
Toward Exploratory Understanding of Software using Test Suites
Dominik Meier

dominik.meier@student.hpi.uni-
potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Toni Mattis
toni.mattis@hpi.uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Robert Hirschfeld
robert.hirschfeld@hpi.uni-

potsdam.de
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

ABSTRACT
Changing software without correctly understanding it often leads
to confusion, as developers do not understand how the change
corresponds to the new observed behaviour of the system. Today,
many software systems are equipped with a test suite. Test suites
document code and give feedback on changed program behaviour.
We explored ways to use test suites for software comprehension
and implemented a tool that provides additional visualisation and
gives immediate feedback on software changes. Information about
changes in the software and their implications to the test suite are
collected using mutation testing. The tool uses this information to
present relevant test cases for developers, and additionally prioritise
test executions for immediate feedback. Our research indicates
that entropy metrics can find test cases that are relevant for a
specific context in the source code. Additionally, simple test case
prioritisation strategies can already lead to a significant decrease in
feedback time. Based on our case study we argue that test suites are
not only useful for regression testing but can be used to generate
meaningful information for software comprehension activities.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.

KEYWORDS
program comprehension, mutation testing, immediate feedback,
test prioritisation

ACM Reference Format:
Dominik Meier, Toni Mattis, and Robert Hirschfeld. 2021. Toward Ex-
ploratory Understanding of Software using Test Suites. In Companion Pro-
ceedings of the 5th International Conference on the Art, Science, and Engineer-
ing of Programming (<Programming> ’21 Companion), March 22–26, 2021,
Virtual, UK. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3464432.3464438

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8986-0/21/03. . . $15.00
https://doi.org/10.1145/3464432.3464438

Figure 1: Iterative two phase process of generating a
mental model of software systems

1 INTRODUCTION
To effectively work with a software system, developers need to
create a mental model of the software system. The workflow of de-
velopers creating such a model can be conceptualized in two phases
shown in Figure 1: observation and experimentation. Observation
is building hypotheses about the system. This is done mainly by
reading lines of code. Hypotheses can also be generated out of expe-
rience from the programmer, general assumptions, or by watching
how the system behaves. The granularity of the hypotheses varies
with the developers’ context. The context describes what part of
the software they currently try to understand or change and in
what detail. They do not need to understand the whole system in
detail if only specific parts are relevant.

Experimentation is testing whether a subset of the build hy-
potheses correctly predicts the system’s behaviour. This is often
done by changing source code and subsequently checking if the
system behaves in the predicted way. Other ways are debugging
the program to check if the variables take the predicted state or
checking if tests fail.

1.1 The Role of Tests
Writing tests is a well-known best practice in software engineer-
ing [4]. However, with current standard test runners, they are pri-
marily used at the end of the development cycle to prevent regres-
sion, simplify refactoring, or document code.

Tests can be viewed as hard-coded experiments. Especially unit
tests efficiently check if a system behaves in a certain way. One
could argue that they therefore could be used in the formulation
and checking of hypotheses in the mental model of developers.

Currently, however, they are run late in the process after sev-
eral edits have already taken place to check if the system is still
working correctly because standard test runner systems have long
feedback times, as they run all tests without test case prioritisation.

60

https://doi.org/10.1145/3464432.3464438
https://doi.org/10.1145/3464432.3464438
https://doi.org/10.1145/3464432.3464438

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Dominik Meier, Toni Mattis, and Robert Hirschfeld

Additionally, test failures are not set into the context, making it
hard for developers to draw correct conclusions from the set of test
outcomes.

Due to the long feedback time, the test cases will only reveal
the errors after they have been made, as developers relying on a
model based on wrong or incomplete assumptions will generate
errors as they can not predict the consequences of their actions
correctly. The late feedback from the executed tests additionally
obstructs finding the correct mental model as there is no direct
mental connection between changes in the code and testing errors.

In the following, we explore possibilities to help developers in
both phases of program comprehension using test suites. During
observation, they should be aware of existing experiments (i.e. tests)
related to their current context. This can help to formulate better
hypotheses about the system. During experimentation, they should
receive immediate feedback on the relevant experiments to be able
to mentally connect changes to the consequences for the system.
This enables better and faster feedback on whether underlying
hypotheses are correct.

We designed a prototype that uses previously analysed data
about the software using the technique of mutation testing. En-
tropy metrics are used to rank the possible gain of information
on tests for the current context of developers. To give immediate
feedback, we used machine learning algorithms on the mutation
data to predict which tests will fail with high probability. These
can then be executed with higher priority, gaining faster feedback
for developers. We tested different techniques for visualising the
generated feedback to increase the benefit for developers.

The paper is structured into seven sections. To better understand
the general context, Section 2 gives an overview of the background
and related work. Section 3 presents the design space of our ap-
proach and the proposed workflow using our prototype. Section 4
explains the technical implementation of the prototype. In Section
5, we discuss findings for testing different relevance metrics, our
measured feedback times, and different visualisation techniques
for our use case. Section 6 introduces ways to further evaluate
the approach and to improve the data generation and interaction
techniques of the prototypes.

2 BACKGROUND AND RELATEDWORK
2.1 Exploratory and Live Systems
Different models of program comprehension were outlined in stud-
ies by Mayrhauser et al. [6]. They all include that programmers
combine long term knowledge with external information, for ex-
ample, code, in order to create a mental model. One special type of
external information for program comprehension is fast feedback
to developers actions.

Giving developers the feeling of changing a running program has
a long research history. Rein et al. [7] found different motivations
for liveness, including program comprehension and exploration of
software systems. Our prototype especially addresses these motiva-
tions by giving developers additional visual information. Tanimoto
[10] describes four different levels of liveness. A scenario where
developers execute the test suite manually can be classified as a
level two live system, since the test suite is executable, but the

execution is not automatically triggered. This tends to create long
feedback cycles leading to late error recognition.

Therefore, we propose to use a level three live system that gives
feedback at trigger points. Developers are not always ready for
feedback, e.g., while typing in the name of a variable, but only at
specific task boundaries. We try to approximate these boundaries
by linking our feedback to certain editor operations, like CTRL-S.
Some test runner systems already support the automated triggering
on source code changes. While this decreases the feedback time
for developers as tests get executed more frequently, it is hard for
developers to utilise during program comprehension as the feedback
is not specifically adapted to their current context. Therefore, it
is hard to gain helpful information from a set of test failures and
successes.

Because our prototype acts on certain trigger points, it is im-
portant to understand when it should help developers with gener-
ated feedback. The feedback should not interfere with the ongoing
thought process too strongly.

2.2 Feedback Timing
Dabrowski and Munson [1] distinguish between control tasks and
conversational tasks. The classification of the task decides on how
the feedback time should be chosen. We see the observation phase
as a control task. Developers want to explore the system without
interaction. The delay here should be as small as possible. We do not
want the additional visualisation, in this case, to make developers
aware of relevant tests, to stop the observation phase from being
received as a control task.

The experimentation phase is a more conversational task. De-
velopers interact with the system, wait for a response, and act
accordingly. Conversational tasks can benefit from delays, as they
keep the conversation between human and computer fluent. We
trigger the test feedback on the saving of the current state of the
program. This is an approximation of a finished sub-task for de-
velopers. We assume that at this moment, developers are ready
for feedback as they wrote out changes. Because we assume a sub-
task boundary, there should be no further delays, and the feedback
should come immediately. Seow [9] categorizes immediate feedback
time between 0.5s and 1s.

2.3 Test Case Prioritisation
The short time frame for immediate feedback does not allow to
run the whole test suite of most programs. Test case prioritisation
techniques try to reorder the schedule of test executions in order
to find errors faster.

We want to measure how much information gain can happen
immediately. Our optimization problem is therefore to produce a
set of tests that give the most feedback in under 1s. The order of
the tests after that time span does not matter much, as they can
not be used for immediate feedback. A survey by Lou et al. [4]
lists different metrics to compare different prioritization strategies.
However, the traditional prioritisation measurements integrate over
all test cases, most prominently the Average Percentage of Faults
Detected (APFD) and variations of it. Additionally, in our scenario
of live feedback the execution time of the model starts to become

61

Toward Exploratory Understanding of Software using Test Suites <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

relevant; if the model already uses a big fraction of a second, its
results need to be better in order to justify the long execution time.

Lightweight, change-based prioritisation strategies have previ-
ously been researched by Mattis et al. [5], which can be efficiently
calculated for changes. The performance of the models was unfor-
tunately only tested with the APFD metric that does not focus on
immediacy.

To evaluate our results, we measured when the first failure in
the test suite is detected and when the last failure is detected.

2.4 Mutation Testing
Mutation testing has become more and more popular as a source to
generate source code changes leading to faults similar to real-world
faults [2]. The standard procedure creates mutants by changing
a small part of the source code of the program. The test suite is
now executed for the mutant and checked if it detects the change.
A study by Just et al. [3] found a significant correlation between
mutant detection and real-world fault detection. This suggests that
mutation testing data is also useful in analysing the relevance of
tests to specific parts of the code or predicting their failures in
response to changes close to mutation sites. Static analysis is not
needed to generate mutation testing data, so it is applicable also
for dynamic languages.

3 APPROACH
Our proposed workflow gives developers feedback in both phases,
observation and exploration. During observation, their current
context is analysed and based on it, the relevance of each test is
scored for the current context. Developers see which tests give
good hints on the functionality of the current context and help
to formulate good hypotheses. During experimentation, we give
immediate feedback by executing tests in a prioritised way. By
saving source code, developers trigger the action to obtain feedback
about the current status of the system.

3.1 Design Space
As shown in Table 1, we differentiate between two types of feedback
in our design space.

(1) The relevance of the test ranking the importance of the test
for the current context

(2) The test outcome describes whether a test has failed or suc-
ceeded.

The design space can be subdivided into two layers.
(1) The data query describing how to generate the relevance

and immediate feedback data.
(2) The type of visualisation showing the data.

3.2 Data Queries
To create the information needed for the visualisation, the dataset
gets queried differently dependent on the program comprehension
phase, i.e., observation and experimentation.

Observation. To calculate the test relevance, the context is ap-
proximated by the currently visible source code in the editor. We
experimented with two different levels of granularity, file-based
and line-based.

We used the mutation-coverage combined with the context in-
formation as our input data to the relevance rating. For a test t , and
a context d , which can be a source code file or a subset of a source
code file, we define ft,d as the number of failures from the context
d . From all failures of the test that were collected, we count only
the failures from mutants that changed something inside d . Our
first relevance ranking was ft,d , with d set to the approximation of
the context of developers, i.e., what they have currently opened in
the editor.

However, this approach ranks tests that fail very often overall
higher than tests that are specific for the current context but fail less
frequently on average. We, therefore, created an additional rank-
ing following the Term Frequency–inverse Document Frequency
(TFIDF) approach. TFIDF is widely used in information retrieval
[8]. Usually, it is used to rank the importance of a term in a set of
text documents. Some terms in text documents have overall higher
average occurrence frequencies than others. This is similar to our
scenario where some tests have higher average failing frequen-
cies than others. TFIDF applies a weighting scheme that allows
approximating the relevance more precisely.

The Term Frequency (TF) of a test t , and a source code file d is
the logarithm of 1 + ft,d , so for ft,d , only a logarithmic scaling is
applied.

TF(t ,d) = log(1 + ft,d) (1)

The Inverse Document Frequency (IDF) is generated to filter out
tests that often fail. While D is the corpus of all source code files,
the number of source code files is divided by the number of times
the test failed on all mutations.

IDF(t ,D) = log(1 +
|D |

|{d ∈ D |t ∈ d}|
) (2)

Multiplying both results in the overall relevance score for a given
test t , document d , and all source code files D.

TFIDF(t, d, D) = TF(t ,d) · IDF(t ,D) (3)

Experimentation. To give faster feedback during the experimen-
tation phase, we use lightweight test case prioritisation techniques.
The changes that are made during the mutation testing are clas-
sified by different features like the changed line of code and the
filename.

The features for each mutant are used as training data for the
test failure prediction algorithm. A given set of changes is split
down into single lines of code changes. The same features are
generated for these changes, and it is predicted if tests are likely
to fail given these. All tests that are predicted to fail are reordered
to the beginning of the test run. We analysed the performance of
a decision tree algorithm, as well as one more advanced machine
learning model, a random forest.

3.3 Different Visualisation Techniques
The results need to be visualised for both the relevance and the
failures. The visualisation should provide developers with clear
feedback, but if developers are currently not ready for feedback,
it should be unobtrusive. Additionally, feedback types are not in-
dependent of each other. If a test is presented as irrelevant in the

62

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Dominik Meier, Toni Mattis, and Robert Hirschfeld

Table 1: Design Space of the proposed Workflow

Observation Experimentation
What tests give most information? Which failures give good feedback?

Data Query How to approximate the context?
• file-based
• line-based

Which tests will fail?
• Decision Tree
• Random Forest

How to rate relevance?
•Mutant Coverage
• TFIDF

Visualisation How to display relevance? How to display failure?
• table • scatter • embedding • color coding

current context, developers will have little interest in whether it is
failing.

To allow developers to switch back and forth between feedback
and the source code, we created a panel visualisation that takes
around one-fifth of the screen. This is similar to other panels in code
editors that provide the developer with additional information like
software versioning information or debugging panels. In this panel,
we experimented with different visualisation and layout techniques.

Colour Coding. All visualisations had in common that colour
coding was used to denote test failures (red) from test successes
(green). We integrated another colour that shows that a test is pre-
dicted to fail but not yet executed (orange). Additionally, to the hue
of the colour that differentiates successes from failures, we included
the option to desaturate the colour of not executed tests over time.
This highlights the recent test results visually more important than
older results. Additionally, developers get an indication of how old
the last feedback they received got.

Table. As the most basic representation, we implemented a table
of test failures that are sorted by relevance and contains the test’s
name.

Scatter. In the scatter visualisation, a circle is drawn for each
individual test case. The position of the circles on the y-Axis was
set by the relevance given the current context and the x-Axis by
the overall failure frequency of the individual test.

Embedding. For the embedding visualisation, we used the co-
variances of the test cases as a distance metric and calculated a
t-distributed stochastic neighbour embedding (t-SNE) used for di-
mensionality reduction [11]. Because the calculated embedding
position contains pairs of points with very close distance, we post-
processed the positions using a force-based layout to guarantee a
minimum distance between each point pair. For each test, a direc-
tional force towards the original embedding position was generated.
Then, collision forces were introduced to prevent circles from over-
lapping.

Figure 2: Architecture of the plugin

4 IMPLEMENTATION
We designed a functional prototype to enable exploratory feedback
using testing suites as a Visual Studio Code Plugin with a micro-
service backend architecture.1 In the following sections we map
out the general functionality, and show what happens internally if
developers interact with the prototype. An architectural overview
can be seen in Figure 2. Communication between the services hap-
pens via the Socket.IO protocol.2 When we talk about sending data
we mean communication via this protocol. The micro-service archi-
tecture does not only allow separation of concerns but also opens
up the possibility to improve the performance of test executions by
moving the service to a server.

4.1 Mutation Testing Dataset
To enable live feedback, we collect static data about the software
suite using mutation testing. We chose to use the python micro-
framework flask3 as an example of a project that is popular and well
tested. We used a self implemented tool called Mutester4 which
instruments pytest, the standard python testrunner, and mutmut,5,
a python mutation testing tool.

1The source code of the prototype is available as a public repository at https://github.
com/XPerianer/ImmediateTestFeedback
2https://github.com/socketio/socket.io-protocol
3https://github.com/pallets/flask
4https://github.com/XPerianer/Mutester
5https://github.com/boxed/mutmut

63

https://github.com/XPerianer/ImmediateTestFeedback
https://github.com/XPerianer/ImmediateTestFeedback
https://github.com/socketio/socket.io-protocol
https://github.com/pallets/flask
https://github.com/XPerianer/Mutester
https://github.com/boxed/mutmut

Toward Exploratory Understanding of Software using Test Suites <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

It applies a mutation via mutmut, executes all tests, and records
test failures and additional features of the current mutation in a
dataframe.

The additional features are used as training data for the test
failure prediction algorithm. They include features like file name
and line number of current mutation change. The trained model on
the dataset, in the simplest case a decision tree, is made available
for the Backend.6

4.2 Architecture
In the following, we describe the architecture of the plugin, as seen
in Figure 2 and show the information flow through the system
that can be triggered by developers. Developers start the prototype
by opening up a Visual Studio Code instance that has the Testing
Panel loaded. The Testing Plugin provides it with the necessary
code to display the content. The visualisation inside the panel is
implemented as a JavaScript website using the D3.js7 framework.

The plugin integrates different editor hooks available that can
track developers actions, like opening other editor windows or sav-
ing. This information is sent to the Testing Panel and forwarded to
the Backend. The Backend coordinates the actions that are required
on editor trigger points. On startup, it loads the relevance and pre-
diction models from the Mutation Testing Dataset. This allows the
following queries to be able to profit from cached data.

Observation. If developers save changes (see Figure 2: context
switch), for example, by opening up another file, the Testing Plu-
gin recognises the change (1). The context switch information is
forwarded to the Backend via the Testing Panel, which queries the
relevance information for the given context (2). The relevances are
sent back to the Testing Panel, which then updates the visualisation.

Experimentation. If developers save the source file (see Figure 2:
save), for example, via the CTRL-S shortcut, this will also be recog-
nised by the Testing Plugin (1) and forwarded to the Backend. The
same features collected previously for the mutations are now gen-
erated again for changes that are currently present in the source
code. For each of these changed lines, the prediction model is run,
and the failures are collected. This gives a list of tests that are likely
to fail (2). Now the information flow is split into direct feedback to
the Testing Panel and test reordering information for pytest. The
Testing Panel can use the information list of likely failed tests to
already give visual hints on what tests might fail. Also, the list is
integrated into the call to pytest. The Immediate Plugin reorders
the tests after the given list of tests and then waits for pytest to
execute them (3). If a test fails, the Immediate Plugin is directly
hooked after the failure and sends the information to the Backend,
which forwards it to the Testing Panel.

5 DISCUSSION
5.1 Relevance Metrics
Figure 3 plots the different relevance metrics for the context based
on file granularity. The y-Axis shows the relevance for the given
context; the colour denotes the overall failure frequency of the
6Internally, this is done by serialisation and deserialisation of the decision model using
the python library joblib https://github.com/joblib/joblib
7https://d3js.org/

test. For the file json/tag.py the annotated example shows that
test_appcontext_tearing_down_signal is ranked highest when using
ft,d . While this test often fails generally, it has no particular con-
nection to the JSON module in flask. However, test_duplicate_tag
is very relevant, as this tests serialization function inside the JSON
module. This is only ranked high when using TFIDF.

In general TFIDF ranks tests that have lower overall failures
higher, which is an indication that the ranking is more specific to
the context, and therefore better applicable to the given use case.

5.2 Feedback Times
During observation, the measured feedback loop time from opening
a file and the beginning of the visual feedback is around 200ms,
which feels instantaneous.

The immediate test feedback is more time-critical as the different
processing steps add up. The three main steps are analysing the
changes, executing the prediction model, and executing the tests.
More changes lead to a higher execution time, as every line is
analysed and predicted for. We measured the flask repository with
20 lines of code removed from different files and measured averages
over ten runs. The setup code that analyses the changes in the
repository and enters them in a data frame takes on average 119ms
to run. The decision tree needs less than 3ms for its prediction,
while the random forest takes an average of 117ms. With additional
optimisation, this could certainly become faster.

For our measurements, we split test execution time in general
setup time and test execution time. Using our current setup, which
uses the pytest plugin architecture to report test failures, we have
quite a high general setup time for pytest of 886ms on average till
the first test report is logged into the Backend. Unfortunately, pytest
is currently not optimised for immediate feedback.

Measuring the performance of the prioritisation algorithms for
only ten test cases is not meaningful as the performance relies not
only on the number of changes but also on their content. To analyse
the model performance, we, therefore, split our mutation testing
dataset into a train and test set. The models were trained on the
training set and then evaluated on the test set. We summed up
the previously recorded test execution times until the first or last
error detection, given the scheduling induced by the predicted test
failures of the model.

The native execution following the order of discovery in the test
suite takes 1.2s on average till the first failure is detected. Even a
simple decision tree algorithm decreases the time to the first test
failure to about 300ms, as seen in Figure 4a. With the additional
general test setup time, this test failure report will be very close to
the 1s maximum duration of immediate feedback. More advanced
models, like the random forest, can then further decrease the feed-
back time. Our prototype currently only implements two active
features for the changes: the filename and the line number of the
change. With additional features, the performance of the machine
learning algorithm might further be increased.

Figure 4b compares the duration of the different processing steps
added up. Even though the native execution order can skip the first
two processing steps, the decision tree model outperforms it for the
first failure found and the last failure found. The random forest is
again better in both measurements. It is also visible that the general

64

https://github.com/joblib/joblib
https://d3js.org/

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Dominik Meier, Toni Mattis, and Robert Hirschfeld

(a) Sum of filename failures (ft,d) (b) TFIDF (TFID(t, d, D))

Figure 3: Test case relevance ranking of different metrics.
The colour indicates the general test failure frequency

test setup step makes up a big percentage of the feedback time. It is
more important to reduce the test runner setup time than to find a
better machine learning model to give developers a faster feedback
time. If the setup time could be reduced to half, which would still
be over 400ms, the decision tree would have an average feedback
time for first failure of under 1s.

5.3 Different Visualisation Techniques
We observed several differences how different types of visualisa-
tions could support developers.

The table representation (Figure 5a) allows the most efficient
presentation of textual information and is also very space-efficient.
Additionally, it is a common representation of data that does not
need much additional explanation.

However, not all test cases can be represented at the same time,
and when switching the context, it is hard to see which tests got
more relevant in the new context.

To give developers the possibility to compare changes in the
context to changes in the relevance, we created the animated scatter
plot (Figure 5b). It has the advantage that besides the relevance of
the test on the y-Axis, a different variable can be displayed on the
x-Axis. The idea to plot the overall failure rate of the tests on the
x-Axis is based on the assumption that developers would be able
to distinguish between very specific tests that would have a lower
overall failure score and less specific tests, e.g., integration tests.
This should enable developers to choose between focusing on test
cases that are more general if they need to get an overview of the
system and concrete information about one method. The scatter
visualisation thus enables developers to clearly track the changes
in relevance on context switches and see the currently relevant test
cases. However, irrelevant test cases strongly overlap each other,
making them visually indistinguishable.

Trying to emphasise the connections between the test cases, the
embedding visualisation focuses on the relevance. We switched the
mapping of the relevance from a positional mapping to the size of

the drawn circles. This gives the best indication of how the current
context is positioned in the overall software system. While smaller
sub-modules like the JSON module only show certain small parts
to be relevant (Figure 5c), more general files like the software entry
point app.py show that they are important for almost all test cases
(Figure 5d). We think that this visualisation intuitively gives us
some feeling of the impact of the current context.

6 FUTUREWORK
Different options exist to evaluate and extend the approach. They
can be categorized in evaluation, improvements in the underlying
data model, and improvements for the developers experience. In
the following, each of them is discussed in more detail.

6.1 Evaluation
User Study. We did measure the feedback times of our system but

did not measure how well the reaction times and ranked tests help
developers better understand software systems. This would give
evidence in how much this new type of software tool can improve
developers speed and confidence in understanding and changing
software systems.

Comparison to Other Test Case Prioritisation Techniques. Show-
ing immediate test feedback worked already well with our basic
decision tree model trained on the mutation testing dataset. It does,
however, not perform well in common metrics that consider the
whole test suite, like APFD. We want to test whether other algo-
rithms also perform in the immediate setting, or if they can be
modified to provide even better results.

6.2 Data Model Improvements
Modeling of Context. Currently, the approximation of the context

depends on what is seen by developers. The decision on what is
relevant to developers could be better approximated if the different
granularity of knowledge in the context is taken into account. If a
method is studied thoroughly, tests highly correlated to that method

65

Toward Exploratory Understanding of Software using Test Suites <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

(a) Improvements in Test Execution Timings

(b) Time Relation between Different Workflow Steps

Figure 4: Comparison of performance of different test case
prioritisation algorithms

should be ranked relevant. If developers switch back and forth
between different files, tests that explain the interplay between
the different files could be ranked higher instead of highly specific
tests.

Incremental Updates. Currently, the data source that is used to
generate the relevance scores and train the predictionmodel is static
and gets worse if the underlying software system is changed. The
mutation testing process for flask takes around one hour if executed
in parallel on a server. One way might be to allow incremental
updates on the data source, for example, to only re-run mutation
testing on changed methods to allow for faster update times.

6.3 User Experience
Improved Visualisation. Improving the visualisation techniques

can happen by increasing expressiveness or by increasing effec-
tiveness for developers. One idea to increase the expressiveness
is to additionally visualise the confidence in the current state of
a test case. If a test has been executed just now, its outcome is

(a) Table (b) Scatter

(c) Embedding with
JSON/tag.py context

(d) Embedding with app.py
context

Figure 5: Appearance of different relevance metric
visualisations

certain. Tests that were not executed for a long time are more un-
certain. Even tests that have higher execution time than necessary
for immediate feedback could give interesting information if the
visualisation supported the notion of ’very likely to fail’. Developers
could then look at these tests if they are relevant to the context. The
effectiveness could be increased by removing information that is
unnecessary for developers. This could include grouping or hiding
irrelevant test cases so that developers can identify the relevant
test cases faster.

Additional Interaction Techniques. Additional interaction to help
developers in the observation phase might be valuable. An example
would be an automated debug session that is automatically started
showing the values variables take in the source code for the highest
relevant test. This would give developers even more information
that is closely linked to the source code about their current context.

Fine-tuning Through Developer Feedback. The prediction model is
currently not learning from the test runs that happen if developers
edit code. It could be retrained on the feedback of current test runs
and then prioritise tests that failed previously higher.

7 CONCLUSION
We proposed a new model to think about feedback from test suites
that differentiates between the two phases of observation and ex-
perimentation during software comprehension. Furthermore, we
explored how to adjust feedback according to the two phases.

Our presented prototype uses the testing framework of existing
software projects as a tool to generate immediate feedback and

66

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Dominik Meier, Toni Mattis, and Robert Hirschfeld

enable exploratory programming. It is especially useful for getting
to know a software project fast and testing assumptions live in the
system.

In our case study, we used the TFIDF model to rank test cases
for developers to help them understand their context during obser-
vation of the source code. We discovered that existing metrics for
test-case prioritisation are sub-optimal for immediate feedback, as
they make weak statements about the feedback time for developers.

We implemented simple mutation-based test-case prioritisation
techniques and showed that these techniques already provide the
possibility to shorten feedback cycles enough to provide faster
feedback.

Our approach is widely applicable, as it has low requirements
that have to be met to enable it. Based on our case study, we argue
that test suites can be combined with machine learning to provide
developers with additional tools for exploratory programming.

ACKNOWLEDGMENTS
This research has been supported by the Federal Ministry of Ed-
ucation and Research of Germany (BMBF) in the KI-LAB-ITSE
framework (project number 01IS19066).

REFERENCES
[1] Jim Dabrowski and Ethan V. Munson. 2011. 40years of Searching for the Best

Computer System Response Time. Interact. Comput. 23, 5 (Sept. 2011), 555–564.
https://doi.org/10.1016/j.intcom.2011.05.008

[2] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Trans. Software Eng. 37 (09 2011), 649–678. https:
//doi.org/10.1109/TSE.2010.62

[3] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654–665. https://doi.org/10.
1145/2635868.2635929

[4] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. Chapter One - A
Survey on Regression Test-Case Prioritization. Advances in Computers, Vol. 113.
Elsevier, 1 – 46. https://doi.org/10.1016/bs.adcom.2018.10.001

[5] Toni Mattis and Robert Hirschfeld. 2020. Lightweight Lexical Test Prioritization
for Immediate Feedback. The Art, Science, and Engineering of Programming 4, 3
(Feb 2020). https://doi.org/10.22152/programming-journal.org/2020/4/12

[6] Anneliese Mayrhauser and A. Marie Vans. 1995. Program comprehension during
software maintenance and evolution. Computer 28 (09 1995), 44 – 55. https:
//doi.org/10.1109/2.402076

[7] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding: A Literature Study
Comparing Perspectives on Liveness. (07 2018). https://doi.org/10.22152/
programming-journal.org/2019/3/1

[8] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513–523. https://doi.org/10.1016/0306-4573(88)90021-0

[9] Steven C. Seow. 2008. Designing and Engineering Time: The Psychology of Time
Perception in Software (1 ed.). Addison-Wesley Professional.

[10] Steven L. Tanimoto. 1990. VIVA: A visual language for image processing. Journal
of Visual Languages & Computing 1, 2 (1990), 127–139. https://doi.org/10.1016/
S1045-926X(05)80012-6

[11] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

67

https://doi.org/10.1016/j.intcom.2011.05.008
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1016/bs.adcom.2018.10.001
https://doi.org/10.22152/programming-journal.org/2020/4/12
https://doi.org/10.1109/2.402076
https://doi.org/10.1109/2.402076
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1016/S1045-926X(05)80012-6

	Abstract
	1 Introduction
	1.1 The Role of Tests

	2 Background and Related Work
	2.1 Exploratory and Live Systems
	2.2 Feedback Timing
	2.3 Test Case Prioritisation
	2.4 Mutation Testing

	3 Approach
	3.1 Design Space
	3.2 Data Queries
	3.3 Different Visualisation Techniques

	4 Implementation
	4.1 Mutation Testing Dataset
	4.2 Architecture

	5 Discussion
	5.1 Relevance Metrics
	5.2 Feedback Times
	5.3 Different Visualisation Techniques

	6 Future Work
	6.1 Evaluation
	6.2 Data Model Improvements
	6.3 User Experience

	7 Conclusion
	Acknowledgments
	References

