïve plain method based implementation, we implemented the benchmark using method wrappers
provided by the prototype.js8 library. It supports the definition of methods that can be wrapped around any other method,
much like partial methods. Since method wrappers make use of meta-programming, which compiler optimizations do not
address, a comparison to ContextJS is based on equal premises. The wrapper implementation produces approximately
500ops/ms and with that is four times slower than an empty activeLayers but still faster than most other activation
mechanisms.

We can see that there is a considerable performance overhead inmethods adapted byContextJS. The performance of these
methods decreasedwhen no layer is activated and further declineswith each additional layer activation. The performance of
structural layer activation depends not only on the number of active layers as shown in the 5th group of the chart in Fig. 10.

7 Since the micro-benchmark results depend on the performance of JavaScript virtual machines, our results might vary on different Web browsers.
8 http://www.prototypejs.org/ (version 1.6).

http://www.prototypejs.org/
http://www.prototypejs.org/
http://www.prototypejs.org/
http://www.prototypejs.org/
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It is also affected by the depth of the owner hierarchy (see the 4th group) that has to be traversed even if no layer activations
are eventually found. Our benchmarking results show the need for performance improvements in future work. They can be
realized by refactoring the layer activation methods to use less expensive expressions. Replacing recursion with iterations,
collection functions with for loops and introducing caching techniques would probably speed up our implementation.

However, these performance overheads of using ContextJS only affect the performance of refined methods. This differs
fromother approaches to adaptation such as library-basedAOP implementations for JavaScript [37] thatwrap everymethod.
These approaches slow down the whole system by a factor of five even when AOP features are not used. In our approach,
plain method definitions are executed at full speed, so it depends on the usage of ContextJS how the performance of real
programs is affected.

4. Scoping behavior adaptations in the lively kernel

This section shows how our motivating examples – the test runner adaptation and connectors – can be implemented
using the various scoping mechanisms provided by our approach. The examples are implemented in the Web-based
development environment Lively Kernel9 [27,26] that provides development tools such as a test runner and class browser.

4.1. Test runner example

In the following, we present a ContextJS-based adaptation of Lively Kernel’s test runner. Its base implementation does
not measure the execution time of test cases and individual test runs. This execution time should not be logged every time a
test case is executed, but only when it is part of a single test run. The execution of each test is the responsibility of the class
TestCase; without COP, context information would have to be passed (as parameters or in instance variables) to many test
cases and their test methods. With ContextJS, the desired behavior can be modeled as dynamically scoped layer activation.

For the implementation, we first separate the time measurement and logging concern from the remaining test runner
implementation into a layer. Second, we scope the new layer that should only be active when a user explicitly selects and
executes a single test.

The actual behavioral adaptation is defined in layer TimeEachTestLayer. As shown in the (extended) class diagram in Fig. 3,
the layer refines the classes TestCase, TestResult, and TestRunner,

• adapting existing behavior such as the runTest method in class TestCase,
• adding new methods such as getSortedTimesOfTestRuns in the class TestResult, and
• adding new state such as the property timeOfTestRuns also in the class TestResult.

1 cop.create("TimeEachTestLayer");
2
3 // we do not adapt existing behavior in TestResult
4 // but store our interim results there
5 TimeEachTestLayer.refineClass(TestResult , {
6
7 setTimeOfTestRun: function(proceed , selector , time) {
8 if (!this.timeOfTestRuns)
9 this.timeOfTestRuns = {};

10 this.timeOfTestRuns[selector] = time;
11 },
12
13 getSortedTimesOfTestRuns: function(proceed) {
14 var times = this.timeOfTestRuns
15 if(!times) return;
16 var sortedTimes = Object.keys(times).collect(function(eaSelector) {
17 return [times[eaSelector], eaSelector]
18 }).sort(function(a, b) {return a[0] - b[0]});
19 return sortedTimes.collect(function(ea) {return ea.join("\t")}).join("\n")
20 }
21 });
22 TimeEachTestLayer.refineClass(TestCase , {
23 runTest: function(proceed , selector) {
24 var start = (new Date()). getTime();
25 proceed(selector);
26 var time = (new Date()). getTime() - start;
27 this.result.setTimeOfTestRun(this.currentSelector , time)
28 },
29 });

9 http://lively-kernel.org/.

http://lively-kernel.org/
http://lively-kernel.org/
http://lively-kernel.org/
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33 // after executing all test methods the test runner sets its final result
34 // we use this hook to display our result
35 TimeEachTestLayer.refineClass(TestRunner , {
36 setResultOf: function(proceed , testObject) {
37 proceed(testObject);
38 var msg = "TestRun: " + testObject.constructor.type + "\n" +
39 testObject.result.getSortedTimesOfTestRuns ();
40 WorldMorph.current(). setStatusMessage(msg , Color.blue , 10);
41 },
42 })

Since TimeTestLayer refines only the method runSelectedTestCase and that adaptation should be active for every
execution of runSelectedTestCase, we can safely activate this layer globally. The runSelectedTestCase adaptation’s purpose
is to activate the layer TimeEachTestLayer in the dynamic extent of the proceed statement (Line 8 in the following listing).

1 cop.create("TimeTestLayer")
2 enableLayer(TimeTestLayer)
3
4 TimeTestLayer.refineClass(TestRunner , {
5
6 runSelectedTestCase: function(proceed) {
7 cop.withLayers( [TimeEachTestLayer], function() {
8 proceed()
9 })

10 }
11 })

The layered method execution of runTest is shown in the sequence diagram of Fig. 8:

1. Only those methods that have behavioral adaptations are instrumented, so the execution of most methods in a system
is not affected.

2. Before executing the actual method, the object computes the active layers for that message send (TimeEachTestLayer,
TimeTestLayer, BaseLayer).

3. Partial methods can be traversed with proceed statements.
4. The globally activated TimeTestLayer does not define a partial method for runTest (see Fig. 3), so it is ignored and the

partial method proceeds directly to the base implementation of runTest.

The test runner example demonstrates the usage of two default layer activation strategies: global activation and
dynamically scoped activation. The following example shows how the new scoping mechanisms can be used.

4.2. Connector example

In Section 2.3, we have motivated the need for a new instance-specific layer scoping mechanism by developing a
connector line for two graphical objects (morphs) that is updated when one of the morphs moves (as shown in Fig. 6). We
have shown an implementation of such scoping mechanisms in Section 3.3. To demonstrate the usage of instance-specific
scoping mechanisms for modeling node and connector roles with layers, we implement the example in Lively Kernel.

Instance-specific layer activation. First, we define NodeLayer, which adapts the method change of class Morph (see Fig. 11).
Each node knows its connectors and updates them when moved. The connector role is also modeled as a layer that adds a
new updateConnection method used by the nodes.

1 NodeLayer.refineClass(Morph , {
2 changed: function(proceed) {
3 proceed()
4 this.updateConnectors()
5 },
6 updateConnectors: function() {
7 this.connectors.each(function(ea) {
8 ea.updateConnection()
9 })

10 },
11 ...
12 })

13 ConnectorMorphLayer.refineClass(LineMorph , {
14 updateConnection: function () {
15 // ... algorithm that computes
16 // new start and end position
17 },
18 ...
19 })
20
21
22
23
24

The actual instance-specific layer activation, which lets a LineMorph dynamically play the role of a connector, is activated
by using the setWithLayers method, which associates a list of layers with an instance. The same construct is used to let other
existing instances of Morph, such as rectangles, ellipses, or text fields, play the orthogonal role of a node. This instance-specific
layer activation is used in the method connectToMorph (Line 33) when the connector is linked to a newmorph that takes the
role of a node.
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Fig. 11. Adaptation of classes of the Lively Kernel core system in the connector module.

25 var connector = Morph.makeLine([pt(0,0), pt(100,0)], 1, Color.black);
26 connector.setWithLayers([ConnectorLayer ]);
27 connector.setupConnector ();

Structural layer activation. The second problemwe discussed in Section 2.3 is the behavioral variation that should be active
when handles are part of a connector: when dragged onto a new morph, handles should reconnect the connector to that
morph (as shown in Fig. 7). The adaptation of the class HandleMorph consists of an adaptation of the onMouseUp event handler
and the addition of helper methods:

28 ConnectorLayer.refineClass(HandleMorph , {
29 onMouseUp: function(proceed , evt) {
30 this.connectToMorph(this.findMorphUnderMe ())
31 return proceed(evt)
32 },
33 connectToMorph: function(proceed , newMorph) {
34 var connector = this.owner
35 if (newMorph) {
36 newMorph.setWithLayers([NodeMorphLayer])
37 newMorph.connectLineMorph(this.owner)
38 }
39 // ... update startMorph and endMorph
40 },
41 ...
42 })

Since handles are a part of the graphical structure of the LineMorph connector, as shown in Fig. 5, we can make use
of the new structural scoping mechanisms defined in Section 3.3. The behavioral variation of the class HandleMorph can be
defined in the layer ConnectorLayer. The handle’s owner is a LineMorph object; thus, the handle is in the connector’s structural
scope.
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5. Related work

5.1. Context-oriented programming languages

Original scoping mechanism.Most COP language implementations provide control flow-specific scoping as introduced in
Section 2.2. ContextL [12,13], based on Lisp and the Common Lisp Object System (CLOS), was the first COP extension to a
programming language. Layers can be defined for classes, functions and methods. Classes must specify if they are adaptable
by layers (by inheriting from a specific COP class). Thus, classes have to be actively opened for layering, whereas ContextJS
classes are open by default but can protect themselves. ContextJS allows objects to protect themselves against any layer
refinement by overriding activeLayers returning an empty layer composition.

Subsequently, several meta-level libraries for dynamic programming languages were developed, namely ContextS [17]
for Smalltalk, ContextR [32] for Ruby, ContextPy [19] for Python, and ContextG for Groovy. For the statically typed language
Java, some COP prototypes [18,6,2] and the compiler based extension ContextJ [4] have been developed. A minimal subset
of ContextJ, cj, is implemented for the delMDSOC kernel [31].

Implicit layer activation. The Python language extension PyContext [39], supports a variant of implicit layer activation
where layers can determine if they are active. Layers can provide amethod evaluating an activation condition before layered
method invocations. This approach allows for implementing activation mechanisms for specific layers, but it cannot change
the whole layer composition. With our approach such implicit layer activations could be achieved by implementing an
object-specific layer composition that delegates the layer activation to registered layers.

Event-specific scoping. In some application domains, such as adaptive user interfaces, behavioral variations are related
to events rather than to control flows. Events can occur at various points in an execution that may not be obvious in the
source code. The Java-based languages JCop [5] and EventCJ [22] address this problem by providing declarative composition
statements adopted from aspect-oriented programming [24]. These declarations describe join points at which certain layers
should be composed. In our open implementation, we do not introduce quantification, thus we cannot express declarative
layer activation.

5.2. Other scoping and lookup strategies

The scoping strategies approach [36] identifies static and dynamic scopes as two scoping dimensions. With scoping
strategies, variables are not either statically or dynamically scoped; instead, developers can parameterize variable bindings.
A scoping strategy is specifiedwith functions implementing the propagation and activation of a binding.While this approach
opens the scoping implementation of variable bindings, ContextJS opens the scoping implementation of layer activation.

The Ambient Object System [16] (AmOS) supports context-orientation. AmOS is a prototype-based object system built
on top of Common Lisp that supports behavioral adaptations with partial method definitions and context objects, which
correspond to COP layers. At any method call in AmOS, receiver methods are first looked up in the current activation and
then in further enclosing lexical scopes. If no appropriate method is found in the lexical scope, the lookup continues in
a graph of context objects delegating to each other. The delegation chain between these context objects can be modified
dynamically, achieving context-specific behavior.

Feature-oriented programming (FOP) [8] addresses the process of step-wise refinement for product-line development. The
Java-based AHEAD Tool Suite [7] is an implementation of FOP. As programming language, it supports Jakarta, which extends
Java with constructs such as class refinements for static feature-oriented composition. Layers in Jakarta are distinct files
describing static class refinements. The core ideas of FOP and COP are similar: Both introduce new or alternative program
behavior through features or layers, respectively. However, FOP applies compile-time composition of feature variations in
contrast to run-time composition as provided by COP.

Aspect-oriented programming (AOP) [24] aims to tame crosscutting concerns by introducing pointcut-based
quantification. The main distinction between AOP and COP is that the former allows for a joint specification of when in
the execution flowwhat kind of functionality should be used, while COP separateswhen (using with statements) fromwhat
(using layers and partial methods). For a comparison of AOP and COP as appropriate representation of behavioral variations,
we distinguish between homogeneous and heterogeneous crosscutting concerns [1]. Homogeneous crosscuts execute the
same functionality at multiple locations in a control flow, for which AOP provides well suited abstractions. However, we
experienced that most behavioral variations are heterogeneous crosscuts, which introduce different functionality at join
points. AOP implementations of heterogeneous crosscuts tend to be less understandable to developers than layer-based
implementations [1], since they have to mimic COP behavior using pointcuts with dynamic conditions and advice that are
complex and fragile for changes.

Perspectives in the subjective programming language Us [35] are a way to describe the scope of behavioral variations. Us
changes message passing of Self [38] to incorporate perspectives. Perspectives define a fixed layer composition by statically
connecting a layer with its parent layer. This implies that layers in subjective programming – unlike COP – cannot be part
of different compositions at the same time.

Classboxes [10] support static scoping of behavioral adaptations. A classbox is an explicitly named scope in which classes
and their members can be defined. Besides common subclassing, Classboxes supports local refinement of imported classes
by adding or modifying their features without affecting the originating classbox, much like layers and partial methods. The
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approach is implemented by analyzing the control flow and modifying the message dispatch accordingly. Since scoping is
only controlled by the import and use of objects of a classbox module, structural and instance-specific scopes cannot be
expressed by Classboxes.

Modularization approaches such as traits [34,14] andmixins [11] allow for an additional inheritance relationship next to
the class hierarchy, but do not offer dynamic adaptation like layers.

6. Conclusion and future work

Behavioral variations often are concerns that cannot be adequately represented using plain object-oriented means.
Their crosscutting and dynamic nature demand alternative encapsulation and scoping mechanisms. Context-oriented
programming meets these requirements by providing layers as an encapsulation mechanism orthogonal to objects, and
a control flow-specific scoping strategy.

In this paper, we motivated the need for additional scoping strategies – instance-specific and structural scoping – and
propose an open implementation for COP layer composition. We presented ContextJS, our COP extension to JavaScript that
offers an open implementation allowing developers to define domain-specific scoping strategies. We applied our approach
to several examples in Lively Kernel, a collaborative Web-based programming environment.

With our open implementation, we allow for the manipulation of message dispatch via layer composition. As message
dispatch is a core feature of object-oriented programming, it should only be cautiously manipulated. The implementation
of new layer activation and composition mechanisms is a meta-programming task done by framework developers rather
than by application developers. Thanks to its dynamic execution environment and its flexible implementation, ContextJS is
a good test environment for rapid COP language prototyping.

In future work, wewill analyze the applicability of other scopingmechanisms described in the literature, such as implicit
layer activation [39] or Classboxes [10]. In addition, we will apply the results of our experiments with ContextJS to other
COP languages, such as the Java-based JCop language [5]. JCop supports declarative event-based layer composition that
evaluates an event condition upon layered method execution. Instead of evaluating the event condition, we can open the
layer lookup algorithm and provide alternative composition strategies.With that, wewill investigate whether the flexibility
of our ContextJS approach can be transferred to a statically typed language.
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