
 





210 Fall Workshop 2012



1 Data Quality Services

11101 3 54 6 87 9 12
1
2
3
4
5
6
7
8
9
10
11
12

2

Figure 2: Naive comparison: the base-
line for saving comparisons (only dark
comparisons are actually performed)

����� � � � �� � ��

�

�

�

�

�

�

�

�

�

��

��

��

� �

Figure 3: Blocking: only elements within
each disjoint block (e. g., red) are com-
pared

Fortunately, the “duplicate” relation is symmetric and reflexive. Thus, only less than
the half of all comparisons have to be performed, because two records do not need
to be compared twice and a record does not need to be compared to itself. Figure 2
shows an illustration. Only the dark colored combinations have to be examined.

To further reduce the amount of comparisons, there exist comparison pair selection
algorithms that create disjoint or overlapping partitions of the data and also intentionally
ignore many pairs. To do that, they sort the elements regarding to a specific key and
put all elements with the same key into one cluster. Such a key could be, for example,
the (first two letters of the) family name for an address dataset or the year of first
manufacturing in a product database. It is common practice to generate different keys
to create different smaller clusters and to perform several runs for preserving the recall.
The precision depends solely on the similarity measures and the subsequent decision
on whether a pair is a duplicate or not. Figure 3 illustrates a blocking with disjoint
partitions.

Parameters such as the blocking key are usually tuned and developed by human
experts. Humans use their domain knowledge about the nature of the dataset and
then decide for the blocking key, e. g., some digits of the ZIP code. In the services
world, experts are not available and a service has to be self-configuring. Bilenko et
al. [1] present an algorithm that automatically proposes different blocking keys, but it
relies on the availability of positive and negative examples due to the machine learning
techniques employed.

The service will most likely not be in possession of such examples. However, to find
key candidate attributes, a service can make use of having many users with datasets
from similar domains. Blocking keys for one dataset perform comparatively well on
other datasets from the same domain, thus, they have to be retrieved only once per
domain.The automatic generation of blocking keys is described in Section 2.

Fall Workshop 2012 211



Duplicate Decision for Data Quality Web Services

1.3 Calculate Similarity and Classify Duplicates

In this phase, the similarity between the records is calculated, that have been marked
as promising in the pair selection phase (Section 1.2). Once the pairs are selected,
specific similarity measures are applied on each pair of attribute values. There are
several general-purpose similarity measures such as Edit Distance, Jaro-Winkler, and
Jaccard similarity. However, knowing about the very nature of an attribute, common
misspellings, and – more important – acceptable differences (known from the analysis
phase (Section 1.1)), strongly increases the significance of the similarity measure.

After similarity scores for all relevant pairs are calculated, they have to be used to
decide, whether a pair of records should be regarded as duplicate. This can be done
via weighted sums or decision trees, for example. Section 3 outlines how the blocking
information can be re-used to take the duplication decision.

1.4 Calculate Closure

With the previous step, a list of duplicate pairs was declared. However, it is not clear
whether there are only pairwise duplicates. There are probably clusters of duplicates
from which only a small fraction is explicitly listed, up to this point. Thus, the pairs have
to be joined to clusters. For example, the transitive closure can be calculated or some
other clustering means has to be applied.

2 Blocking

It is possible to find suitable blocking keys (see Section 1.2) automatically for a dataset
equipped with a gold standard, the training dataset. Those blocking keys can be re-
used for datasets from similar domains lacking a gold standard [7], the test dataset(s).
To be general and to support a large variety of data types, blocking keys are created
based on unigrams.

2.1 Problem Formalization

The formalized problem is as follows: Given a dataset and its schema, find a valid
blocking key (or a set of k valid blocking keys) that achieves the optimal trade-off be-
tween pairs completeness and efficiency. The details are explained below. A blocking
key consists of a set of unikeys. Each unikey is a combination of an attribute (e.g., ZIP
code) and a position within this attribute. Applying such a unikey on actual attribute
values yields said unigrams.

Validity

Usually, a dataset different from the training dataset will comprise other attributes. A
given blocking key is called valid in a test dataset, iff all of its unikeys are available in
the test dataset, both regarding the availability of the schema attributes as well as the

212 Fall Workshop 2012



2 Blocking

attribute lengths. The attribute length is defined by the schema (e. g., a CHAR(100) in
SQL) or is infinite for other data sources (e. g., CSV files).

Pairs completeness

The pairs completeness [2, 4] is the measure of how many of the duplicates can be
found for a blocking key, i. e., how effective the blocking key is.

A blocking key is used to create a partitioning to pre-classify duplicate records. Sub-
sequently, a similarity measure is applied on each possible pair within each partition. If
the pair’s similarity is above a given threshold, it is treated as a duplicate, otherwise as
a non-duplicate. The ratio of actual duplicates among the declared pairs divided by all
duplicates is called recall and serves as the pairs completeness. In our experiments,
we replace such a similarity measure by a lookup in the true matches.

Efficiency

A blocking key is efficient if it uses relatively few comparisons to achieve a given pairs
completeness. Thus, the measure for efficiency is the average number of performed
comparisons for each found duplicate.

In practice, however, the number of comparisons should not exceed a fixed thresh-
old θ . We express efficiency by normalizing the number of comparisons c according to
θ and subtract it from 1 to align it to the pairs completeness. Thus, efficiency is defined
as 1− ( c

θ
) ∈ [0,1], assuming c≤ θ .

This measure resembles the term Filtered Reduction Ratio [2]. Yet using the actual
number of potential comparisons (5 ·1010 for 100,000 tuples) in the denominator would
usually create a value close to 1. Therefore, we adapt the notion by Gu and Baxter,
but instead of a filtering step, we give the efficiency in relation to a baseline approach.
In our case this is the number of comparisons, the Sorted Neighborhood approach [3]
would have created.

Overall Blocking Key Quality (BQ)

A good blocking key should be effective and efficient. Therefore, we define the Over-
all Blocking Key Quality BQ as the harmonic mean between pairs completeness and
efficiency (BQ = 2·PC·Ey

PC+Ey ), where PC is pairs completeness and Ey is efficiency.

2.2 Key Generation Workflow

Automatic blocking key generation is performed in two steps. First, for a training dataset
with a given gold standard, all combinatorially possible blocking keys are evaluated.
Second, for a test dataset, typically lacking a gold standard, the previously created list
of blocking keys is iterated to find the best valid blocking key.

Fall Workshop 2012 213



Duplicate Decision for Data Quality Web Services

Training Phase

As the first step, good blocking keys are identified:

1. Generate all possible unikey combinations (i. e., blocking keys).

2. For each blocking key perform a duplicate detection experiment on the reference
dataset:

(a) If the number of comparisons exceeds the threshold θ , discard this blocking
key.

(b) Else, calculate the achieved overall blocking key quality (BQ) for the blocking
key.

3. Sort all non-discarded blocking keys descendingly by BQ.

Production Phase

The keys from the training phase can subsequently be used to find duplicates in test
datasets of similar domains.

1. For each blocking key in the previously calculated list, check for validity for the
current dataset.

2. For each remaining valid blocking key (still ordered by BQ), start a duplicate de-
tection run.

(a) If the number of comparisons exceeds a certain threshold, abort the run,
keeping the so-far detected duplicates.

(b) Else, finish the duplicate detection run until one of the following abortion
criteria is fulfilled: the desired number of passes have been executed, the
total number of actually performed comparisons over all runs exceeds a
threshold, the overall efficiency sinks below a given threshold (i. e., no or
not enough new duplicates are found), or the number of detected duplicates
is sufficient. Note that the thresholds might be domain dependent or given
by a user.

2.3 Evaluation

The experiments were performed on different random samples of two address datasets
examining 6 million blocking keys. Table 1 shows the most successful blocking keys
with regard to the number of found duplicates, comparisons, pairs completeness, effi-
ciency, and BQ. To compare, an “expert guess” – the ad-hoc blocking key [city-0,
familyname-0, givenname-0, zip-0] a human expert might have come up with
– only found 274 of the 804 duplicates to find. However, achieving a very high efficiency
value is typical for user-provided blocking keys.

214 Fall Workshop 2012



2 Blocking

Just a bit of derivation in the attribute positions as in [city-0, familyname-0,
givenname-3, zip-1] had found seven more duplicates comparing one fifth fewer
records. The most successful blocking key found 86.69% of the duplicates, but used
– on average – 12,521 comparisons for each duplicate. In contrast, the most ef-
ficient blocking key only performed 27 comparisons per duplicate revealing only a
small fraction of all the duplicates. Finally, the overall best key ([familyname-0,
familyname-1, zip-0, zip-1, zip-2]) was both, effective and efficient and
achieved very good results in both disciplines. The respective maximum values in
the table are emphasized.

Description Blocking key Found
dupli-
cates

Compa-
risons

Pairs
Com-
plete-
ness

Effi-
ciency

BQ

Expert guess [city-0,
familyname-0,
givenname-0,
zip-0]

274 258,077 34.08% 97.39% 50.49%

Most duplicates
and maximum
pairs complete-
ness

[zip-0,
zip-1,
zip-2,
zip-3]

697 8,727,009 86.69% 11.80% 20.78%

Least compar-
isons per dupli-
cate and most
efficient

[city-0,
familyname-0,
family-
name-3,
givenname-3,
street-3]

214 5,781 26.62% 99.94% 42.04%

Overall best [familyname-0,
familyname-1,
zip-0,
zip-1,
zip-2]

672 407,232 83.58% 95.88% 89.31%

Table 1: Selected outstanding blocking keys

To evaluate the ability for domain transfers of blocking keys between two datasets
from similar domains, we took a sample of another dataset. We chose the 300 best
blocking keys (according to their BQ) from the training dataset and performed duplicate
detection runs on them.

The absolute number of found duplicates vastly increased, because there are much
more duplicates in the test dataset. The overall numbers of comparisons stayed in the
same order of magnitude (remember that there is a cut-off at 10 million comparisons).
Only 131 blocking keys were valid, however the first invalid blocking key had rank 50,
thus the best blocking keys did actually work also on the test dataset. The average
overall blocking key quality is 94.29% due to a generally higher pairs completeness.

Fall Workshop 2012 215



Duplicate Decision for Data Quality Web Services

This means that the duplicate characteristics resemble the blocking keys very well,
even with data from different languages and domains. Table 2 shows key figures for
the first 10 blocking keys.

3 Duplication Decision

It is common to weigh the similarities concerning to their relevance (for example, gen-
der might not be as relevant as family name) to calculate a weighted sum. If this sum is
above a given threshold, the pair is regarded as being duplicate, otherwise not. How-
ever, global thresholds are too inflexible. Different partitions might have completely
different similarity distributions. For example, John Does from a large city will be fre-
quent and only have tiny differences in their pairwise similarities. In contrast, another
partition (say) containing inhabitants of a smaller city will have very diverse similarities.
Applying a global high threshold will keep the John Does apart but will result in miss-
ing all the duplicates in the other partition. Applying a global low threshold will work
well in the second partition but will not classify any pair of John Doe as duplicate. A
global fixed threshold is easy to set by a user but will result in poor duplicate decision
capabilities.

Threshold-based Duplicate Decision The global threshold has to be adapted for
each block. Let there be two blocks of records. Block 1 contains pairwise similarities
between 80% and 95%, block 2 contains similarities between 30% and 90%. A theo-
retical, global threshold of 70% would result in an actual threshold of 90.5% for block 1
and 72% in block 2. Thus, the different similarity distributions within the specific blocks
are taken into consideration.

Blocking-key-based Duplicate Decision More flexibility is offered by a rule-based
approach. In this case, the similarities are used as predicates within a disjunctive
normal form or in a decision tree. With that, specific irregularities in the dataset can
be covered. For example, if the date and name similarities are above high thresholds,
the pair is regarded as a duplicate, ignoring, say, the city similarity. Also negative rules
are possible: if the dates of birth do not match, the pair is classified as non-duplicate
regardless of the (possibly high) similarity for family names.

Duplication classifiers need these parameters as input to aggregate a given set
of similarities between attributes of a duplicate candidate into a duplication decision.
Typically, these parameters change over domains, datasets, and even parts of the
data and a global parameter setting is too inflexible. For example, address records
might share the same ZIP code. For ZIP codes belonging to large cities, the city
name is irrelevant as well as parts of the phone number whereas for small cities, the
city name is very distinctive, because several smaller cities might share the same ZIP
code. Consequently, there should be different parameters for different partitions of the
dataset.

In the blocking phase (Section 2), partitions were generated whose participants
share specific characteristics. Those partitions (basing on blocking keys) can be re-

216 Fall Workshop 2012



4 Conclusion

used for the duplicate decision step. Following the pre-requisite, that a gold standard
for a training dataset is available, this standard does also serve for learning appropriate
rules for the duplication decision. Again, this knowledge can be transferred to other
datasets from similar domains. I. e., if the described city example is a general principle,
it will generally hold for other datasets. Creating a mapping from blocking keys to rule
sets will enable an automated duplicate detection service to autonomously decide on
duplication in new, unknown datasets.

4 Conclusion

The process of data cleansing in general and duplicate detection in particular poses
many research opportunities towards increasing effectiveness and efficiency and au-
tomating it as a whole. While it has been subject of innumerable efforts since more
than 40 years now, the Software-as-a-Service community did not yet fully investigate
the potential of the particularities of this new approach, namely having many different
customers and datasets from different domains as well as being used by unexperi-
enced users who cannot tune and tweak all the necessary parameters.

I presented the overall duplicate detection workflow (Section 1) and particularly
showed how to achieve a good blocking to reduce the computation effort while main-
taining accuracy (Section 2). Once these blocks are known, pairwise similarities can be
calculated. The next challenge is to make use of these similarities to actually classify
a pair of records as being duplicate. I presented two means to do that automatically
without human intervention (Section 3). The evaluation of this duplicate decision phase
is left as a next step.

References

[1] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive blocking:
Learning to scale up record linkage. In 6th IEEE International Conference on Data
Mining (ICDM), 2006.

[2] Lifang Gu and Rohan Baxter. Adaptive filtering for efficient record linkage. Pro-
ceedings of the SIAM International Conference on Data Mining (SDM), 2004.

[3] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for large
databases. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD), 1995.

[4] Matthew Michelson and Craig A. Knoblock. Learning blocking schemes for record
linkage. In Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI), 2006.

[5] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 2001.

Fall Workshop 2012 217



References

[6] Tobias Vogel and Felix Naumann. Instance-based "one-to-some" assignment of
similarity measures to attributes. In Proceedings of the International Conference
on Cooperative Information Systems (CoopIS), 2011.

[7] Tobias Vogel and Felix Naumann. Automatic blocking key selection for duplicate de-
tection based on unigram combinations. In Proceedings of the International Work-
shop on Quality in Databases (QDB), 2012.

[8] Yalin Wang and Jianying Hu. Detecting tables in html documents. In Proceedings
of the International World Wide Web Conference (WWW), 2002.

218 Fall Workshop 2012



References
Tr

ai
ni

ng
Te

st
B

lo
ck

in
g

ke
y

Fo
un

d
D

up
- li-

ca
te

s

C
om

pa
-

ris
on

s
P

ai
rs

C
om

-
pl

et
en

.

E
ffi

-
ci

en
cy

B
Q

Fo
un

d
D

up
li-

ca
te

s

C
om

pa
-

ris
on

s
P

ai
rs

C
om

-
pl

et
en

.

E
ffi

-
ci

en
cy

B
Q

[
f
a
m
i
l
y
n
a
m
e
-
0
,

f
a
m
i
l
y
n
a
m
e
-
1
,
z
i
p
-
0
,

z
i
p
-
1
,
z
i
p
-
2
]

67
2

40
7,

23
2

83
.5

8%
95

.8
8%

89
.3

1%
7,

15
1

27
0,

70
6

10
0%

97
.2

6%
98

.6
1%

[
s
t
r
e
e
t
-
1
,
s
t
r
e
e
t
-
4
,

z
i
p
-
0
,
z
i
p
-
1
,
z
i
p
-
2
]

67
0

39
6,

56
7

83
.3

3%
95

.9
9%

89
.2

1%
6,

72
1

40
5,

49
0

93
.9

8%
95

.9
0%

94
.9

3%

[
z
i
p
-
0
,
z
i
p
-
1
,
z
i
p
-
2
,

s
t
r
e
e
t
-
0
,
s
t
r
e
e
t
-
1
]

66
8

45
5,

23
0

83
.0

8%
95

.3
9%

88
.8

1%
6,

75
3

61
7,

04
0

94
.4

3%
93

.7
6%

94
.0

9%

[
z
i
p
-
1
,
z
i
p
-
2
,

s
t
r
e
e
t
-
1
,
s
t
r
e
e
t
-
4
]

67
0

91
4,

68
2

83
.3

3%
90

.7
5%

86
.8

8%
6,

71
7

46
5,

84
7

93
.9

3%
95

.2
9%

94
.6

0%

[
f
a
m
i
l
y
n
a
m
e
-
0
,

f
a
m
i
l
y
n
a
m
e
-
1
,
z
i
p
-
1
,

z
i
p
-
2
]

67
2

1,
08

2,
54

3
83

.5
8%

89
.0

5%
86

.2
3%

6,
72

1
43

2,
90

2
93

.9
8%

95
.6

2%
94

.7
9%

[
s
t
r
e
e
t
-
0
,
s
t
r
e
e
t
-
1
,

z
i
p
-
1
,
z
i
p
-
2
]

66
8

1,
06

0,
00

6
83

.0
8%

89
.2

8%
86

.0
7%

6,
71

7
37

9,
37

9
93

.9
3%

96
.1

6%
95

.0
3%

[
s
t
r
e
e
t
-
1
,
s
t
r
e
e
t
-
4
,

z
i
p
-
0
,
z
i
p
-
2
]

67
0

1,
12

9,
84

3
83

.3
3%

88
.5

8%
85

.8
7%

6,
73

1
54

5,
09

1
94

.1
2%

94
.4

9%
94

.3
0%

[
f
a
m
i
l
y
n
a
m
e
-
0
,

f
a
m
i
l
y
n
a
m
e
-
1
,
t
i
t
l
e
-
3
,

z
i
p
-
1
,
z
i
p
-
2
]

66
1

1,
06

0,
66

3
82

.2
1%

89
.2

8%
85

.6
0%

6,
73

6
99

3,
98

7
94

.1
9%

89
.9

5%
92

.0
2%

[
f
a
m
i
l
y
n
a
m
e
-
0
,

f
a
m
i
l
y
n
a
m
e
-
1
,
t
i
t
l
e
-
2
,

z
i
p
-
1
,
z
i
p
-
2
]

66
1

1,
06

0,
66

6
82

.2
1%

89
.2

8%
85

.6
0%

6,
72

7
1,

24
1,

66
9

94
.0

7%
87

.4
5%

90
.6

4%

[
f
a
m
i
l
y
n
a
m
e
-
0
,

f
a
m
i
l
y
n
a
m
e
-
1
,
t
i
t
l
e
-
4
,

z
i
p
-
1
,
z
i
p
-
2
]

66
1

1,
06

0,
66

8
82

.2
1%

89
.2

8%
85

.6
0%

6,
71

7
38

8,
31

2
93

.9
3%

96
.0

7%
94

.9
9%

Ta
bl

e
2:

C
om

pa
ris

on
of

th
e

ke
y

fig
ur

es
fo

rt
he

fir
st

10
be

st
bl

oc
ki

ng
ke

ys
in

th
e

tra
in

in
g

da
ta

se
ta

pp
lie

d
on

th
e

te
st

da
ta

se
t.

Fall Workshop 2012 219





Integrated Software Development for
Embedded Robotic Systems

Sebastian Wätzoldt

Systems Analysis and Modeling Group
Hasso Plattner Institute

sebastian.waetzoldt@hpi.uni-potsdam.de

In the recent years, improvements in robotic hardware have not been matched by
advancements in robotic software and the gap between those two areas has been
widening. To cope with the increasing complexity of novel robotic embedded systems
an integrated and continuous software development process is required supporting dif-
ferent development activities and stages being integrated into an overall development
methodology, supported by libraries, elaborated tools and toolchains. For an efficient
development of robotic systems a seamless integration between different activities and
stages is required. In the domain of automotive systems, such an overall develop-
ment methodology, consisting of different development activities/stages and supported
by elaborated libraries, tools and toolchains, already exists. In this report, we show
how to adapt an existing methodology for the development of automotive embedded
systems for being applicable on robotic systems.

1 Introduction

In novel robotics applications steady improvements in robotic hardware is not matched
by advancement in robotic software leading to an increasing gap between those two
areas. The increasing complexity of modern robotic systems requires to further sup-
port several different software development activities such as modeling, simulation and
testing that allow the incremental development of robot systems, starting with a sin-
gle sensor and resulting in a complex application. Elaborated tools and toolchains are
required to support the different activities and integrate them into an overall and well
structured development methodology. To realize an efficient software development pro-
cess, on the one hand, one has to provide libraries supporting individual development
activities at different levels, e.g., at the level of individual sensors and control functions
or at the level of systems or sub-systems, being incrementally composed. On the other
hand, a seamless migration between individual development activities and stages has
to be achieved. Furthermore, one crucial aspect that needs to be considered for a
large portion of robotic systems is real-time behavior.

Accordingly, the following aspects need to be considered for bridging the gap be-
tween hardware and software development in novel robotic systems: (I) An overall
methodology is required that supports (II) different development activities like model-
ing, simulation and testing at (III) different stages, e.g., simulation, prototyping and

Fall Workshop 2012 221



Integrated Software Development for Embedded Robotic Systems

(pre-)production. Such a methodology has to be supported by (IV) elaborated tools
and (V) libraries integrated into (VI) an overall toolchain allowing a seamless migration
between the different development stages and artifacts. (VII) Simulation and testing
support is required for the stages, allowing to validate created functionality, developed
sub-systems or systems, e.g., by providing executable functional models, simulation
environments and plant models. (VIII) Last but not least, real-time constraints need to
be reflected.

As an example, in the automotive domain large complex real-time embedded sys-
tems are developed using different development stages, e.g., simulation, prototyping,
and pre-production. Advanced tools and libraries have emerged during the recent
years, integrated into sophisticated toolchains supporting different development stages
as well as a seamless migration between them. To deal with the increasing complexity
and to further reduce software development costs as well as time, advanced frame-
works for the distributed and component-based development have been developed. In
this report, we propose adapting the existing software development methodology used
in the domain of automotive embedded systems to support the software development
of novel, complex embedded robotic systems. The proposed methodology includes an
overall development process consisting of tools included into an overall toolchain as
well as libraries. We apply this existing approach to the domain of robotic systems and
evaluate as a proof of concept, which modifications have to be made. The approach is
evaluated using a mobile robot developed according to the adapted methodology. Spe-
cial attention is given to real-time constraints that need to be considered in a slightly
different way than in the case of automotive real-time embedded systems. Therefore,
we show a new approach for combining hard and soft real-time behavior in the existing
automotive framework.

The remainder of this report is organized as follows. Section 2 briefly discusses the
foundations of robotic as well as automotive systems and introduces a running exam-
ple for this report. Section 3 describes our development approach including different
stages and highlights our used tools as well as simulation and verification possibilities.
The report discusses related work in Section 4 and concludes in Section 5.

2 Foundations – Robotic and Automotive Systems

2.1 Robot Laboratory

For the evaluation of our research activities, we use our CPSLab1 robot laboratory
consisting of three Robotino robots.2 The robots can be equipped with several sensors
(e.g., laser scanner, infrared (IR) distance sensors, GPS like indoor navigation sys-
tems) as well as different actuators (e.g., servo motors, omnidirectional drive, gripper).
The general idea of our evaluation scenario is the realization of a variable production
setting, where robots are capable of transporting small pucks (representing goods in
a production system) to different locations. Robots have to fulfill different requirement,

1www.cpslab.de
2www.festo-didactic.com

222 Fall Workshop 2012



2 Foundations – Robotic and Automotive Systems

e.g., they have to provide basic functionality like moving and avoiding obstacles in hard
real-time (reacting on obstacles within a few milliseconds). Further, the robots have
to reflect high level goals, e.g., energy saving of the battery, short routing to the desti-
nation points and optimizing the throughput while transporting the pucks. While basic
functionalities, such as obstacle avoidance, have to be realized in hard real-time, we
use existing libraries to realize higher functionalities such as path planning or creating
a map by evaluating measured distance values. The latter can rarely be realized un-
der hard real-time constraints because of insufficient libraries.3 Furthermore, we run a
RTAI Linux operating system4 on the robot to enable hard real-time execution.

As a running example, we use a single robot with the following hardware/ software
configuration: The robot has three wheels realizing an omnidirectional drive. The drive
unit provides an incremental encoder to realize odometry functionality, which calcu-
lates the relative position over time according to the drive speed and the orientation of
the omnidirectional drive of the robot. Due to the fact that this odometry calculation be-
comes more and more imprecise over time, we use an additional GPS like (NorthStar5)
indoor navigation system to correct the position in the long run. IR distance sensors
are used to avoid obstacles during movement. A more complex navigation logic uses
these sensors for maintaining a map3 as well as computing an appropriate route for
the robot while avoiding obstacles.

2.2 Automotive Development Process

A commonly applied development process for the development of automotive embed-
ded real-time systems according to [4] is depicted on the left in Fig. 2. The develop-
ment process includes three different stages, namely the simulation, prototyping and
pre-production stage. During the simulation stages models are extensively used for
realizing control functionality as well as for representing the environment. At the pro-
totyping stage, a transition from a model-based to a software centric development ap-
proach is realized. Often, this is achieved by using code generators that automatically
derive source code from the models used in the previous stage. In the pre-production
stage, more and more aspects of the real system are involved, e.g., by using prototyp-
ing HW including the processor type (with additional debugging support) that is later
used. Furthermore, parts of the real plant enable a realistic validation of the real-time
behavior.

2.3 AUTOSAR

The AUTomotive Open System ARchitecture was invented to further support the devel-
opment of complex and distributed systems. AUTOSAR6 is the new de facto standard
in the automotive domain. It defines a layered architecture, standardized communi-
cation mechanism and a whole development methodology. Furthermore, it supports

3For path planning and creating a map the MRPT library is used (www.mrpt.org).
4www.rtai.org
5www.evolution.com/products/northstar/
6www.autosar.org

Fall Workshop 2012 223



Integrated Software Development for Embedded Robotic Systems

the interaction between different car manufactures and suppliers. Figure 1 gives an
overview of the layered AUTOSAR architecture. The layer at the bottom represents

ECU-Hardware

Basic Software

AUTOSAR Runtime Environment

                                                      AUTOSAR

                                                      Software

AUTOSAR

Software

Component

Interface

AUTOSAR

Software

Component

Interface…

Figure 1: The layered AUTOSAR architecture according to the specification in [12].

the real hardware including microcontroller and communication busses. An abstraction
layer on top of the real hardware, included in the basic software layer, offers standard-
ized interfaces for accessing the HW. Further functionality realizing the OS behavior as
well as functionality for realizing communication is included in the basic software layer.
The AUTOSAR runtime environment (RTE) is responsible for realizing the communica-
tion from and to the top software application layer. Software components (SWCs) re-
alize application functionality at the layer on top. There, the architecture style changes
from a layered to a component based approach [12]. SWCs communicate over well-
defined ports using AUTOSAR interfaces, which are realized by the RTE layer. Each
SWC consists of an arbitrary number of so-called Runnables that specify the behavior
entities of each component.7 Such Runnable entities are mapped on OS tasks, which
are scheduled and handled by the operation system included in the basic software
layer.

2.4 Automotive vs. Robotic Systems

In an automotive embedded system, usually applications are developed in such a fash-
ion that hard real-time capable functionalities are separated from soft real-time appli-
cations. For example, it is quite common to deploy soft and hard real-time functionality
on disjoint execution nodes and direct communication between them is avoided.

For robotic systems it is quite common to combine soft and hard real-time behavior
into one application. For example, a mobile robot needs to avoid obstacles under
hard real-time during navigation while calculating a route and updating a map. Both
functionalities need to be combined while predicting the execution time, e.g., of a route
planing algorithm, is often not possible.8 Thus, one difference between automotive
and robotic systems concerning the real-time behavior is, that soft and hard real-time
capable functionalities need to be more closely linked in robotic systems.

7The functionality of a Runnable can be realized by a C/C++ function.
8Execution time depends on the size of the map, which is usually not known before runtime.

224 Fall Workshop 2012



3 Development Environment

3 Development Environment

In this section, we describe our development environment, the tools and libraries used
in the different development stages as well as our test and verification possibilities dur-
ing system development. According to [4], we distinguish three development stages
at different levels of abstraction targeting specific key aspects, namely simulation, pro-
totyping and pre-production. Validation and verification activities are applied in each
stage according to the given abstraction level. On the left in Figure 2, the overall pro-
cess including the different stages is shown. In the following, we describe the applied
validation and verification activities of each stage in the form of the libraries, methods
and tools used. Furthermore, we show how to achieve an AUTOSAR conform sys-
tem realizing the complex behavior of the robot incrementally developed, validated and
verified during the different development stages.

MT/MiL

RP SiL

HiL

ST

MT = model test

MiL = model-in-the-loop

RP = rapid prototyping

SiL = software-in-the-loop

HiL = hardware-in-the-loop

ST = system test

SystemDesk

Robotino®View

Robotino®SIM

Simulation 

stage

Prototyping 

stage

Pre-production 

stage

Matlab/ Simulink/

Stateflow

TargetLink

Figure 2: On the left are the three development stages according to [4] in combination
with our toolchain during software and system development on the right.

Fall Workshop 2012 225



Integrated Software Development for Embedded Robotic Systems

3.1 Simulation Stage

turnRate

2.5

speedY

0

speedX

10

Runnable

FUNCTION

Position Y

Position X

Orientation

Odometry

vxIn

vyIn

omegaIn

stepSizeSec

posX

posY

phi

Constant

0.02

DRA_CommunicationOutport_connected
1

Figure 3: Odometry in MATLAB, which calculates the position from fix drive speed and
turn rate.

Individual functions as well as composed behavior, resulting from multiple individual
functionalities, are the subject of the simulation stage. Data flow models in the form of
block diagrams (e.g., MATLAB/Simulink) usually in combination with control flow mod-
els like Statecharts (e.g. Stateflow) are used [6]. Normally, function development is
done independent from platform specific limitations (memory capacity, floating point
calculation or effects resulting from discretization). Additionally, environment specific
signals and other real sensor values (e.g. produced by A/D, D/A converter or specific
communication messages) are ignored for the sake of simplicity. The goal of the simu-
lation stage is to prove that the functional behavior can work and as a result provides
a first proof of concept for control algorithms.

As depicted in Fig. 2 and according to the aspect (IV), we mainly use the MATLAB
tool suite including the Simulink and Stateflow extension in this development stage.
Let us consider the MATLAB model shown in Fig. 3, as an example modeling the func-
tionality of an odometry. It reads data from moving sensors to calculate changes in the
position over time according the actual orientation and movement speed of the robot. In
the simulation stage, such a model is used to apply a so-called model test (MT), where
individual functionalities can be simulated sending static input values to the model (e.g.,
drive speed and turn rate of the robot as in Fig. 3) and plotting the computed output
values as shown in Fig. 4. These one-shot/ one-way simulations are typical for the MT
step and do not consider the interaction with the environment or a plant model. More
complex behavior is constructed and validated in the form of individual functionalities
and running model-in-the-loop (MiL) simulations [4] including preliminary environment
models of the plant. At this point in time, feedback simulations validate the developed
functionality considering the dynamic behavior of the environment. Outputs are sent
to the plant model, which itself gives feedback used as input for the function blocks in
the next iteration of the MiL simulation. In such a manner, the overall control law can
be validated concerning basic constraints like stability, safety or reliability of the system
(VII).

In the case of robotic systems, such a plant model can be represented at different
levels, e.g., by using models representing a single sensor, the behavior of a single robot

226 Fall Workshop 2012



3 Development Environment

using multiple sensors or in the case of a complex simulation realizing the behavior of
multiple robots as well as relevant parts of the logical and/or physical environment.
Using such a plant model in the context of a MiL simulation, we must bridge the gap
between our MATLAB models and the provided model of the plant (VI). For this pur-
pose, on the one hand, we use the RobotinoSim simulator in combination with the
graphical RobotinoView environment9 to create plant models (cf. the upper path from
the simulation stage in Fig. 2). Therefore, we implemented a block library for MAT-
LAB in our development environment, which allows access to sensors (e.g., distance
sensors, bumper, incremental encoder, electrical motors) and actuators according to
requirement (V). The sensors and actuators can be accessed individually inside a MiL
simulation supporting the validation of the models (VII). The RobotinoSim simulator
provides optimal sensor values excluding effects such as sensor noise. Therefore, on
the other hand, we can access the HW of the robot directly via a wireless LAN con-
nection. Due to the fact that we use the concrete HW in this simulation setting, we
could verify our functionalities and control algorithm with real sensor values including
measure errors and sensor noise.

To sum it up, on the right in Fig. 2, one can follow the toolchain used via the flow
arrows.10 However, we are not limited to the RobotinoSim tool in our development
approach. We use this tool to show the proof of concept, but in general it is possible
to create block libraries in MATLAB or use existing ones11 for other robots, simulation
frameworks or individual sensors/ actuators.

3.2 Prototyping Stage

The focus of this stage changes from design to implementation. While in the simulation
stage models are the main artifacts, in this stage the source code plays a major role.
In the following, we show how to support the prototyping stage at the level of more
isolated functional parts as well as at the level of the system behavior by using the
professional, commonly used tools of the automotive domain.
Function Level – TargetLink: In the automotive domain, code generators are com-
monly used to derive an implementation for the specific target platform. Usually, the
models from the simulation stage are directly used or refined until a code generation
step is possible. In our development environment, the tool TargetLink from dSPACE
is fully integrated into MATLAB and can automatically derive the implementation from
behavior models in form of C-Code. In this step, we use the same MATLAB blocks as
discusses in Section 3.1. So, we are able to seamlessly migrate (VI) our functions and
control algorithm from the model level, realizing continuous behavior, to the implemen-
tation level, realizing a discrete approximation of the original continuous behavior.12

We can configure several characteristics of the desired target platform/ HW.

9In the following, we only mention the simulator, but we always use both tools together in combination.
Tools see: www.festo-didactic.com

10The described RP flow to the real robot is not shown in the figure.
11For example this toolbox: http://petercorke.com/Robotics_Toolbox.html
12Discretization is applied at different levels. E.g., fixed point variables are used for the implementation at

the data level or time continuous differential equations are mapped to discrete execution intervals at the
timing level. For further details compare [4].

Fall Workshop 2012 227



Integrated Software Development for Embedded Robotic Systems

Figure 4: MiL (dashed line) and SiL simulation values of the odometry block.

Software-in-the-loop (SiL) simulation is a first step from the pure model execution
to a code-based testing. Certain assumptions can be validated by replacing more and
more models with code. While still executing the software on a host pc and not on
the real HW, different effects can be analyzed, which result from chosen configura-
tion parameters during code generation. Just as in the MiL simulation case, a SiL
simulation can be applied in MATLAB using the generated source code instead of the
original model. The developer can switch between the MiL and SiL simulation mode
in MATLAB. Therefore, he can easily compare the simulation results. Fig. 4, for ex-
ample shows the monitored results of the position as well as the orientation from the
MiL and SiL simulation runs of the odometry. The simulations run against the Roboti-
noSim simulator. In the MiL run (dashed line), appropriate values for the actual position
and orientation are calculated. Because of rounding (discretization) effects in the SiL
run, the calculated values are much too low. So, the difference between pure model
simulation and code generation becomes visible.

The problem in this special example could be fixed by choosing different values for
the discretization over time. Calculating the position each 0.02 time units (corresponds
to a scheduling with a period of 20 ms, cf. the constant value in Fig. 3) leads to very
small offsets in the position, which is often rounded to zero due to discretization. After
we identified the problem, we could easily fix it in the model. Instead of a 20 ms
period, we double it to 0.04 time units for calculating the position. After generating
code again, we could validate our assumption, which leads to a new requirement to
trigger the functionality of the odometry with a period of 40 ms. Using code generators
for automatically deriving the implementation realizing the behavior of initially created
models support the seamless migration from the model level to the implementation
level as well as allow to analyze effects arising from the implementation. Therefore, we
cover the aspects IV, VI, and VII developing robotic systems at this point.

228 Fall Workshop 2012



3 Development Environment

Odometry

Runnable

Omnidrive

Runnable

}

}

Figure 5: Mapping from MATLAB models to SWCs.

System Level – SystemDesk:
For more complex system behavior resulting from the composition of multiple indi-

vidual functionalities, we use the component-based architecture provided by the AU-
TOSAR framework. Individual functionalities provided by the MATLAB models are
mapped on components such as those depicted in Fig. 5. The generated source code
from TargetLink is mapped into the AUTOSAR SWC in the form of so-called Runnables.

Figure 6: SWC architecture in AUTOSAR.

So, the same C-Code as in the SiL simulation is used and thus, a seamless inte-
gration (VI) of individual functions into the overall system behavior is achieved. In our
example, we split the MATLAB model into two Runnables, namely OdometryRunnable
and OmnidriveRunnable.13 The SWC communicates to other ones over well defined
ports. Furthermore, the input and output values are mapped to AUTOSAR interfaces
with data entries and types respectively.

The AUTOSAR architecture consists of four SWCs14 (see Fig. 6). It realizes the
autonomous movement of the Robotino robot and includes the SWCs DriveOdome-
trySWC, DistanceSensorsSWC, NorthStar and NavigationLogicSWC. Each SWC pro-
vides the functionality such as that described previously in Section 2.1.
System Configuration: In addition to the architecture modeling and the separation of
functions in different SWCs, SystemDesk supports a task specification for the under-
lying operating system. Runnables can be mapped to different tasks. Furthermore,

13This separation allows us to trigger the two Runnables with different periods.
14Due to a better understanding, we choose this simple excerpt of a larger architecture.

Fall Workshop 2012 229



Integrated Software Development for Embedded Robotic Systems

several task activation events including periodic and sporadic ones are supported and
additional scheduling information like periods and priorities can be modeled.

For a system simulation, one has to specify a concrete AUTOSAR conform sys-
tem configuration, which includes 1) a set of tasks, each consisting of one or more
Runnables, 2) one or more electronic control units, which are specialized proces-
sors, and 3) communication capabilities (buses) with a concrete mapping of messages,
which have to be exchanged. In the following, we describe the first point in more detail
using our running example.

0 10 2010 20 30 40

DistanceSensor

OmniDrive

CalculateDriveSpeed

Odometry

0 10 2010 20 30 40

DistanceSensor

OmniDrive

CalculateDriveSpeed

Odometry

NorthStar

NorthStarReceive

DE
DE

Trigger Completion

Figure 7: Upper time line: scheduling of hard real-time functions. Lower time line:
combined hard and soft real-time scheduling.

The Runnables DistanceSensor, OmniDrive and CalculateDriveSpeed are mapped
to an OS task, which is executed with a period of 20 ms. A second task with the derived
period of 40 ms contains the Runnable Odometry (cf. Section 3.2). The resulting
execution of the Runnables and the schedule of the tasks is depicted in the upper time
line of Fig. 7. These four basic functions run under hard real-time constraints, so we
can be sure that all deadlines are met.

After adding more information to satisfy points 2) and 3), SystemDesk can real-
ize a system simulation. It automatically generates the required simulation framework
code according to the AUTOSAR standard, e.g., the RTE, messages, task bodies and
trigger events. Furthermore, existing source files, generated by TargetLink (from the
MATLAB models), are compiled and linked into the tasks. The complete system runs
in a special simulation environment inside the SystemDesk tool and considers the HW
configuration as well as OS task specifics. Again, this simulation is executed on a host
PC and thus belongs to the prototyping stage. As depicted in Fig. 2,we can validate the
overall system behavior in the three following scenarios considering the aspects (VI,
VII, and VIII): First, we can monitor different output values, messages and variables
inside the simulation environment itself. Second, we can connect the Robotino simula-
tion environment as a plant model, which interacts with the SystemDesk tool. Finally,
we are able to replace the plant simulator with the real robot. Therefore, we have to es-
tablish a W-LAN connection for the communication and to access the real sensors as
well as actuators. Unfortunately, this unpredictable connection can destroy the timing
behavior of the simulation, although the simulator tries to keep all deadlines. If we find
errors during our validation processes, we can change the configuration, architecture
or communication possibilities in SystemDesk and run our simulations again. Further-
more, we are able to re-import SWCs into MATLAB and therefore, switch between the
different development stages.

230 Fall Workshop 2012



3 Development Environment

According to the stage description in [4], Hardware-in-the-loop (HiL) simulations can
be applied in the prototyping stage too. In these kind of simulations, the "unlimited"
execution and testing hardware is often replaced by special evaluation boards with
additional debugging and calibration interfaces, which are similar to the final hardware
configuration. Due to limitations of our robot laboratory and missing evaluation boards,
we do not use such HiL simulations. However, the integration of such boards can be
carried out easily in the SystemDesk tool by changing the HW specification during the
system configuration step.
Adaptation to Robotic Systems: In contrast to classic (hard) real-time applications in
the domain of automotive embedded systems, robotic systems must realize functional-
ities, for which worst-case execution times (WCETs) are hard or impossible to predict.
As a result, the integration of such behavior can only guarantee soft real-time con-
straints. In our application example, we use the NorthStar sensor, which is accessed
via a serial USB port. Due to the fact that we use the default Linux OS driver, the timing
behavior is unpredictable for that port. Additionally, we implement the navigation logic,
which uses this NorthStar sensor, with library function from the MRPT library (cf. Sec-
tion 2.1) for maintaining the map information of the explored topology. This includes
the dynamic instantiation of an unknown number of C++ objects (classes) at runtime,
what hinders the WCET estimation, too. Therefore, the WCET can rarely be estimated
at the range of a few milliseconds.

Due to te fact that AUTOSAR does not directly support such a combination of soft
and hard real-time behavior, we need to adapt the framework to realize it in such a
way that: (1) the schedule guarantees the preservation of hard real-time constraints
for the basic functionality and (2) the communication between soft and hard real-time
functionality is achieved as such that only consistent data is read.

In the first step, we separate the hard and soft real-time functions/ Runnables and
map them onto different OS tasks. A soft real-time task can be configured with a lower
priority in such a way that it will be interrupted by all hard real-time tasks with a higher
priority. Following this development guideline achieves the first requirement (1). For
the second one, we use special data events (DE) in combination with Sender/Receiver-
interfaces of the AUTOSAR standard. Such events can be used to trigger the execution
of Runnables inside an OS task. A DE is sent from the hard real-time task (resp.
Runnable) to trigger the execution of the soft real-time Runnable. The interruptible soft
real-time function produces another DE, iff, the requested output data is in a consistent
state (2). The hard real-time task can read the data in its next period and triggers the
soft real-time function again if required.

The lower time line in Fig. 7 illustrates the combined scheduling of soft and hard
real-time tasks. The soft real-time task is triggered via a DE generated by the Om-
niDrive Runnable. During execution, it is preempted in order to ensure the timing
deadlines of the other hard real-time Runnables. After the NorthStar Runnable has
finished its execution, it sends another DE to indicate completion, which includes that
the consistent data results can be read in the next period of the OmniDrive Runnable.

Our described development approach supports the prototyping stage of robotic sys-
tems very well. We are able to incrementally refine more and more information to spec-
ify the system while seamlessly integrating artifacts of the previous stages (VI). Activi-
ties like function development and system configuration can be applied in a round-trip

Fall Workshop 2012 231



Integrated Software Development for Embedded Robotic Systems

engineering approach (I, II). First, we develop the control functions in MATLAB (II). Af-
terwards, we generate code using the TargetLink code generation capabilities (IV). At
this point, we can manually integrate additional, arbitrary functionality in C/ C++or use
existing libraries (V). As soon as sufficient code artifacts and libraries are provided, we
are able to use the code generation and simulation capabilities of the SystemDesk tool
(IV, VII). Existing SWCs, e.g., developed in a previous project can be seamlessly in-
tegrated into the system architecture and new components can be exported as library
elements for other projects. Additionally, we have shown the idea of creating a com-
bination of hard and soft real-time tasks using the AUTOSAR framework during this
stage (VIII).

3.3 Pre-Production Stage

Within the pre-production stage, usually, a prototype of the real system is built. This
prototype is tested against external environmental influences (such as temperature,
vibration or other disturbances). The goal of this stage is to prove whether all require-
ments and constraints are still met on the real HW. During this last integration of all
components and system parts, upcoming problems should be fixed as early as possi-
ble and before the final production of the product starts [4]. In our setting, we did not
built any HW prototypes. Instead, we integrate the overall functions, components as
well as the generated RTE and tasks to a complete system, compile and run it on the
target processor of the robot15. So in this last step, we have no simulation semantic
and W-LAN connection to other tools. We can fully operate the behavior of the robot
in hard real-time. For verification, we use some hard real-time logging mechanism of
the robot OS. Furthermore, we can change the hardware composition of the robot by
adding or removing special sensors and actuators (see Section 2.1).

4 Related Work

Tackling the complexity of robotic and other embedded systems, we found a great deal
of previous work covering partial aspects of developing such systems. According to our
found aspects in Section 1 and our focus on the automotive domain, we combine the
existing development methodology from [4] and the AUTOSAR standard. We evaluate
our approach in a robotic production scenario using the component-based AUTOSAR
architecture [12]. Other frameworks often cover only parts of the found aspects. RT-
Middleware [1, 2] and ORCA [5] focus on the specification of components including
interfaces and ports (aspects IV, V, and VII). They lack the integration of an overall
methodology as well as architecture specification. Very similar to the AUTOSAR ap-
proach but with the focus on the robotic domain is the MOAST framework [3], which
covers the points II, III, IV, and partially VII. However, a seamless integration of an over-
all methodology and the support for different tools is missing. A good comparison with
other frameworks can be found in [8].

15We can automatically transform AUTOSAR compliant applications to the RTAI Linux.

232 Fall Workshop 2012



5 Conclusion

In the embedded world, testing and simulation are the major activities to verify the
behavior of the system [4]. We have made intensive use of the MATLAB, Robotino and
SystemDesk simulators. However, other simulators like Gazebo [7] or Webots [9] are
applicable as well.

Furthermore, there are other tools for modeling and simulation of AUTOSAR con-
form parts of the system architecture as the Real-Time Workshop(RTW) (MATLAB
extension) from the MathWorks company.16 The RTW extension is limited to compo-
nent functionality and interfaces. The overall system architecture description is needed
beforehand [11]. Parts of this description can be built by the Volcano Vehicle Sys-
tems Architect17 (VSA), which can import and export AUTOSAR conform architecture
description [10]. However, all these different tools can be used instead of the tools pre-
sented in this report, if the integration in the overall methodology as well as the support
for the different development stages is guaranteed.

Considering real-time constraints and combining hard and soft real-time tasks are
important because of the support for library functionalities in different use-cases. For
example, our navigation logic in this report cannot be done in a predictive amount of
time. Combining soft and hard real-time guarantees (1) a basic hard real-time be-
havior of the robotic system and (2) supports the development of complex algorithm
and higher system components. Existing robotic frameworks as the Robot Operating
System18 or Microsoft Robotics Studio19 are well established for developing complex
robotic systems. They have drawbacks concerning the integration of hart real-time
constraints.

5 Conclusion

We have shown in this report an overall methodology (I) along with different exemplary
development activities as well as artifacts on different levels of abstraction (II, III). We
know that not all tasks can be executed in HRT. Therefore, we have shown the idea
of combining different hard and soft real-time tasks into the overall system using the
AUTOSAR approach (VIII). Furthermore, we are able to integrate several tools and ex-
ternal libraries into our overall toolchain (IV, V, VI). However, we are not limited to the
tools we show in this report. This provided flexibility is stabilized by a clear structure
of different development stages (III) allowing a round-trip engineering for different func-
tions, the integration of components as well as the simulation and testing of the devel-
opment artifacts to the point of the complete system on the target platform. Therefore,
we adapt ideas of the automotive domain to the development of robotic systems.

As future work, we want to build a complex robot production scenario applying the
proposed methodology of this report and evaluate the interaction of soft and hard real-
time system parts.

16www.mathworks.com/embedded-systems/
17www.mentor.com/
18www.ros.org
19www.microsoft.com/robotics/

Fall Workshop 2012 233



References

Acknowledgment

This report is based on joint work with Stefan Neumann and Falk Benke. For more
information see [13].

References
[1] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and Y. Woo-Keun. RT-middleware: distributed compo-

nent middleware for RT (robot technology). In 2005 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 3933–3938, 2005.

[2] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. A software platform for component based
rt-system development: Openrtm-aist. In Proceedings of the 1st International Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots, SIMPAR ’08, pages 87–98, Berlin,
Heidelberg, 2008. Springer.

[3] Stephen Balakirsky, Frederick M. Proctor, Christopher J. Scrapper, and Thomas R. Kramer. A
mobile robot control framework: From simulation to reality. In Proceedings of the 1st Interna-
tional Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR
’08, pages 111–122, Berlin, Heidelberg, 2008. Springer.

[4] Bart Broekman and Edwin Notenboom. Testing Embedded Software. Wesley, 2003.

[5] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback. Towards component-based
robotics. In International Conference on Intelligent Robots and Systems, pages 163–168, 2005.

[6] Holger Giese, Stefan Neumann, Oliver Niggemann, and Bernhard Schätz. Model-Based Integra-
tion. In Model-Based Engineering of Embedded Real-Time Systems, Dagstuhl Castle, Germany,
volume 6100 of LNCS, pages 17–54. Springer, 2011.

[7] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2149–2154, 2004.

[8] Luis Manso, Pilar Bachiller, Pablo Bustos, Pedro Núñez, Ramón Cintas, and Luis Calderita. Robo-
comp: a tool-based robotics framework. In Proceedings of the 2nd international conference on Sim-
ulation, modeling, and programming for autonomous robots, SIMPAR’10, pages 251–262, Berlin,
Heidelberg, 2010. Springer.

[9] O. Michel. Webots: Professional Mobile Robot Simulation. International Journal of Advanced
Robotic Systems, 1:39–42, 2004.

[10] G. Sandmann and M Seibt. AUTOSAR-Compliant Development Workflows: From Architecture to
Implementation - Tool Interoperability for Round-Trip Engineering and Verification and Validation.
Technical Report 2012-01-0962, SAE International, 2012.

[11] G. Sandmann and R Thompson. Development of AUTOSAR Software Components within Model-
Based Design. Technical Report 2008-01-0383, SAE International, 2008.

[12] http://www.autosar.org/. AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf, 2011. page
id: 94ju5.

[13] Sebastian Wätzoldt, Stefan Neumann, Falk Benke, and Holger Giese. Integrated Software Devel-
opment for Embedded Robotic Systems. In Proceedings of the 3rd International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), volume 7628, pages
335–348, October 2012.

234 Fall Workshop 2012



 



 



Aktuelle Technische Berichte  
des Hasso-Plattner-Instituts 

 
 
Band ISBN Titel Autoren / Redaktion 

    
75 978-3-86956-

246-9 
Modeling and Verifying Dynamic Evolving 
Service-Oriented Architectures 
 

Holger Giese, Basil Becker 

74 978-3-86956-
245-2 

Modeling and Enacting Complex  
Data Dependencies in Business 
Processes 
 

Andreas Meyer, Luise Pufahl,  
Dirk Fahland, Mathias Weske 
 

73 978-3-86956-
241-4 

 

Enriching Raw Events to Enable Process 
Intelligence 

 

Nico Herzberg, Mathias Weske 
 

 
72 978-3-86956-

232-2 
Explorative Authoring of ActiveWeb 
Content in a Mobile Environment 

Conrad Calmez, Hubert Hesse, 
Benjamin Siegmund, Sebastian 
Stamm, Astrid Thomschke, 
Robert Hirschfeld, Dan Ingalls, 
Jens Lincke 
 

71 978-3-86956-
231-5 

Vereinfachung der Entwicklung von 
Geschäftsanwendungen durch 
Konsolidierung von Programmier- 
konzepten und -technologien 
 

Lenoi Berov, Johannes Henning, 
Toni Mattis, Patrick Rein, Robin 
Schreiber, Eric Seckler, Bastian 
Steinert, Robert Hirschfeld 

70 978-3-86956-
230-8 

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze, 
Gerhard Oswald, Rolf Stromann, 
Ulrike Seibold, Doc D'Errico 
 

69 978-3-86956-
229-2 

Akzeptanz und Nutzerfreundlichkeit der 
AusweisApp: Eine qualitative 
Untersuchung 

Susanne Asheuer, Joy 
Belgassem, Wiete Eichorn, Rio 
Leipold, Lucas Licht, Christoph 
Meinel, Anne Schanz, Maxim 
Schnjakin 
 

68 978-3-86956-
225-4 

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack 
(Hrsg.) 
 

67 978-3-86956-
228-5 

Cache Conscious Column Organization in 
In-Memory Column Stores 
 

David Schalb, Jens Krüger, 
Hasso Plattner 

66 978-3-86956-
227-8 

Model-Driven Engineering of Adaptation 
Engines for Self-Adaptive Software 
 

Thomas Vogel, Holger Giese 

65 978-3-86956-
226-1 

Scalable Compatibility for Embedded 
Real-Time components via Language 
Progressive Timed Automata 
 

Stefan Neumann, Holger Giese 

64 978-3-86956-
217-9 

Cyber-Physical Systems with Dynamic 
Structure: Towards Modeling and 
Verification of Inductive Invariants 
 

Basil Becker, Holger Giese 

63 978-3-86956-
204-9 

Theories and Intricacies of  
Information Security Problems 
 

Anne V. D. M. Kayem,  
Christoph Meinel (Eds.) 

62 978-3-86956-
212-4 

Covering or Complete? 
Discovering Conditional Inclusion 
Dependencies 
 

Jana Bauckmann, Ziawasch 
Abedjan, Ulf Leser, Heiko Müller, 
Felix Naumann 

61 978-3-86956-
194-3 

Vierter Deutscher IPv6 Gipfel 2011 Christoph Meinel, Harald Sack 
(Hrsg.) 
 

60 978-3-86956-
201-8 

Understanding Cryptic Schemata in Large 
Extract-Transform-Load Systems 
 

Alexander Albrecht,  
Felix Naumann 

 



 



 



ISBN 978-3-86956-256-8
ISSN 1613-5652




