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Abstract

Growing volumes of data increase the demand to use it in
analytical applications to make informed decisions. Unfor-
tunately, object-oriented runtimes experience performance
problems when dealing with large data volumes. Simi-
lar problems have been addressed by column-oriented in-
memory databases, whose memory layout is tailored to an-
alytical workloads. As a result, data storage and processing
are often delegated to such a database. However, the more
domain logic is moved to this separate system, the more
benefits of object-orientation are lost.

We propose modifications to dynamic object-oriented
runtimes to store collections of objects in a column-oriented
memory layout and leverage a just-in-time compiler (JIT)
to take advantage of the adjusted layout by mapping ob-
ject traversal to array operations. We implemented our con-
cept in PyPy, a Python interpreter equipped with a tracing
JIT. Finally, we show that analytical algorithms, expressed
through object-oriented code, are up to three times faster
due to our optimizations, without substantially impairing the
paradigm. Hopefully, extending these concepts will mitigate
some problems originating from the paradigm mismatch be-
tween object-oriented runtimes and databases.

Categories and Subject Descriptors D1.5 [Programming
Techniques]: Object-oriented Programming; D3.4 [Pro-
gramming Languages]: Processors—Run-time environments,
Optimization; E2 [Data storage representations]: Object
representation
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1.

Advances in information technology have lead to an ever
increasing amount of available data, creating demand to
analyze it using algorithms from a variety of methodologies,
e.g. statistics, clustering, and forecasting. Such analyses are
typically executed on database systems, as these provide
an optimized execution and efficient scaling on the data
volume used. For an interactive analysis, the response time
is crucial. Thus, the improvement of analytical algorithm
performance has been the goal of recent developments in
relational database technology, such as columnar in-memory
databases [19].

In contrast, dynamic object-oriented execution environ-
ments have been optimized for different use-cases, in par-
ticular for systems with manifold interactions of elements in
a complex domain. Hence, they suffer from suboptimal ex-
ecution times for analytical algorithms. The requirement of
short response times can force programmers to give up on
object-oriented principles, like abstractions close to the ap-
plication domain. Instead, they have to program using lan-
guages or libraries with less suited abstractions or switch the
programming paradigm altogether.

Relational databases, which are a common approach to
data-intensive applications, implement a different paradigm.
To take advantage of the functions implemented in the
database, we have to incorporate them into our object-
oriented application. There are three common options for
this: Using an object-relational mapper (ORM), which can-
cels out most performance benefits gained through the
database and eventually reduces maintainability [16], em-
ploying Structured Query Language (SQL) directly, which
constrains developers to a different paradigm and restricts
the set of expressible algorithms, or we can use a stored
procedure language, which provides good performance but
often lacks concepts to adequately express the application
domain.

None of these options are satisfactory regarding perfor-
mance, expressiveness, and maintainability. An ideal solu-
tion would allow us to keep programming with an object-
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class Player: pass

class Match:
def _ _init__ (self, black, white,
self.black = black
self.white white
self.result result

result) :

def predict_result (self):
d self.white.rating - self.black.rating
return 1. / (1. + 10. (d / 40.))

* %

for match in matches:
expected = match.predict_result ()
delta = 2 % (match.result - expected)

match.black.rating += delta
match.white.rating -= delta

Listing 1: Example implementation of the Elo chess
ranking algorithm in Python with columns. Constructor
of class Player omitted.

oriented language and get the performance of a stored pro-
cedure execution.

We argue that the current performance deficiencies of
object-oriented runtimes are not inherently linked to object-
orientation but to the way most runtimes are implemented.
Considering the optimizations databases implement for the
execution of analytical algorithms, there are several possi-
bilities not yet explored in the realm of dynamic object-
orientated runtimes.

The observation which motivates these optimizations is
that analytical algorithms often run on homogeneously struc-
tured data [19], i.e. all objects in the processed collection
have the same fields. We aim to improve the performance
of object-oriented runtimes regarding algorithm execution
on homogeneous data, while maintaining constructs and
mechanisms for object-oriented domain abstractions. Our
approach utilizes the concept of a columnar data layout to
implement objects in dynamically typed, object-oriented ex-
ecution environments and optimize execution by leveraging
recent advances of just-in-time compiler technology. We im-
plemented our approach in a prototype based on PyPy'. Sub-
sequently, we evaluated its implementation regarding perfor-
mance of real-world analytical algorithms and its integration
into Python. In particular, our contributions are:

1. A column-oriented object layout for a dynamically typed
language, such that a tracing just-in-time compiler can
generate code optimized for the traversal of large collec-
tions of objects

2. A prototypical implementation as a library based on the
Python interpreter PyPy

3. A performance evaluation of our implementation

! PyPy is a meta-traced Python interpreter build in RPython [22]
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Column<Int32> playerCol
match_results.getColumn<Int32> ("PLAYER");
Column<Int32> opponentCol
match_results.getColumn<Int32> ("OPPONENT") ;
// 16 additional declarations omitted ...
while (row < length) {
current_player

Size (playerCol[row]);
current_opponent Size (opponentCol[row]);
current_result matchResultCol [row];
expected predict_result (
ratingCol [current_player],
ratingCol [current_opponent]) ;
delta 2 x (Double (current_result)
ratingCol [current_player] += delta;
ratingCol [current_opponent] -= delta;
row

- expected);

row + 1z;

}

Listing 2: Elo implementation in the column-oriented
stored procedure language “L”. Most column and vari-
able declarations omitted; prediction function omitted.

2. Background

In this section, we define the scope of our contribution and
expand on our motivation by examining related solutions.
Additionally, we will explain concepts our approach is based
on, namely ideas from in-memory databases as well as JIT
technologies.

2.1 Analytical Applications

Our approach targets the execution of data-intensive ana-
Iytical applications, which involve reporting, data mining,
forecasting, and similar algorithms. They typically process
large amounts of data in a read-intensive way, free of side-
effects, and produce an aggregate value, a model from which
patterns and prognoses can be drawn, or similar decision-
supporting results.

The processed data is homogeneously structured, i.e.
from a database perspective there are a lot of entities per
table. Further, the data often has a high dimensionality,
which corresponds to many columns per database table.
However, most analytical algorithms only use a subset of
these columns [19, 20]. We neither target transactional nor
write-intensive processing. For our concepts we assume that
the data is already available and is primarily read.

2.2 Limitations of Current Approaches

We identified the following approaches for implementing
analytical applications:

1. Implement the full application inside a single language
and execution environment

2. Move the data to a database, but maintain object-oriented
abstractions by using an ORM

. Move the data to a database, but give up object-oriented
abstractions and implement performance-critical logic as
stored procedures or SQL



The first approach is the most preferrable in terms of con-
venience and maintainability, but performance and memory
efficiency is often impractical. We explain the reasons in sec-
tion 3.

The perhaps most convenient way to integrate a database
into an object-oriented application is to use an ORM. It
maps domain classes to tables of the database. Whenever
the developer accesses them, the ORM generates the re-
quired SQL commands, executes them and parses the re-
sponse into objects. However, the performance degradation
of this approach outweights its benefits for data-intensive ap-
plications. For instance, when looping over all entries of a
table, the ORM will query and materialize each object sepa-
rately before any computation. The resulting objects take up
regular object memory space and offer none of the database
optimizations like compression or column-wise traversal.

To take advantage of these optimizations, the performance-
critical algorithm needs to be executed close to the data,
and therefore is implemented as a stored procedure. While
databases provide different stored procedure languages, we
have observed that none offers support for in-place execution
of dynamically typed object-oriented languages. Stored pro-
cedure languages offer abstractions close to the database do-
main which seldom fit our object-oriented abstractions and
do not offer the aforementioned maintainability benefits. All
in all, we lose advantages of object-oriented programming
by introducing code into our system that is more difficult to
maintain, often impossible to debug and needs to be inte-
grated and managed through elaborate database interfaces.
A simplified example of a stored procedure that operates on
column abstractions is given in listing 2.

2.3 Columnar In-Memory Data Storage

In-memory databases perform well executing analytical al-
gorithms. This performance stems from the fact that the data
already resides in main memory, as well as from an opti-
mized data layout which mediates issues caused by the mem-
ory wall [2, 19]. With regard to the execution of algorithms
on large data volumes, dynamic runtimes might benefit from
this data layout.

Main memory is a performance bottleneck, as its latency
is high in comparison to CPU computations. To mitigate this
problem, hardware caches were introduced. As an analyt-
ics application accesses large amounts of data, the optimal
utilization of the cache determines the overall performance
of operations on an in-memory database. For subsequent ac-
cess, a columnar data layout can improve cache utilization in
comparison to row-based storage, by storing all the values of
one field for all entities in one sequence (see fig. 1) [1].

As a column stores values which have the same charac-
teristics (e.g. type, range, or distribution), most compression
methods become more effective, for example, a run-length
encoding. Through these compressions, columnar databases
can also store larger amounts of data in memory than row-
based databases. Overall, the columnar data layout provides
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Figure 1: Subsequent access to values stored in a sequence
in memory leads to a high cache utilization.

better performance for analytical applications compared to a
row-based layout. At the same time, elaborate mechanisms
are now needed for write-intensive operations or single en-
tity selects. One example for a columnar database based on
the described concepts is SanssouciDB, which influenced
the design of SAP HANA [19, 21].

2.4 Technology of Meta-Tracing JIT Compilers

Just-in-time compilation is a common mechanism to im-
prove performance in interpreted languages. In contrast to
ahead-of-time compilation, JIT compilation arrives at opti-
mization decisions based on the observed types and con-
trol flows during program execution. This leads to optimized
code which may be very specific to currently processed in-
puts, but can compete with low-level languages in terms of
performance.

2.4.1 Tracing JITs

A tracing JIT is a particular strategy to collect assumptions
regarding the control flow of a program. When a code re-
gion, e.g. a loop body or method, gets executed very often,
a tracer starts to record all operations that are executed dur-
ing the next run; tracing includes if-branches and descends
into method calls. Whenever the trace could have taken an-
other path, it records a guard storing the assumption that lead
to this particular trace, e.g. the class handling a polymor-
phic call or the if£-condition causing a branch. The recorded
trace is optimized using common subexpression elimination,
constant folding and the elimination of redundant guards
by propagating assumptions (types, non-negativeness, array
bounds, etc). The resulting trace undergoes a register allo-
cation step and is compiled to architecture-specific native
code [4].

2.4.2 Meta-Tracing

A meta-tracing JIT does not trace the actual user program,
but the interpreter running that program. It detects hot paths
and loops by observing whether certain parts of the inter-
preter state repeat, e.g. a repeating program counter may in-
dicate a loop inside the user program. Meta-tracing JITs can
be reused across languages. They do not come into direct
contact with the high-level dynamicity of the user language
but only observe how it is implemented using lower-level



primitives. From a modularity view point, they “scrape” the
cross-cutting concerns of JIT compilation (especially trac-
ing) from the actual language implementation. Program de-
sign that optimizes for a meta-tracing JIT is likely transfer-
able to other language implementations based on it [4].

2.4.3 Allocation Removal and Escape Analysis

The most important optimization we will address in this pa-
per is the removal of object allocations inside a trace [5].
Dynamic languages usually wrap primitive values, e.g. inte-
gers, inside boxes that can be passed around like any other
object. However, if a box is only referenced inside a trace
and is proven to never escape the trace by a process called
escape analysis, there is no need to allocate that box. The
surrounding trace can be re-written to directly operate on
the primitive and garbage collector invocations are removed
completely. Even if the object escapes, its allocation can be
deferred to the end of the trace, allowing JITted code to op-
erate on the raw value before it gets wrapped. This optimiza-
tion can be done recursively for exploding structured objects
into register types, i.e. integers, floating point numbers and
pointers.

3. A Columnar Object Layout

The following section elaborates on how we adapted the
memory layout of objects and contrasts it with common
implementations found in dynamic languages. We describe
at a conceptual level how these changes help a tracing JIT
transforming object-oriented loop code into low-level array
operations.

3.1 Common Implementation of Objects

Current object-oriented runtimes represent an object as a
continuous block of memory prefixed by a header and fol-
lowed by the values assigned to its attributes. References to
an object are implemented as pointers to the object’s mem-
ory [12] .

Maps The runtime can read an attribute by loading the
object memory at a given offset. Dynamic languages usually
link an attribute name to its offset via a structure called
map [3, 6, 23] or hidden class [9] referenced by the object
header and shared between objects with the same structure.
In some implementations (e.g. Dart [23] and PyPy [3]),
object header and attribute storage can be separated, so the
attribute storage can be relocated in order to grow.

Boxed Primitives In order to treat everything like an object
and refer to it via pointers, primitives like integers, Boolean
values and other numbers are boxed. Figure 2 shows the
memory structure of a full-fledged object using maps and
boxed primitives.

! A notable exception are object tables known from Smalltalk, which im-
plement a location-independent notion of object identity [8]
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3.2 Problems of Traditional Object Layouts

The flexibility of common object implementations in dy-
namic languages reduces their efficiency regarding the pro-
cessing of large collections. The following indirections are
some of the problems associated with processing collections
of traditionally structured objects:

* Boxed values need unboxing to process the raw value.
¢ Individually boxed values introduce memory overhead.

e Unboxed values need to be re-wrapped in order to be
stored in an object.

e [arge objects fill the cache with adjacent attributes that
are probably not needed right now.

e Collections store pointers to objects, so traversal switches
between collection memory, object memory and boxed
value memory all the time, reducing overall memory
locality.

® Modern JIT compilers may omit repeated map lookups
by compiling the positions directly into native code.
However, an object’s attribute layout (map) can change
quickly, so the JIT needs frequent tests whether the gen-
erated code is still valid by checking whether it is still the
same map.

3.3 Columnar Object Layouts

Ideally, traversing through many objects and reading one at-
tribute from each of them should fill the CPU cache with the
same, fully unboxed attribute of the next objects and neither
pollute the cache with unused attributes nor cause memory
accesses to maps and classes. We generate this behavior by
storing corresponding values of the same attribute in a con-
secutive chunk of memory, conceptually known as column
in the context of databases. (see Figure 3)

We introduce an additional type of class that explodes the
attributes of its instances into arrays and reduces the instance
itself to just an offset at which its attributes reside in their
respective columns. This idea has been explored before in
compiler-based transformations to speed up simulations in
Java [17] and Kedama [18] (see sections 6.1.1 and 6.1.3).

Our approach, in contrast to previous approaches, works
without modifications to the language or compiler. It heavily
relies on a JIT to take full advantage of the vertical object
layout. Moreover, we allow mixed compositions of both
columnar and non-columnar objects and retain full run-time
reflection and metaprogramming capabilities on columnar
objects.

3.4 Classes, Identity and Associations

Our model changes the implementation of object identity.
Columnar objects are uniquely identified by their class
(which refers to the columns) and their offset inside the
columns, which we call ID. Referring to an object there-
fore means referring to a class at a given ID. From this point
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Figure 3: Memory layout of columnar objects and their prox-
ies. Classes maintain one column per attribute. Proxies con-
sist of an ID that is used as offset into the column corre-
sponding to an attribute.

of view, classes behave like a collection of all their instances
addressable via their IDs.

In order to embed our identity model into the traditional
pointer-based model, we introduce a proxy?, that stores class
and ID. The proxy represents a columnar instance and redi-
rects attribute access to the columns of its class.

Associations to other columnar classes can be represented
by an integer column storing only the IDs of referenced
instances, while the column itself stores the target class.
Associations to non-columnar classes can be represented
simply as a column of pointers to the corresponding object.

3.5 Polymorphism and Encapsulation

A columnar class can implement methods and class mem-
bers like any non-columnar class; only attribute access will
be re-interpreted by the runtime. This way, we do not inter-
fere with encapsulation and information hiding.

We explicitly allow subclassing of columnar classes. A
subclass inherits all columnar attributes of its base class
and may introduce additional columnar attributes. Inherited
columns are shared between instances of all subclasses in
a hierarchy and newly introduced columns will have null-
values at all offsets not belonging to their declaring class.

2 also known as surrogate in the context of object identity [12]
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We also introduce a class ID column to record the most
specific subclass responsible for a particular column offset
and to guarantee correct polymorphic message dispatch in
co-variant collections and attributes.

3.6 Gradual Typing

In contrast to the fully dynamic nature of Python, columnar
attributes should have a type. For value types, e.g. integers,
this allows to allocate a plain array without any boxing or
run-time type checks. Also, knowing the exact columnar
class of a reference allows us to unpack the ID of their
instance into a plain integer array and reconstruct the proxy
whenever the association is read.

However, types are optional. A column may receive type
Object and store boxed values, proxy objects to other colum-
nar classes and arbitrary objects from the language. This
may only cause performance issues if the dynamically typed
column is frequently read during an analytic computation.

3.7 Leveraging the JIT compiler

Our primary goal is to improve speed despite having proxy
objects as additional indirection. This can be achieved by
reducing the life time of proxies containing just the class
and the ID to a minimum. The more limited an object’s life
time and scope, the more effective the allocation removal
will be. Also, whenever a proxy object “escapes”, i.e. there
are references to the proxy which survive a particular loop or
method body, then it cannot be optimized away, but becomes
an actual heap object. Life time reduction can be achieved at
multiple positions:

e Iterators traversing collections of columnar objects al-
ways emit a fresh proxy. As long as this proxy is only
used inside the loop, allocation removal will explode the
proxy into ID and class. Loop code will subsequently be
compiled to work with a plain integer ID instead of a
proxy object.

e Collections should deconstruct inserted proxies into ID
and class and reconstruct the proxy on each read access.
This saves memory and prevents the proxy from “escap-
ing” due to a reference by the collection.

e When following an association, a new proxy represent-
ing the instance of the target class is created. However,
if only a primitive attribute is read from that proxy (e.g.
match.black.rating) it will never be allocated and the



class Player (Columnar, Float ('rating’),
String(’name’)): pass

class Match (Columnar, Player.one(’black’),
Player.one ('white’),
Integer (' result’)):

def predict_result (self):
d self.white.rating - self.black.rating
return 1. / (1. + 10. (d / 40.))

* %

for match in matches:
expected = match.predict_result ()
delta 2 % (match.result - expected)
match.black.rating += delta
match.white.rating -= delta

Listing 3: Elo code with columnar attribute definitions added
to the classes. The integer ’result’ is O if the black player won
or 1 if the white player won.

operation is folded into a nested array lookup (equivalent
UJevaluaﬁng rating_column[black_column[match_id]]
without ever allocating a proxy)

Table 1 shows the effects of allocation removal on an
iteration over columnar objects in contrast to iterating over
unmodified, traditional objects.

4.

Our implementation consists of a plain Python library which
provides an API for working with columnar objects and can
be loaded at run-time. We only target the PyPy implementa-
tion of Python due to its meta-tracing JIT.

Our prototype uses proxies for each columnar object. The
proxies redirect attribute access to the respective columns.
We rely on PyPy’s allocation removal and inlining to prevent
the proxy from causing any overhead in JIT-compiled code.

Implementation

4.1 Example

Listing 3 shows an implementation of the Elo chess rank-
ing algorithm from listing 1 using our library. The base
class columnar implements instance and proxy creation,
Float (‘rating’) and Integer(’result’) create primi-
tive columnar attributes named rating and result, while
Player.one creates an association attribute. There are no
changes to methods and to the analytical computation.

4.2 Proxy Implementation

What appears to be an instance of a class, e.g. a Match ob-
ject, is in fact just a proxy object. In our Python implemen-
tation, their state consists of _ class__ and __id__ fields,
as illustrated in fig. 3 and is managed by the columnar base
class. This is analogous to normal objects, which consist of
a__class__ field but have their attributes directly attached
to the object. The attributes at a proxy are implemented by
Python’s property objects, which instruct the runtime to ex-
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plicitly invoke getters and setters associated with the respec-
tive property.

4.3 Attribute Mixins

The term Integer(’result’) in the class header of List-
ing 3 creates a mix-in, whose purpose is to provide an inte-
ger column and a property that accesses the column when-
ever the result attribute is read or written. This way, we can
compose our columnar class by inheriting single-attribute
mix-ins. As attribute lookup is late-bound, new columnar at-
tributes can still be added and removed from the class dy-
namically. The following code illustrates the implementa-
tion of the Integer () mix-in factory, which spawns integer
columns with accessors:

def Integer (name) :
# column construction
column allocate_int_column ()

# getter reads column at instance offset
def getter (instance):
return column[instance.__id__]

# setter writes column at instance offset
def setter (instance, value):
column[instance.__id__]

value

prop property (getter, setter)

# type/mixin construction:

return type (
name='",
bases= (),
dict={name:

)

# anonymous class
# no base classes

prop}, # redirect ’‘name’ to prop

Listing 4: The 1nteger factory creating a mixin redirecting
attribute access to a column.

The resulting inheritance hierarchies do not impact per-
formance, because the tracing JIT will remove super-class
lookups and inline accessors, regardless of where they ap-
pear in the hierarchy.

4.4 Inspecting the Trace

Apart from continuous speed measurements, the effective-
ness of optimizations can be analyzed by inspecting the trace
produced by the JIT. Consider the following microbench-
mark counting how often the white player won:

def white_player_wins():
count = 0
for item in Match.instances:

# result: 0 = black wins, 1 = white wins
count += match.result
return s

Listing 5: Example aggregation

Iterating over the instances of a class yields new proxy
Match instances for each offset allocated by instances of this



Optimized operations during iteration

...on traditional objects

...on columnar objects

Check loop condition

Read object pointer match

Increment iterator

Check map of match for result
Rﬁadboxed_result = match.result
boxed_result is boxed integer?

Read integer result inside boxed_result
Process result and loop

Check loop condition

Read object ID id

Increment iterator

Read integer result = result_column[id]

process result and loop

Table 1: Comparison between plain objects and columnar objects with regard to a JITed loop

class. After creating and aggregating several millions of in-
stances, the JIT converged to the following set of instructions
(operation names and variable names are renamed for better
readability, # starts a comment):

iterator = <set up iterator>

max = <get upper limit of iterator>
column = <get result column>
column_len = column.size

c =20 # the unwrapped count variable
i=0 # the unwrapped iterator state
loop:

# —-—— inlined iterator call ---

guard (i < max)

k=1+1

# —-—— inlined item.quantity lookup ---—

guard(k < column_len)
guard(k >= 0)
gty = columnl[k]

# —--— addition,
s = s + gty
guard_no_overflow

overflow check ---

# ——— write iterator state back ———
cur = wrap_int (k)
iterator.current = cur
i =k
Jjump (loop)
count = wrap_int (c)

Listing 6: Optimized JIT trace for listing 5

We can observe that actual match objects have never been
allocated and just exist as the fully unwrapped raw ID k. The
JIT defensively guards our column access, which is accept-
able considering that the column length is deemed constant
and held in a register. The most expensive operations are the
instantiations of int-objects at the end of each loop run. This
happens because the iterator state escapes the loop, so al-
location removal can only defer allocation, not prevent it.
However, the more complex the algorithm gets, the less time
is lost during deferred allocation in relation to the overall
computation.

4.5 Associations

An association to another class is represented as a column
of IDs. Instead of reading and writing proxies from and to
an array, the associated instance’s ID is stored inside the col-
umn and the wrapper object is reconstructed when the field
is read. This mechanism is exposed to the user by the one ()
class method, which returns the appropriate type to inherit.
See the usage of Player.one() in the Match class in list-
ing 3. Evaluating an expression like match.black.rating
now results in the following operations:

1. Lookup id = match.__id__

2. Lookup the player ID
id2 = Match.black_column[id]

3. Construct the player proxy pl = Player[id2]

4. Lookup id3 = pl.__id

S.Lookuptheraﬁngrating = Player.rating_column[id3]

The allocation removal of the JIT will prevent the player
proxy from being allocated as it only serves the purpose
of looking up its rating and would be garbage collected
instantly. Instead, the five lookups above will be collapsed
into two nested lookups, which do the same as:

rating_column[black_column[id]]
where id is the fully unwrapped Match instance.

4.6 Inheritance

By introducing a metaclass for columnar classes, we over-
ride class creation. When our metaclass constructor detects
that a columnar class is being subclassed, it adds a class_id
column to the topmost columnar class if not already present,
and each class receives an integer representing its ID.

When a proxy is created, which happens in iterators or
when following an association, it sets its _ class__ field
depending on the value of c1ass_id at the instance’s off-
set. This implements co-variance: Declaring an attribute as
Player.one (black’) also allows subclasses of player to
be written to and read from the b1ack attribute.
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Figure 4: Unoptimized lists with proxies (left) and lists with ID arrays as storage (right).

4.7 Collections

When proxies are put into collections, such as lists, the proxy
object is usually stored as a full heap object, because it will
be referenced by the collection for a long time. This can be
avoided by unpacking the proxy ID once it is inserted into
the collection and reconstructing the proxy when it is ac-
cessed. The resulting memory layout is depicted in Figure 4
and generally improves speed and memory efficiency of col-
lections of columnar instances. In our library, we provide
custom data types for lists, sets and dictionaries, which im-
plement this unwrapping behavior.

5. Evaluation

Our motivation for using a column-based object layout is to
decrease the execution time of analytical algorithms written
in an object-oriented dynamic language. We evaluated our
concept by running four analytical algorithms and three mi-
crobenchmarks on our prototype.

Our approach also aims to provide an abstraction to pro-
gram analytical algorithms in an object-oriented fashion. To
determine the effects of the changed memory layout on the
abstractions available to the programmer, we also qualita-
tively evaluated our integration of the columnar objects into
the object-oriented abstractions of Python.

5.1 Performance Benchmarks Setup

All benchmarks were executed on a server architecture with
the following specification:

e CPU: 2 Hexa core Intel Xeon E5-2630 (24 logical cores),
maximal clock speed of 2301 MHz

e Memory: 128GB Main memory consisting of 8GB
DDR3 modules with 1333 MHz clock speed

e System software: SUSE Linux Enterprise Server 11
(Kernel version 3.0.80-0.7-default)

¢ Runtimes and compilers: PyPy version 2.5.0-alpha0
and gcc version 4.3.4 revision 152973

We measured the execution time of a benchmark by wrap-
ping the benchmark in a function and measuring the time
between calling the function and it returning. Each bench-
mark configuration was measured 60 times. To correct sys-
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tematic bias created by our choice of input data, each run
used a different seed to generate random test data. All PyPy
measurements are conducted using the standard PyPy JIT
configuration and with a warm JIT. This means that with an
input data size smaller than one million the benchmark was
run 100 times before a measurement was taken. Above an in-
put data size of one million the benchmark was run once and
then a measurement was taken. This is sufficient as for the
PyPy JIT compiler only the total number of loop iterations
influences the optimizations.

5.2 Benchmarked Algorithms

There are established benchmark suites for object-oriented
runtime environments and analytical database systems, but
none of them fit the perspective from which we approached
application development. Typical benchmarks for object-
oriented and mixed-paradigm languages, e.g. ‘“Richards”
and “Deltablue”, are computation-intensive rather than data-
intensive and often involve a significant portion of writing
and side-effects, which makes them unrepresentative for
analytical scenarios. Common database benchmarks, e.g.
“TPC-H”, are expressed in SQL, which does not directly
map to Python constructs.

We therefore acquired implementations of algorithms that
are used as stored procedures in production business appli-
cations (“ATP”, “KM”), added other benchmarks covering
the spectrum between data- and computation-intensive ana-
lytical algorithms (“Elo”, “Balance”), and ran them on dif-
ferently sized collections of objects up to 10,000,000 items.
Except for the “Balance” benchmark, all these benchmarks
access several different attributes of each instance.

Available to Promise Benchmark (ATP) Available-to-
promise answers the question whether a customer order can
be fulfilled at a specific due date regarding given past and
future stock changes and other customer requests. Our im-
plementation of an ATP algorithm has a set of fixed stock
changes and a set of orders, both include a time and an
amount of stock. The algorithm checks availability in an
iterative, backtracking fashion. It simulates the progress in
time and correspondingly applies the fixed changes. When
an order is due it tries to satisfy it as soon as possible. If it
is satisfied and it later turns out that there is a future fixed



stock change which is rendered impossible by this order, the
order is revoked and simulation starts again from the time of
the order.

Kaplan-Meier Estimator (KM) The Kaplan-Meier estima-
tor estimates the survival curve of a population based on a
sample of lifetimes. Amongst other applications, it is used in
medical research to determine the survival rates of patients
after a specific treatment based on observed survival times.
The estimator is mathematically defined and has a straight-
forward implementation as a product [11].

Elo-Ranking Given a set of competing players and a large
amount of data recording which player or strategy outper-
formed or defeated an opponent, the Elo rating [7] puts a rat-
ing on each competitor, quantifying its overall performance.
Using the rating of two competing players, a win chance
can be predicted beforehand. The algorithm is used in com-
petitive Chess and Go, but also for matchmaking in online
games, where it needs to quantify player performances live
to assign equally skilled opponents.

Balance Aggregation Sequential aggregations are often
implemented by looping over an input set, modifying an in-
ternal state at each iteration. Our example involves comput-
ing an account balance while the input is only a set of trans-
actions with positive and negative balance changes, with the
addition that days with negative balance are counted. The
additional criterion makes the algorithm difficult to express
in terms of relational operators, as the decision whether to
count the day or not depends on all records before this day.

Test transactions are drawn from a uniform distribution,
e.g. over the interval [—100, 100].

Micro Benchmarks We used three basic list traversal op-
erations to compare the execution on columnar objects with
the execution on arrays: aggregating a sum (Aggregate
Sum), adding a fixed number to all elements (Map Ad-
dition), and extracting elements which fulfill a simple con-
dition into a new list (Filter).

5.3 Benchmark Results

Statistical Methods We make no assumptions on the un-
derlying distribution and provide normalized Tukey boxplots
in Figure 5 to visualize the median and variation of the mea-
sured timings compared to unoptimized PyPy.

Exact median timings are given in table 2. Speedups
are computed by dividing the median execution time from
the respective platform by the median execution time of
our columnar implementation. Confidence bounds of this
statistic are given by the 2.5-th and 97.5-th percentile of the
bootstrap distribution of the computed ratio.

Analysis From the benchmark results, we see that the
columnar layout outperforms ordinary objects consistently
for 1,000,000 or more instances. However, it is not faster
when dealing with small input sizes (below 100,000 tra-
versed records), but, except for the balance benchmark, this
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meets our expectations exactly and reflects what the colum-
nar layout was intended for.

The balance benchmark is a particularly difficult case for
control-flow observing optimizations like those in a tracing
JIT, as its loop contains a condition with an activation likeli-
hood which varies a lot while traversing the input. Assump-
tions on the probability of a certain branch being traversed
are often ineffective. Also, non-negativity assumptions can
hold for the beginning while being violated frequently at
later stages of the input data. We see a wide confidence in-
terval, which indicates high data-dependent variance with a
considerable chance of improvement in certain situations,
but not in general. We assume that, among others, two types
of applications would suffer from switching to our layout:
transactional applications, which select a few single objects
and use most of their attributes; and technical modules, like
web frameworks, which create heterogeneous object graphs.
However, at this point we can not back these claims and fur-
ther evaluation is needed.

The microbenchmarks provide clear evidence that the
columnar runtime scales better than ordinary objects with in-
creasing improvements over larger numbers of objects. The
highest potential shows in the map operation, which effec-
tively updates a full column without having an if-condition
or maintaining an aggregate across multiple loop runs.

5.4 Integration with Object-Orientation

To evaluate the integration of the columnar layout into
Python, we qualitatively describe the features of object-
orientation supported by the new layout. We will thereby
distinguish between working features of our prototype, lim-
itations of the prototype and limitations of our concept. This
does not cover all features of Python but focuses on features
which are affected by our changed layout.

5.4.1 Features of the Prototype

Object Identity The identity of an object can be obtained
via the id() function (usually an integer representing the
memory address). We can override the id() function to
return objects which compare equal for proxies representing
the same instance (e.g. a tuple of class and instance ID).

State and Methods Our implementation uses the Python
attribute facilities to translate attribute access. Therefore,
columnar objects exhibit the same lookup behavior as or-
dinary Python objects. Both, attributes and methods, are de-
fined in the class of an object.

Inheritance and Polymorphism Python supports multiple
inheritance and polymorphism. Our prototype supports mul-
tiple inheritance of behavior in the style of traits, meaning
that at most one columnar class may appear as base class
and the rest is required to carry mere behavior. The steady
construction and destruction of proxies retains the correct
class relation and polymorphism works as expected.
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timing [ms] speedup timing [ms] speedup
benchmark size PyPy Col. vs. PyPy benchmark size PyPy Col. vs. PyPy
10000 1.32 28.05  0.05 10.04-00s) 10000 0.08 0.10  0.79 1079-08
ATP 100000 21.79 48.41  0.45 1044-046) A S 100 000 0.63 0.59  1.06 11.0s-1.07
1000000 23571 22891 1.03ps-1ig 22 SEESU 000000 815 575 1420414
10000000 2739.53 1902.78 1.44 j1.4-149) 10000 000 81.22 54.64  1.49 (145-1.49)
10000 0.59 299  0.20 j02-02 10000 0.33 0.19  1.69 nes-1.m
100 000 28.65 17.89  1.60 [159-1.62 .. 100 000 11.60 1.61 7.23 722-7241
kM 1000000 53512 17431  3.07 poesoy VAP AALON 606000 20042 1430 20.81 pors- s
10000000 4393.76 1631.58  2.69 1253-2911 10000000 2924.87 132.15 22.13 2211-2215)
10000 6.36 3.38  1.88 (15-1.95 10000 0.25 21.85  0.01 001 -001
El 100 000 41.54 28.32 147 na-1sn Filt 100000 2.85 20.11  0.14 14-0.14
© 1000000  359.06  247.49 145pa 14 O 1000000  52.88 5249  1.01 (10 102
10000000 3506.49 2418.84  1.45 141149 10000 000 49570  316.90  1.56 (1.56- 1.3
10000 0.11 0.16  0.70 os8-0ss)
Balance 100000 1.06 1.67  0.63 1054-094
an 1000000 1822 1770  1.03 per- 1o
10000 000 119.85 170.17  0.70 1043348

Table 2: Analytical algorithm benchmarks on the left side of the table and microbenchmarks on the right side. All median
benchmark timings in milliseconds. Speedups given as ratio of medians with 95% confidence intervals

Metaprogramming 1t is still possible to use metapro-
gramming without degrading performance, e.g. if a user-
supplied attribute needs to be read, we can use the function
getattr (obj, user_attr) and it will be eliminated during
optimization if the attribute name stays constant inside a
long-running loop.

As everything is manifested in application-level Python
structures, full reflection over objects and classes is retained.
The underlying columnar model can be inspected by access-
ing the column_attributes dictionary of the class, which
adds to existing reflection capabilities.

Tooling The Python ecosystem provides tooling for sev-

eral purposes, e.g. debuggers or editors with auto-completion.

As the runtime was not significantly altered but only ex-
tended with a user library, these mechanisms still work for
any Python code. They also work for columnar code as the
new physical layout was merely introduced by using exist-
ing Python meta-programming features that are recognized
by most tools.

5.4.2 Limitations of the Prototype

Typed Fields We require that the same attribute of all in-
stances of a class has the same primitive or columnar type.
Also these types have to be explicitly stated in the form of
mix-ins as it can be seen in listing 3. This is the most signif-
icant difference to dynamically typed ordinary Python ob-
jects. However, as our scenarios involve homogenous data,
we see no urgent need to support full dynamicity. We merely
provide a contract between programmer and runtime stating
that a family of objects are in fact homogenous in attribute
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types. We could also use types observed during run-time in-
stead of manual type annotations (see section 6.2).

Object Identity Another way to determine object identity
is to compare objects using the is operator. We cannot adapt
the is operator without modifying the VM. Therefore, prox-
ies may compare non-identical using the is operator despite
representing the same columnar instance.

Object-Specific State  Object-specific attributes and meth-
ods are only defined on proxies and not stored in columns.
Therefore, they are lost when the proxy is garbage collected.
However, per-instance attributes and methods can be imple-
mented using a global mapping from the object identity to a
mapping from attribute names to state or functions.

Associations  Associations are usually constructed in an
ad-hoc fashion in Python, e.g. if an instance needs references
to multiple other instances, some method creates a list where
those references are stored. In contrast, our model requires
to define the association and its multiplicity in the class def-
inition (see listing 3). One-to-many associations produce a
read-only (but not immutable) collection on instance-side,
which cannot be replaced by an externally provided collec-
tion, but modified through methods width side-effects like
append (). However, the interface and run-time complexity
of that framework-provided collection can be influenced by
specifying whether it should behave like a set, list or dictio-
nary, thus the impact on code operating on these collections
can be mitigated well. It is possible to store a columnar ob-
ject in an ordinary Python object. The inverse is also possi-
ble, given the columnar class declares an object attribute.



5.4.3 Conceptual Limitations

Garbage-Collection (GC) As classes are considered col-
lections of their instances, an instance needs to be explicitly
removed from that collection to be removed from the sys-
tem. This means that our columnar objects are effectively
excluded from automatic GC and need a separate algorithm.

Any GC algorithm for columnar objects suffers from a
conceptual problem. To preserve performance, the GC algo-
rithm has to avoid “holes” in columns caused by invalidated
objects. Therefore, we have to reorder objects in columns
and as a result we need to update the corresponding proxies.
To be able to update the proxies we need to keep a reference
on them which hinders the allocation removal optimization.

Further work is needed to find an algorithm which creates
continuous sequences of living objects in columns on-the-fly
while preserving lookup performance.

Generalization of the Approach For our approach, we
only considered a meta-tracing JIT. It allows us to use
metaprogramming instead of an interpreter modification
without losing performance, because only the resulting low-
level control flow is considered. Therefore, we are confident
that the approach generalizes to other meta-tracing runtimes,
such as HippyVM? for PHP or Topaz for Ruby*. A normal
tracing JIT or method-based JIT could cause a much higher
implementation effort, as the JIT itself might need to be
aware of the new memory layout.

5.5 Summary of Evaluation

Our performance measurements show that analytical algo-
rithms can generally benefit from a columnar object lay-
out when traversing large amounts of data (2 1,000,000
objects). As the optimization does not apply to all object-
oriented algorithms, the programmer has to actively decide
when a columnar layout is adequate. The qualitative analy-
sis of our concept shows that most object-oriented features
are supported and limitations of the prototype can be over-
come by integrating these features into the virtual machine.
A comparison of listing 3 and listing 1 illustrates how the
programmer currently has to adjust the code to provide the
type information required by the columnar layout. Regard-
ing seamless integration of our columnar object layout into
a dynamically-typed object-oriented language, the interface
available to the programmer leaves room for improvement.

Overall, the results suggest that a columnar object layout
provides performance benefits for analytical algorithms ex-
pressed with object-oriented abstractions of the application
domain.

3http://hippyvm.com/, 2015-07-16
4http://docs.topazruby.com/, 2015-07-16
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6. Related and Future Work
6.1 Related Work

The idea of columnar objects has already been applied to
other types of runtimes and libraries.

6.1.1 Kedama

The Kedama [18] educational parallel programming sys-
tem allows users to program “turtles”, a sort of agents that
interact with their environment, organized as a grid. It is
integrated into the eToys system, which itself is build on
top of Squeak [10], a Smalltalk system. A group of turtles
(“breed”) that share the same properties can be instructed to
perform a collective action at the same time, implementing
what is known as Single Instruction, Multiple Data (SIMD)
in parallel programming.

In order to efficiently modify the state of a breed, the
turtle properties are stored in columns. A property update
on a breed gets compiled to a vectorized operation, which
uses functions implemented in C (”primitives”) to process
arrays. For example, Kedama provides primitives for arith-
metic operations, such as adding two arrays. These functions
are platform-level code and not editable by application de-
velopers, thus limiting them to the types supported by the
primitives. This works well for the domain of simulations
for educational purposes. In comparison, our approach tar-
gets applications in general and therefore allows the devel-
oper to use arbitrary classes and the JIT compiler optimizes
the code to an efficient array operation automatically.

6.1.2 OOPAL

The OOPAL model [15] aims to extend the object-oriented
model with concepts from array programming, as found for
example in APL. In particular, the model extends the mes-
sage dispatch to allow the expression of operations on sets
of objects without explicitly stating any form of iteration.
This concept is evaluated through an implementation in F-
Script. This implementation is optimized e.g. by using so
called “smart arrays” which change their representation ac-
cording to their content, e.g. double-precision numbers are
stored in their native platform representation. As a result,
method calls to elements of such an array can directly be
mapped to native operations.

While an array programming interface would be a suit-
able extension to our approach, we aim to improve per-
formance for large data sets without changing the dynamic
object-oriented model. Nevertheless, our approach indirectly
makes use of similar optimization techniques, as the smart
arrays of the OOPAL implementation are similar to the stor-
age strategies for collections in the PyPy JIT compiler.

6.1.3 Exploded Java Classes

Noth [17] proposed a modification to the Java language in-
troducing the exploded keyword. Classes attributed with this
keyword store their properties inside columnar arrays. Ex-



ploded objects can be used in specialized collections and it-
erators, which are generated by instantiating code templates
at compile-time. Field access, instance creation, and iter-
ation on exploded classes and specialized collections also
undergo a source-to-source transformation to reflect column
access. Subclass polymorphism is implemented by maintain-
ing a type ID for each exploded instance and generating a
switch block with one case for each possible method im-
plementation. This implementation strategy results in a dis-
crepancy between the code specified by the programmer and
the code actually executed at run-time. In particular, this
might become an issue when debugging an application us-
ing exploded objects. Our approach does not alter the source
code before execution, but improves the performance by
re-interpreting the object-oriented execution as array-based
computation at run-time. Thus, during debugging or pure
interpretation, the code is executed as written down by the
programmer. Further, an exploded class must neither con-
tain associations to ordinary Java classes nor inner classes,
thereby limiting their composability with the Java object
model. Also, reflection and metaprogramming on exploded
instances are not supported.

6.1.4 Bcolz

The bcolz [2] Python library implements array and table ab-
stractions for in-memory analyses of large bulks of struc-
tured data. They make use of a columnar data layout and
column-wise compression to save memory and CPU cache
space and subsequently speed up read-intensive algorithms.
A special query interface can be used to execute some com-
putations with highly optimized compression-aware algo-
rithms. However, the library does not integrate with object-
oriented abstractions and does not use JIT-based optimiza-
tions.

6.1.5 GemStone

The GemStone/S system [13] is an object database which is
capable of running a full application. Due to seamless inte-
gration with the Smalltalk-80 language, there is no bound-
ary between application logic and database: Persisted ob-
jects can be queried using the Smalltalk collection proto-
col and handled inside domain logic as if they were native
heap objects. To our knowledge, there are no publications on
the fundamental implementation of Gemstone, and thus we
cannot provide an appropriate comparison to our approach.
However, instead of also providing database features, like
persisting objects, establishing transaction boundaries and
versioning, we are merely focused on improving analytical
algorithm performance.

6.2 Future Work

Based on our proposal to implement a columnar object lay-
out, we see several remaining opportunities for improving
runtimes with database technology.
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6.2.1 Optimized Collection Protocols.

Python’s collection protocol, including built-in operations
like map, filter, reduce, and list comprehensions, can be
optimized for columnar data. Thus, we are currently working
on a prototype collection protocol that transforms the inner
Python expressions into a query plan. We can optimize this
plan similar to the optimizations applied by an SQL query
optimizer. Based on this, we can map the resulting algorithm
onto faster operations working directly on the columns.

6.2.2 Sharing Columns with an In-Memory Database

Our efforts to improve runtime performance for data-heavy
algorithms are also part of a project concerned with im-
proving the interface between databases and object-oriented
runtimes. For instance, if objects can be implemented in an
object-oriented runtime in a similar structure as data is stored
inside an in-memory database, the interface between them
could be vastly different from the current ones (i.e. ORM or
stored procedures). For example, shared memory between
runtime and the database could allow the runtime to map
objects to native database data directly, given that security
and transactional properties can still be maintained.

Therefore, shared data allows one to manipulate database
data through objects, while also using optimized database
operations. For example, when filtering a set of objects, in-
stead of using the built-in generic £ilter operation, the ex-
ecution environment could map it to the database operation,
optimized for the database data layout.

6.2.3 Columnar Runtimes

Another opportunity is a dynamic object-oriented execution
environment based completely on a columnar object layout.
In particular, it will be interesting to see the performance
trade-offs resulting from such an approach. To assess this,
we need detailed benchmarks on the impact of a columnar
layout on the performance of typical object-oriented appli-
cations. Suitable benchmarks are “Richards” or “Deltablue”.
A hybrid solution might create interesting opportunities.
Currently the programmer has to decide which object layout
fits the anticipated access patterns best. Manual optimiza-
tion is an extra effort and should be offloaded to the runtime
whenever possible. The question remains whether it is fea-
sible for the execution environment to automatically switch
between object layouts, based on observed access patterns.

6.2.4 Transactional Object-Oriented Runtimes with
Persistence

There has been progress towards software-transactional
memory (STM) in PyPy [14], which could be the founda-
tion for a scalable execution environment for large data sets.
We might be able to move important database functionality
into the runtime itself. One major challenge is an implemen-
tation of a transactional persistence on top of transactional
objects, only causing minimal overhead. The ideal execution
environment would merge the functionality of databases and



traditional runtimes, resulting in a system similar to Gem-
stone/S. As a result, the programmer would not have to
switch the paradigm at all and can program in one devel-
opment environment, i.e. one language and one set of tools.

7. Conclusion

To mitigate the performance deficiencies of dynamic object-
oriented runtimes regarding analytical workloads, we in-
troduced a column-oriented object layout which leverages
tracing JIT technology to execute object-oriented code on
columnar data structures. We developed an interpretation
of object identity, associations, attribute access, and col-
lections in terms of the columnar object layout. We have
demonstrated the feasibility of our approach with a proto-
type implemented in PyPy. Performance measurements with
this prototype showed that analytical algorithms running on
columnar objects perform significantly better than running
on native objects. The dynamic object-oriented mechanisms
and concepts remain largely unchanged. Overall, our ap-
proach contributes to the ways programmers can be relieved
of the task of manual optimization.
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