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ABSTRACT
Software modularity is a quality that determines how fluently indi-
vidual parts (modules) of a system can vary and be understood if
taken by themselves. However, modularity tends to degrade during
program evolution – old concepts may get entangled with code
introduced into their modules, while new concepts can be scattered
over many existing modules.

In this work, we propose to infer high-level concepts and rela-
tions between them independently from the current module decom-
position by exploiting the vocabulary used by programmers. Our
approach uses an extensible graph-based vocabulary representation
in which we detect latent communities representing our concepts.
Inferred concepts can be used to support program comprehension,
track architectural drift over time, and provide recommendations
for related code or refactorings.
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1 MOTIVATION
Software modularity is a quality that determines how fluently in-
dividual parts (modules) can vary and be understood if taken by
themselves. Modularity tends to degrade during program evolution
mainly due to unforeseeable requirements not anticipated in the
architecture, and due to limitations of the programming language
itself. Old concepts may get entangled with code introduced into
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their modules, while new concepts can be scattered over many ex-
isting modules. On the one hand, programmers require increasingly
more time and attention to understand and modify concepts. On
the other hand, modifying programs under incomplete knowledge
can reinforce architectural drift.

In the context of this work, we propose to infer high-level con-
cepts and relations between them independently from the current
module decomposition using the vocabulary built by programmers.
Inferred concepts can be used to support program comprehension,
track architectural drift over time, and provide recommendations
for related code or refactorings.

We design a graph-based vocabulary representation based on
lexical structure, that can be flexibly extended using run-time data
and version history. In this graph, we then probabilistically infer
latent communities that serve as our concepts. Within a program-
ming environment, concept membership and distribution can be
manipulated and queried through reflection interfaces and thus be
used by tool builders.

Preliminary assessment of the new model shows that it outper-
forms the LDA topic model in terms of concept coherence, expres-
siveness, and the data sources it can utilize.

We are confident such a model can not only help with reverse
engineering, but also support modularity during forward engineer-
ing by giving programmers immediate feedback on the alignment
of their vocabulary with the current module decomposition.

2 BACKGROUND AND RELATEDWORK
According to the distributional hypothesis, identifier names re-
ferring to the same concept are more frequently co-located than
unrelated names. We also assume that they tend to share more
control flows at run-time, and are more frequently edited at the
same time.

Topic models, such as Latent Dirichlet Allocation (LDA)[2], are
used to condense a large number of natural-language documents
into histograms of words (bag-of-words model) and represent each
histogram as proportions of fewer shared topics. Each topic con-
stitutes a set of semantically related words. Topic models are fre-
quently used to infer concepts from programs[1, 3, 5]. However,
the bag-of-words model requires programs to be chunked into arti-
ficial documents, disregard the graph-like structure of code, do not
support program-specific dependencies other than co-occurrence,
and have poorer performance on shorter documents appearing
frequently in source code.

Random Graph Models describe a stochastic process to generate
graphs. They can explain a so called community structure by assign-
ing nodes to latent communities and making edges between nodes
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Figure 1: Lexical tokens in two methods being linked by
undirected co-occurrence edges, blue, and directed abstrac-
tion/implementation edges, red. The graph jointly gener-
ated by both methods is depicted on the right.
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Figure 2: Community structure induced on the graph, di-
rected edges are summarized to inter-concept relations

of the same community more likely than between groups. Con-
versely, if a graph has been observed, we can infer an assignment
of nodes to communities that would have most likely generated the
observed graph.

3 GRAPH-BASED SEMANTIC MODEL FOR
CODE

Our approach mixes ideas from topic modeling with random graphs.
In our graph model, we regard nodes as the names chosen by pro-
grammers. We introduce two types of edges: undirected edges
indicating simple co-occurrence of two names (e.g., they are used in
the same statement), and directed edges, indicating that one name
is being defined in terms of another name (e.g, a method calling
another method), see Figure 1. If run-time information is available,
calling relations can be added as directed edges, and if version his-
tory is available, names modified within the same version/commit
are connected by undirected edges. The same pair of nodes can be
connected multiple times (multi-graph).

We designed a community mining algorithm that can deal with
both directed and undirected edges to infer the most likely decom-
position of the resulting graph into communities. Simultaneously,
directed edges between nodes are translated to high-level relations
between communities, see Figure 2. Their interpretation is that one
(abstract) concept is using another (more concrete) concept for its
implementation.

4 EVALUATION
Comparing latent concepts inferred from the graph model in four
open-source projects from two different languages (Python and
Smalltalk) to those inferred using the common topic model LDA
shows a consistently higher intra-topic coherence[4], even when
used without run-time data and version history. Qualitatively, our
model infers links between concepts, which LDA is incapable of, and
distinguishes highly entangled concepts more reliably, especially
when run-time data or history is added. However, due to a vast
body of topic model research, modern implementations of LDA are
faster than the graph-based model by an order of magnitude and
require less memory.

5 NEXT STEPS
We aim at measuring and visualizing how concepts drift during
the evolution of source code in large open-source projects, plan
to quantitatively evaluate the model when used as recommender
system, and most importantly would like to integrate concepts into
programming tools to make them visible, navigable, and modifiable.
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