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Abstract

Software development tools that work and behave consistently across different
programming languages are helpful for developers, because they do not have to
familiarize themselves with new tooling whenever they decide to use a new lan-
guage. Also, being able to combine multiple programming languages in a program
increases reusability, as developers do not have to recreate software frameworks
and libraries in the language they develop in and can reuse existing software
instead.

However, developers often have a broad choice with regard to tools, some of
which are designed for only one specific programming language. Various Inte-
grated Development Environments have support for multiple languages, but are
usually unable to provide a consistent programming experience due to different
features of language runtimes. Furthermore, common mechanisms that allow reuse
of software written in other languages usually use the operating system or a net-
work connection as the abstract layer. Tools, however, often cannot support such
indirections well and are therefore less useful in debugging scenarios for example.

In this report, we present a novel approach that aims to improve the program-
ming experience with regard to working with multiple high-level programming
languages. As part of this approach, we reuse the tools of a Smalltalk programming
environment for other languages and build a multi-language virtual execution en-
vironment which is able to provide the same runtime capabilities for all languages.

The prototype system Squimera is an implementation of our approach and
demonstrates that it is possible to reuse development tools, so that they behave in
the same way across all supported programming languages. In addition, it provides
convenient means to reuse and even mix software libraries and frameworks written
in different languages without breaking the debugging experience.
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1 Introduction

Computers have changed the way we think, work, and live. Today, software is used
for many different purposes including communication, automation, entertainment,
and many more. However, software applications still need to be designed and built
by software developers. These software developers are today more expensive than
the computers their code runs on. Additionally, software systems are becoming
more comprehensive as they are solving more and more complex problems. It thus
makes sense to design programming languages and tools to maximize program-
ming productivity.

There are different kinds of programming languages ranging from different
abstraction levels starting from C, which is comparatively close to the hardware,
to very high-level languages such as Domain-specific Languages (dsls), which
can span multiple abstraction levels and can often only be used for very specific
use cases. Usually, the higher the abstraction level of a language, the more it can
increase the productivity of developers, as they, for example, do not have to care
as much about the underlying operating system.

Dynamic programming languages not only abstract from the operating system.
They also enable programming paradigms such as Object-oriented Programming
(oop) and often come with a dynamic type system. Although this dynamicity
comes at performance costs in some cases, many developers prefer to use high-
level dynamic languages, for example Java, Python, Ruby, and JavaScript, and are
willing to trade performance – even when it matters – for platform independence
and a better programming experience.

Furthermore, a lot of work has already been put into minimizing the performance
differences between lower-level and higher-level languages. Different mechanisms
and techniques have also been developed that attempt to combine the best of both
worlds to some extent.

Nonetheless, the fact that there are many different programing languages with
different features has additional consequences for developers. In general, they often
have to choose a language for their programs and are then limited to the features
of that language. More importantly, they also have to learn how to use the tools for
each language which can be a significant overhead.

In this report, we propose an approach that aims to further improve the pro-
gramming experience with regard to working with different high-level dynamic
languages. To demonstrate this, we have implemented Squimera, an Integrated
Development Environment (ide) for dynamic languages. Squimera is named
after Squeak/Smalltalk, an interactive programming system, and Chimera, which
is a hybrid creature from the Greek mythology.
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1 Introduction

1.1 The Need for Software Development Tools

Creating software is a comprehensive activity which requires not only knowledge
and practice, but also a suitable set of software development tools. These tools are
often provided as part of an ide and usually support developers throughout the
entire software development process. Since most software development practices
apply to almost all programming languages, one can find similar tools for each lan-
guage: code editors can provide useful facilities such as syntax highlighting, code
completion, code linting, and refactoring utilities. Interactive debuggers simplify
the debugging interaction with an application.

However, it is often necessary to rebuild these tools from scratch for a new
programming language or to write extensions for existing ides in order to adapt
existing tools. Consequently, there are often differences between tools of different
languages. Sometimes they just look or feel different, sometimes they have different
features or behave differently. Nonetheless, whenever software developers learn a
new language, they often also need to learn how to use the tools provided by an
ide for that language. This sometimes is the reason why developers prefer to use
a familiar programming language for a project rather than using a new one that
needs to be learned first, but which might be a better fit for the specific use case.

This problem gets worse in a business context where multiple developers work
in a team, or even multiple development teams work on a bigger project. Then,
having to learn a new language while also adapting to a new language workbench
is a substantial investment for the company. And this might hinder companies to
migrate to newer technology.

The discrepancy between different tool sets for different languages states another
problem: some programming languages allow developers to do more than others.
In most languages, for instance, the conventional approach to write and maintain
program source code is to use offline editing tools. Afterwards, the program can
then be executed. Whenever a developer wants to change the application, however,
it is necessary to restart or reload the program. By contrast, other programming
languages, such as Smalltalk, provide incremental compilation and access to lan-
guage internals which encourages developers to make changes while a program is
running [65, p. 22].

1.2 The Need for Software Libraries and Frameworks

It is good practice to design software in a modular way, because it supports ex-
tensibility as well as reusability in software system [73, pp. 39–64]. This has led to
the development of software libraries and frameworks in different programming
languages which can be reused for different purposes.

Sometimes for example, a language’s standard library does not provide support
for a specific file format such as JavaScript Object Notation (json). Then developers
often implement a json parser library for that language. And to build, for example,
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1.3 Contributions

a server application, developers often can choose from a list of different server
frameworks per programming language.

However, just like tools are different for each language, frameworks and libraries
for similar purposes are different. They often provide different Application Pro-
gramming Interfaces (apis), differ in features, or behave differently. Additionally,
these modular software artifacts also need to be implemented from scratch for each
language.

To work around this problem, many programming languages provide Foreign
Function Interfaces (ffis) which allow an application to call routines from a pro-
gram written in another language. However, these interfaces are usually limited in
functionality and only support to call out to the operating system, to C, or other
lower-level languages. For this reason, one can often find a lot of wrapper libraries
that wrap around foreign function calls and provide a more convenient api in the
host language. Nonetheless, it often is inconvenient or sometimes even impossible
to test or debug the parts of an application that use ffi.

Another approach to cope with the reusability problem is the microservice ar-
chitecture which is often applied in much larger software systems that run in the
cloud [83]. Instead of writing one complex application, the application is divided
into many smaller applications with fewer responsibilities, so-called microservices,
which can all be written in different programming languages. The communication
between these services usually happens over network, for example via Remote
Procedure Calls (rpcs). Even though this approach allows better reuse of software
artifacts and supports software modularity, it also comes with certain disadvan-
tages: the network communication introduces a performance overhead as well as
other connectivity-related problems, it sometimes is hard to distribute responsibili-
ties in a reasonable way, and also software testing and deployment become more
complicated.

1.3 Contributions

This work aims to solve two problems: on the one hand, we propose an approach
that allows reuse of existing tools for different programming languages, rather than
having to reimplement them from scratch. We claim that this makes it easier for
software developers to work with more languages, as they do not have to learn how
to use the different tools in each case. Instead, they get a consistent programming
experience across all languages. On the other hand, we demonstrate how this
approach also allows reuse of software components written in different languages
in a more convenient way. This gives developers a broader choice when they have to
choose which frameworks or libraries they want to use in their applications, as they
can now pick components written in different languages. Our key contributions of
this work are as follows:

13



1 Introduction

• An architecture to compose multiple languages within the same live program-
ming environment with reflective capabilities for full execution control from
within the runtime.

• An implementation of said architecture using PyPy [92] for Python, Topaz [40]
for Ruby, and RSqueak/VM [14, 41] for Squeak/Smalltalk.

• Adaptations of the Smalltalk debugger and other tools that work consistently
across Smalltalk, Python, and Ruby.

• A more convenient alternative to ffis that allows developers to reuse software
libraries from different languages, without breaking their debugging tools.

1.4 Outline

In chapter 2, we provide background information and context for the different
aspects of our work. Then in chapter 3, we propose and explain our approach
which aims to solve different software development-related problems that were
discussed in this chapter. After that, we demonstrate how we have applied this
approach as part of our prototype system Squimera in chapter 4. In chapter 5, we
give different examples of how the system can be used and evaluate our approach
based on these examples. Afterwards, we compare Squimera to related systems
and discuss other related work in chapter 6. Finally, in chapter 7, we give a short
summary of our approach as well as an overview of future work.

14



2 Context

In the following sections, we introduce and explain different technologies and
terminologies which later help to understand our approach in chapter 3 as well as
the implementation of Squimera as described in chapter 4.

2.1 Virtual Execution Environments

A virtual execution environment or process Virtual Machine (vm) is a computer
program which is able to execute a programming language [98, pp. 13–17]. In
the following, whenever we use the term vms we will refer to process vms. In
contrast, system vms emulate hardware and allow the execution of entire operating
systems [98, pp. 17–22].

A vm often comes with support for multiple operating systems. This enables
platform-independent execution of programs written in the supported language,
as virtual execution environment normally abstract from the underlying operating
system and the platform architecture [98, pp. 15–17].

The Components of a Virtual Machine As illustrated in Figure 2.1, virtual ma-
chines usually consist of two key components: a compiler and an interpreter [98,
pp. 85–87]. In general, the compiler translates program code to a representation
the interpreter is able to then execute. To be more specific, the execution of a pro-
gram starts in a part of the compiler which is called scanner. It performs lexical
analysis on the program code and generates tokens, which is why it is sometimes
also referred to as lexer or tokenizer. In a second step, a so-called parser takes these
tokens and translates them into an intermediate representation, usually an Abstract
Syntax Tree (ast), or a parse tree and then bytecode. In addition to this, virtual

Figure 2.1: Overview of the main components of a virtual execution environment
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2 Context

machines may also consist of many other components such as a garbage collector
or various optimizers.

An ast is a tree representation of a program. Each node of the tree usually
represents an operation, except for leaf nodes which normally represent values.
Bytecode, on the other hand, is a more efficient and often optimized representation
of a program which does not contain structured information on the program it
represents anymore. Instead, it is a direct mapping of instructions in the language
to atomic bytecode functions, also referred to as opcodes, in the virtual machine.
Both, asts and bytecode, are typically platform-independent. Instead, they are
usually tied to a specific interpreter, which sometimes means that an older or
newer version of the same interpreter cannot execute the same bytecode or ast.

Depending on the type of intermediate representation used in a vm, an inter-
preter either evaluates a program by following the tree structure of an ast, or by
using an interpreter loop for bytecodes. ast interpreters have to traverse the tree
and jump between nodes which is an overhead compared to sequentially reading
in bytecode. On the other hand, it usually is easier to perform optimizations on
asts than on bytecode. In general, both kinds of virtual machines perform roughly
the same. The overall performance depends more on the programming language
to execute and the optimizations that can be applied to it in all parts of a vm.

Executing Object-oriented Programming Languages In oop languages, mes-
sages can be sent to objects [28, pp. 121–123]. As an example, sending address
to a Person object may return the person’s address. To facilitate such a message send,
a virtual machine often uses a Frame data structure [78, p. 114]. Such a call frame
usually stores the receiver of the message as well as a reference to the currently
executed method. Message sends, however, may call other messages as well. In our
example, the address message may assemble the person’s address by combining
the person’s name, street, zip code, and country. For this reason, a frame also stores
the sender frame and is executed as a child of another frame. This way for example,
the virtual machine knows for which frame the result of a person’s street is relevant.
Therefore, frames are stacked according to the program execution [96], which is
also known as call stack, program stack, or execution stack.

Listing 2.1 shows an example implementation of a frame in RPython for a
bytecode-based language implementation. On initialization, the bytecode, the
receiver, and a list of child_frame are provided. In this frame implementation, the
receiver is stored as the first value on the value_stack. Further, the Frame class
implements an interpret method which evaluates the frame and returns the result.
This method contains the interpreter loop for which it first initializes a temporary
variable pc for the program counter. The interpreter loop is implemented as a
while-true loop. First, the instruction is retrieved from bytecode using the pro-
gram counter. In a next step, this counter is incremented, so that it points to the next
position in the bytecode. After that, the corresponding bytecode implementation
for the instruction is looked up.

The CONST_INT instruction, for example, takes the next instruction as an integer
value, increases the counter one more time, and wraps and pushes the value onto

16



2.1 Virtual Execution Environments

Listing 2.1: Example implementation of a stack frame in RPython

class Frame:

def __init__(self, bytecode, receiver, child_frames):
self.bytecode = bytecode
self.value_stack = [receiver]
self.child_frames = child_frames or []

def interpret(self):
pc = 0
while True:

instruction = ord(self.bytecode[pc])
pc += 1
if instruction == CONST_INT:

value = ord(self.bytecode[pc])
pc += 1
self.push(W_IntObject(value))

elif instruction == ADD:
self.push(self.pop().add(self.pop()))

elif instruction == POP:
self.pop()

elif instruction == DUP:
self.push(self.peek(1))

elif instruction == JUMP_IF:
if self.pop().is_true():

pc = ord(self.bytecode[pc])
else:

pc += 1
elif instruction == INTERP_FRAME:

index = ord(self.bytecode[pc])
result = self.child_frames[index].interpret()
self.push(result)

elif instruction == EXIT:
break

# more bytecodes ...
else:

raise RuntimeError('Unknown bytecode: %s' % instruction)
if len(self.value_stack) == 1:

return self.pop()

# ...

17



2 Context

the value_stack. The ADD instruction pops the top two values from the stack, adds
them together, and pushes the result again. There usually are various opcodes to
further interact with a value stack, such as a POP bytecode to pop or a DUP bytecode
to duplicate the top value. A JUMP_IF bytecode, on the other hand, manipulates the
program counter if the top value is true, otherwise it just increments the counter
by one. Therefore, this bytecode can be used for conditional forward, but also
backward jumps in the bytecode. In this example, a frame can have children which
can be executed with the INTERP_FRAME bytecode. This instruction looks up the
index in the child_frame list, starts the interpretation of the frame, and pushes the
result back onto its own value_stack. Moreover, there usually are bytecodes that
can escape the interpreter loop, such as EXIT in this example. In addition to that,
there are many more instructions, for example, language-specific instructions that
add support for more data types and operations.

Performance Optimizations To increase the performance of a programming lan-
guage, various optimization techniques can be applied to almost all components
of virtual machines. The compiler might be able to produce an optimized ast or
bytecode by, for example, removing redundant instructions.

More importantly, “interpreting bytecodes is slow” [29]. Consequently, a lot of
work has been put into optimization techniques for interpreters. Polymorphic inline
caches can be used to significantly speed up method lookups for example [57]. Just-
in-time (jit) compilation is another optimization technique.

A jit compiler usually first tries to identify reoccurring control flow in the
runtime system by gathering profiling information. Then, it compiles the corre-
sponding code to machine code which is then cached and used instead of the
original code during the program execution. This machine code often combines
multiple interpretation steps into one, which further increases performance. More-
over, the compiler can apply additional optimizations including method inlining,
dead code elimination, or heap allocation elimination. However, a jit compiler
has to insert checks, so-called guards, to ensure that the machine code behaves
exactly as the interpreter would behave. Whenever such a guard fails, the execution
environment switches back to the interpreter.

According to Aycock [3], McCarthy’s Lisp [71] from the 1960s was the first sys-
tem to support jit compilation. Around twenty years later, new jit optimization
techniques were developed to efficiently execute the dynamic languages Small-
talk and Self [3, 33]. Today, sophisticated jit compilers can be found in many
virtual machines, including the Java Virtual Machine (jvm) [29], LuaJIT [82], and
PyPy [13].

Furthermore, ast interpreters can optimize the program execution by, for ex-
ample, rewriting the abstract syntax tree with specialized node that are faster
to execute. Würthinger et al. presented an approach for self-optimizing ast in-
terpreters [118] which was further implemented as part of the Truffle language
implementation framework [117].
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2.2 The Smalltalk Programming Language

2.2 The Smalltalk Programming Language

Smalltalk is a dynamic and object-oriented programming language. It was de-
signed and created in the Xerox PARC Learning Research Group by Alan Kay,
Dan Ingalls, Adele Goldberg, and others during the 1970s [49]. The first generally
released language specification is called Smalltalk-80. Unlike many other program-
ming languages, Smalltalk-80 includes a full-fledge programming environment
with different software development tools. In 1997, Kent Beck published a book on
“Smalltalk Best Practice Patterns” [10] based on these tools which has highly influ-
enced the way developers think about and design software in general. Moreover,
the original set of Smalltalk tools can still be found in many other programming en-
vironments. All of this indicates that these tools are mature and still state-of-the-art,
even though Smalltalk was designed almost 40 years ago.

Since then, many Smalltalk-80 implementations have evolved including Squeak/
Smalltalk [59], VisualWorks [58], GemStone/S [23], GNU Smalltalk [43], and many
others. Some of these implementations are for educational or research purposes,
others are used in a purely commercial context. IBM’s VisualAge is another example
for a Smalltalk-based and commercially used ide which later supported other
languages, such as Java [25], and eventually led to the development of the Eclipse
framework [32] which today is still in active development and heavily used by
many Java developers.

The Smalltalk Virtual Machine A Smalltalk system traditionally consists of two
components: an image file and a virtual machine. The image file contains a memory
snapshot which the vm loads when the file is opened. In this memory snapshot,
the last state including all objects of the environment is persisted and whenever
the user saves the environment, the vm creates a new memory snapshot and saves
the result to disk.

There are different Smalltalk virtual machine implementations for different Small-
talk implementations. The current default for many Smalltalk flavors and derived
languages was recently renamed from Cog vm [76] to OpenSmalltalkVM [77], is
based on the original Squeak/Smalltalk Virtual Machine [59], and comes with a jit

compiler. This virtual machine is mostly written in Slang, a subset of the Smalltalk
language. For this subset, there is a compiler, which is also written in Smalltalk and
which is able to translate Slang code to C code. This C code can then be compiled
to machine code for different operating systems and architectures.

The vm uses a bytecode interpreter loop which fetches and executes the next
bytecode of a CompiledMethod object. For this, the interpreter also has a reference
to the currently active MethodContext object, which represents a message send in
Smalltalk and in which it can look up the next instruction. Therefore, when an
image is opened, the virtual machine only has to identify the last active context
and then starts to execute the next bytecode of the corresponding CompiledMethod.

In addition to the bytecode set, the vm also implements primitive methods. These
primitive methods can be invoked from within the Smalltalk environment and are
used to facilitate the communication between the programming environment and
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2 Context

Figure 2.2: Screenshot of a Squeak 1.13u environment from 1996

the virtual machine. The Smalltalk-80 specification defines a bytecode set as well
as a list of primitives that a virtual machine needs to implement to be able to open
a minimal Smalltalk image. Moreover, the list of primitives can be extended by
vm-level plugins. This way it is possible to add support for new features that the
image can then access.

The Smalltalk Environment Figure 2.2 shows a screenshot of a Squeak 1.13u
environment which was released more than 20 years ago. The different windows
opened on the display screen were originally referred to as views [49]. Most of them
are examples of the different Smalltalk tools, except the three overlapping windows
on the top left which contain Squeak/Smalltalk’s license and useful information
on how to use the environment.

The most basic tool is called workspace 1 . Its main purpose is to provide docu-
mentation or templates of common expressions [48, pp. 111–112]. It can only hold
text, which can then be evaluated by the developer using different mechanisms
such as a doIt, a printIt, or an inspectIt. A doIt simply executes code, while a printIt
also displays the result of the execution in the text field [48, pp. 106–111]. An inspec-
tIt, on the other hand, opens an inspector window on the result. All mechanism
work in the same way: if code is selected in the text field, they execute the selection.
Otherwise, they execute the code on the line of the cursor. In addition to that, a
modern Squeak/Smalltalk environment also supports more mechanisms such as
exploreIts which open the object explorer tool instead of the inspector, or debugIts
which open the debugger.

The inspector tool 2 is designed for object inspection purposes and provides a
live view of object internals [48, pp. 144–154]. For this reason, it contains a list of
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all instance variables which can be inspected further. Moreover, the inspector tool
comes with a text field on the bottom that behaves similar to a workspace, but has
the self keyword bound to the inspected object. The object explorer, which was
introduced in a later version of Squeak/Smalltalk [102], is conceptually similar, but
presents the information in a tree structure [79, pp. 134–135].

Window 3 shows the interactive Smalltalk debugger [48, pp. 388–399]. It was
opened after a doIt was performed in the inspector, which in turn attempted to
divide the SmallInteger object 12 by 0. This caused a division by zero error which
is indicated in the window title of the debugger. The top part of the view lists the
different stack frames that led to the error. In the middle, a text field shows the
code that is being executed in the selected frame. Changing the frame selection
using the list on the top, also changes the source code shown in the text field. On
the bottom left of window 3 , there is an inspector-like component that is attached
to the receiver of the message, which is the SmallInteger object 12 again. The
bottom right half contains another variant of the inspector which shows further
information on the execution context. This includes thisContext referencing the
original MethodContext object which represents a frame in Smalltalk, as well as a list
of all temporary variables. In this case, there only is the temporary variable aNumber
which holds a reference to the SmallInteger object 0 that was used as the divisor.
Furthermore, the debugger allows the user to proceed with the execution, to restart
a frame, or to step to the next line of code via a context menu. This functionality
is especially useful, because the code shown in the text field is modifiable. This
means that developers are able to modify a Smalltalk application with the debugger
tool while it is running, also known as edit-and-continue debugging which we will
explain in section 2.4 in more detail.

The window 4 on the right shows the Smalltalk system browser [48, pp. 218–
291]. The upper half consists of four lists. The first list contains all class categories,
the second the classes for the selected category. Then, the different method protocols
are listed for the selected class, and finally there is a list with all methods for the
selected method protocol. A text field shows the code for the selected method on
the bottom of the system browser window. With this tool, it is possible to create new
classes in specific categories and to add methods in specific protocols to them. This
can be used to develop comprehensive software applications in a structured way.
Different context menus add useful features which further support the software
development process. With these features, developers are, for example, able to see
the class hierarchy of a given class, to list the senders or other implementors of a
method, and to refactor different parts of their applications conveniently.

In addition to the tools shown in Figure 2.2, Squeak 1.13u also shipped with
a transcript [48, p. 65], which is a tool similar to the workspace but with the
main purpose of logging messages, a file list browser [48, pp. 439–448] which lists
directories and files stored on disk, and a change list tool [48, pp. 472–477] to
browse the changes file which Squeak/Smalltalk maintains to keep track of all
changes in the system.

At the time of writing, the latest stable release of Squeak/Smalltalk is version
5.1. It contains improved versions of the tools presented before. Besides, more
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Table 2.1: Programming languages combined in Squimera

Language Creator Released in Default vm RPython alternative

Squeak/Smalltalk A. Kay et al. 1996 OpenSmalltalkVM RSqueak/VM
Python G. van Rossum 1991 CPython PyPy
Ruby Y. Matsumoto 1995 Ruby MRI Topaz

tools have been added that support the development process even further [102].
A process browser tool allows users to inspect, debug, suspend, and terminate
Smalltalk-level processes. For a convenient interaction with Smalltalk TestCases,
Squeak/Smalltalk’s test runner can be used. With the Monticello browser, it is
possible to manage Smalltalk code in local and remote repositories.

2.3 Technologies Used for Squimera

Table 2.1 gives a quick overview of the different programming languages and
some of their implementations we intend to use for Squimera. For all languages,
there is an alternative implementation in the language implementation framework
RPython [1]. We use Squeak/Smalltalk as our Smalltalk environment, because there
is an RPython-based vm called RSqueak/VM [14, 41]. We intend to pair this system
with the following two other language implementations: The most prominent
virtual machine implemented in RPython is PyPy [92], which is an implementation
of the Python programming language. The second language implementation in
RPython is Topaz [40], which is a vm for Ruby.

2.3.1 Squeak/Smalltalk and RSqueak/VM

Squeak/Smalltalk [59] is a Smalltalk dialect directly derived from the Smalltalk-
80 language specification. It is originally developed by Alan Kay, Dan Ingalls,
and others, most of which were also part of the Xerox PARC Learning Research
Group which designed Smalltalk-80. The default framework for Squeak’s graphical
user interface is Morphic [70], which originally was developed for the Self pro-
gramming language. Over the years, many projects have evolved from Squeak/
Smalltalk including Newspeak [19], Etoys [44, 62], Scratch [88], Pharo [12], and
Babelsberg/S [39].

As mentioned before, RSqueak/VM is a vm for Squeak/Smalltalk written in
RPython. It is developed and maintained by the Software Architecture Group at
the Hasso Plattner Institute in Potsdam. As part of various seminars, students
have implemented different concepts, ideas, and performance optimizations in
RSqueak/VM [41].
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2.3.2 Python, PyPy, and RPython

Python is a dynamic, object-oriented, and high-level programming language cre-
ated by Guido van Rossum [111]. It has a dynamic type system, an automatic
memory management, and comes with a comprehensive standard library which
makes it especially useful as a scripting language [7]. Its default virtual machine
is called CPython. According to the “TIOBE Programming Community Index for
April 2017” [107], it is on position five of the most popular programming languages.

PyPy [92] is an alternative implementation of the Python language. Because of
its jit compiler, it often executes Python programs much faster than CPython.
However, PyPy is not completely feature-identical and therefore does not support
all Python packages. Nonetheless, the PyPy maintainers constantly add support for
more packages while ensuring that compatibility for already supported packages
does not break. PyPy’s jit compiler is a tracing jit which traces the execution of
a program to detect frequently executed instructions which are then compiled to
machine code.

The RPython framework is part of the PyPy project and is a tool chain for build-
ing implementations of dynamic programming languages. Technically, RPython
is a subset of Python which can be compiled to C and then to machine code. For
this to work, RPython enforces a number of constrains on the way the Python
language can be used, for instance with regard to different data types. As part of a
compilation process, RPython determines low-level C types for each Python data
type which can fail when a developer has mixed different types, for example, in a
Python list. Additionally, the framework contains the jit compiler used for PyPy
which can be reused in other language implementations. Therefore, RSqueak/VM
can also leverage this jit compiler to increase run-time performance.

2.3.3 Ruby and Topaz

Ruby is a dynamic, object-oriented, reflective, and high-level programming lan-
guage created by Yukihiro Matsumoto [42]. Similar to Python, it has built-in mem-
ory management, supports dynamic types, and includes a powerful standard li-
brary. Similar to Smalltalk, on the other hand, everything in Ruby is an object,
because Matsumoto wanted Ruby to be “more object-oriented than Python” [101].
The default virtual machine for Ruby is called Ruby MRI, which stands for “Matz’s
Ruby Interpreter” and which sometimes is also referred to as CRuby. It is on posi-
tion ten of the most popular programming languages in the “TIOBE Programming
Community Index for April 2017” [107].

Topaz is an alternative Ruby implementation. Since it is written in RPython, it
features a tracing jit compiler which allows it to execute Ruby programs faster than
CRuby. Topaz only supports a limited set of Ruby programs, as its implementation
is still missing many Ruby MRI features.
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2.4 Exception Handling and Debugging

Mistakes made by software developers can lead to misbehavior within applications,
more commonly known as software bugs. These bugs eventually cause an infection
in the program, which in turn can then cause a program failure [120, p. 21]. On the
other hand, sometimes parts of an application are allowed to fail. For this, a pro-
gram can throw exceptions for which developers can then, for example, implement
fallback behavior.

Handling Exceptions in an Application In order to be able to deal with excep-
tions in a program, programming languages provide a mechanism called exception
handling. This mechanism has to be considered in many important parts of the
language, such as control flow, coroutines, concurrency, and polymorphism [22].
With exception handling, it is, for example, possible to implement fallback behavior
whenever a certain error or exception occurs. Exceptions thrown in an application
that do not have a fallback, are often called unhandled exceptions.

According to Yemini and Berry [119], there are four different models for ex-
ception handling: non-local transfer, termination, retry, and resumption. When an
error is detected, the control flow can be redirect dynamically to any location in a
program by using, for example, a goto-like statement to jump to a variable position.
This is referred to as a non-local transfer. However, experiences gained by the use
of these kind of transfers in the PL/I programming language show that non-local
transfers are error-prone and make it harder to maintain programs [68, p. 102]. In
the termination model, which is the most popular according to Buhr et al. [22], the
program is restricted to continue in an exception handler in the current stack frame
or one of its parent frames instead. The restart model allows restart of a failed
operation. However, this behavior can easily be recreated using the termination
model and loops [45, p. 834]. Finally, the resumption model provides the ability to
transfer control flow to an exception handler and then back to the point where the
exception was raised.

Although exception handling is somewhat related to software bugs, it does not
avoid or fix them. Instead, developers have to debug their programs.

Finding and Fixing Software Defects There are, of course, different techniques to
identify software problems and different ways to fix them. Zeller [120, pp. 200–225]
describes two approaches which help to observe misbehavior in programs. One
way is to introduce logging functions in a program, which print useful information
about the internal state of an application to the console or into a log file. However,
these functions often clutter program code and sometimes, it is hard to follow the
state when logging is too verbose. Another option is to use a debugger, which can
usually be attached to the process executing the program and which can provide
different facilities to inspect, but also to fix problems. The former technique is also
known as printf debugging, the latter as interactive debugging.

Debugging a program after it has crashed is often referred to as post-mortem
debugging [47, 81]. This type of debugging often requires that a bug is easy to
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reproduce, because developers might not be able to debug the program on the
system it failed on. Instead, they regularly use a development machine which
might not be set up in the same way the original system is set up, which can make
it more difficult to reproduce a problem.

While logging functions only allow post-mortem debugging, some interactive
debuggers support more powerful debugging techniques such as edit-and-continue
debugging [36] which is also sometimes referred to as fix-and-continue debugging [120,
pp. 223–224]. As the name suggests, this kind of debugging allows users to inspect,
modify, and resume a program while it is running. In Smalltalk, for example, the
interactive debugger is opened by the environment when an unhandled exception
is detected. Then, developers are able to see the code that triggered the exception,
as well as the current execution context including all stack frames. With that, they
are able to fix the bug in their application and finally restart one of the stack
frames that led to the exception. When the changes proposed by the developer
fixed the bug, the application continues to run. If not, another debugger window
is opened. However, this debugger feature highly depends on the capabilities of
the underlying execution environment, because it usually requires the ability to
change classes and methods at run-time, also known as code hot-swapping [35].

2.5 Summary

Bytecode loops are a common and well-understood technique to implement effi-
cient high-level dynamic languages, such as the Smalltalk programming language
upon which our work is built. Smalltalk was chosen for its mature set of tools,
which include a workspace, object inspection tools, and an interactive debugger.
RSqueak/VM is a vm for Smalltalk and written in the RPython framework, which
has been used for implementing many other high-level languages including Python
and Ruby. Important aspects of our work on combining multiple languages are
exception handling and the ability to change code at run-time during debugging.
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In chapter 1, we described the needs of software developers with regard to pro-
gramming languages, and highlighted pain points they encounter when starting to
work with a new language. The tools for each programming language are different,
but developers rely on them to build software efficiently. The same holds true for
software libraries and frameworks for various software development tasks, which
developers build to promote modularity and allow code reuse. As a result of that,
frameworks and libraries that have proven to be useful in one language are often
ported or recreated in other languages. This, however, means that all components,
including tools and reusable software artifacts, usually are written from scratch in
each language, which is also one reason why they often differ in functionality.

We propose an approach which aims to provide solutions for these problems
and which consequently attempts to result in a better programming experience
for developers. Because there are many different types of programming languages
that follow various programming paradigms, we focus on high-level dynamic
programming languages in our approach.

3.1 Reuse of Existing Software Development Tools

Instead of having to build new tools, we suggest to reuse existing tools on language
level. For one, this relativizes the problem for developers of having to adapt to new
tools whenever they switch to another programming language. Ideally, developers
are already familiar with the tools and only need to learn the syntax and concepts
of another language. Additionally, this eliminates the need to write tools from
scratch. Moreover, in a perfect scenario, a developer improves one tool and all other
developers can benefit from that improvement, no matter which programming
language they use. This perfect scenario might come with new challenges or might
be hard to reach, but reusing tools that already exist is one step towards this goal.

Tools Are Usually Not Part of the Language In most programming languages,
the tools are not part of the language implementation, which is one reason why
they can have different functionalities. Some languages ship tools as part of their
standard library, but as long as these tools are not deeply integrated with the ex-
ecution environment, they are limited in use. For some language implementers,
tools or certain features might not even be important enough, so they leave the tool
building activity to, for example, language users or third parties. Consequently,
the common approach of building ides, as shown in Figure 3.1a, is to have them
separate from the process that executes the language. In this setup, an ide commu-

26



3.1 Reuse of Existing Software Development Tools

(a) ides like Eclipse or PyCharms run
separately from the language process

(b) In Smalltalk, the ide is part of the
process executing the language

Figure 3.1: Architectural comparison of two different ide approaches

nicates through some run-time api with the execution environment, which again
often provides very different capabilities for inspecting and controlling programs
that are being executed. To interact with objects at run-time, ides often operate on
some kind of proxy objects that represent the real objects living in the language
process. Many ides allow adaptation of their tools, but not all of their features
always match with those provided by the language of interest. And this mismatch
often causes a rather inconvenient experience for developers.

Some companies are commercially successful with building mature tools and
ides for professionals, but they are usually also limited to what the language and
its execution environment allow them to do.

In Smalltalk systems, however, the programming environment is part of the
language and therefore runs in the same process, as illustrated in Figure 3.1b.
Moreover, the language is mostly self-contained and designed in a generic way.
Instead of having to call out to a run-time api which might limit them in func-
tionality, Smalltalk tools have direct access to language internals. This allows for
very powerful features that support developers in building software more interac-
tively. Because of its generic and adaptable design and its feature-rich tools, we
believe a Smalltalk environment makes a good reusable ide for other programming
languages.

Furthermore, there is a renewed push in current research to allow developers to
use live run-time data that can be explored and manipulated to understand and
extend software systems [18, 112]. A Smalltalk environment also is able to provide
such capabilities.

Composing Language Implementations In order to be able to reuse tools from
a Smalltalk environment, multiple languages need to be combined in one virtual
execution environment. Moreover, language implementation frameworks such as
Oracle’s Truffle framework [115] or the RPython framework [1] are increasingly
used to implement alternative execution environments for programming languages.
Therefore, we can build a vm supporting multiple languages with relatively low
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effort if we combine a Smalltalk-80 implementation written in such a framework
with one or even more other language implementations written in the same frame-
work. Because there is RSqueak/VM, a Smalltalk vm written in RPython, we choose
RPython for our approach.

However, this kind of language composition raises the question of how to exe-
cute two or more languages at the same time. Even though Smalltalk was designed
many years before multi-core processors were introduced, processes are part of the
language to support parallel computing [49, pp. 251–257]. As we will demonstrate
further in chapter 4, it is possible to coordinate the execution of a non-Smalltalk pro-
gramming language with the Smalltalk process scheduler, ultimately creating new
Smalltalk-level processes for each foreign language invocation. Since the environ-
ment’s user interface is also updated by such a Smalltalk-level process, it is possible
to interact with the environment while programs written in other programming
languages are being executed.

Nonetheless, the Smalltalk scheduler can only coordinate the execution of dif-
ferent Smalltalk-level processes if these processes complete, or, in case of a long-
running process, yield at some point. Therefore, we need to ensure that language
processes can be suspended and continued at a later point in time. Since they are
responsible for running code in a different interpreter loop, this implies that we
need to make sure that we can suspend and continue interpreter loops at any time.
This mechanism is supported by some programming languages through the notion
of continuations [89], but relying on that would rule out many other languages.
Instead, it would be better if there is a continuation mechanism which works on
interpreter-level.

Most interpreters, however, are implemented as stack machines that manage the
execution of code in nested stack frames [96], which is why they are sometimes
referred to as stackful interpreters [11, p. 390]. But this makes it rather impractical
to retrofit continuation capabilities into a language without changing or extending
its specification.

However, there is a mechanism we can use which is not specific to a lan-
guage, but to the underlying language implementation framework. In order to
enable stackless features in PyPy, RPython implements stacklets [106] as part of its
rpython.rlib.rstacklet package. Stacklets are C-level coroutines [64, pp. 193–200]
that can be used as a one-shot continuation. In PyPy, continulets and greenlets are
built on top of stacklets. If we use them in the same way in our language pro-
cesses, we can switch between the main thread and coroutines that run bytecode
interpreters as we wish.

In addition to this, we also need to find a way to ensure that an interpreter
eventually suspends itself and yields back to Smalltalk. Some interpreters already
have the capability to periodically perform specific actions which can be used for
this purpose. For implementing this, a simple counter is often used as a trigger
and executes periodic actions, for example, after a given number of bytecodes.
Therefore, if an interpreter does not support periodic tasks, it is straightforward to
add this feature when integrating the interpreter.
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Furthermore, Smalltalk vms have support for plugins which extend a virtual
machine with new primitives. Therefore, it makes sense, not only for modularity
reasons, to bundle the same set of primitives needed for a language implementation
in a plugin. This will also make it possible to change the programming languages
in the Smalltalk environment by simply changing the plugin the environment
communicates with.

Composing language implementations, on the other hand, opens up the ability to
retrofit features that allow developers to directly control the execution of a program
written in a foreign language. In case of interpreted languages, it is now possible
to manipulate the interpreter loop in such a way that it is possible to restart a
specific frame for example. This ability is later required to enable edit-and-continue
debugging as described in section 2.4.

Moreover, programming languages can use different exception handling models.
In Smalltalk, exception handling is implemented in the language, which means
that the virtual machine does not need any capabilities to handle language-level ex-
ceptions. The implementation follows the resumption model of exception handling
which is also needed to allow edit-and-continue debugging.

In contrast, Python, for example, uses the termination approach of error handling
and does not allow developers to repair the cause of an error nor does it support to
retry a failing operation [110, p. 20]. Instead, exceptions are propagated to parent
execution frames which is also known as stack unrolling or stack unwinding [22]. This,
however, needs to be avoided to be able to provide the same debugging experience
as in Smalltalk. If the debugger is opened after the stack is unrolled, it would not
be possible to see the root cause of the problem, because the corresponding frame
and intermediate frames have already been removed from the call stack. But since
we also do not want to change the exception handling mechanism of the Python
language, we have to determine whether an exception is handled or not by one of
its parent frames at the time it is raised and before the stack is modified.

In order to ensure that all of these different features exist that are required for
proper tooling support and to match the Smalltalk programming experience, we
can introduce appropriate abstractions for foreign language implementations. Once
the abstract interface is implemented for a given language, the tools will then be
ready to use for that language.

Bridging Between Smalltalk and Other Languages This interface, however, is
not only part of the virtual machine implementation. It also has to reach into
the Smalltalk environment. The reason for this is that the Smalltalk tools need to
communicate with objects from foreign languages, so some kind of bridge between
the languages is required. First, it needs to be possible to perform foreign method
or function calls from Smalltalk. For this reason, we propose to map the Smalltalk
semantics to foreign languages. We claim that this is possible, because Smalltalk is
designed in a generic way and is therefore flexible enough for semantic mappings
like this. Then, we need to introduce a new Smalltalk class which is used by the vm

to represent objects of a foreign language in the environment. This new Smalltalk
class has to inherit from Smalltalk’s Object class. Only this way we can ensure
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that foreign language objects implement the Smalltalk meta-object protocol which
the tools use to communicate with all objects. After that, we can start overriding
methods that are part of this protocol, so that they return information of the foreign
language object they represent. These method overrides, however, need to return
Smalltalk objects, so there also needs to be some facility that can be used to convert
objects between the languages. In chapter 4 we will demonstrate, that it is sufficient
to support the conversion of primitive data types in order to make the tools work.

Adapting the Smalltalk Tools After integrating another language like this into
the environment, it is possible to adapt the Smalltalk tools. Instead of extending
the original tools, we introduce subclasses for each tool and extend it by overriding
existing methods and by adding new ones.

In order to not break the tools for Smalltalk objects, we consistently add a check
at the beginning of each override method, as shown in Listing 3.1. This check only
needs to determine if the tool operates on a foreign language object and if it does
not, we call and return the original method from the super class. For convenience
reasons, isForeign is added as an extension method to the Object class in Smalltalk,
and is overridden in ForeignObject as well as in all tool adaptations.

The simplest tool to adapt is the Smalltalk workspace. Since its main job is to
evaluate code, only the method which is responsible to execute user input needs
to be implemented. Instead of using the Smalltalk compiler, it has to redirect the
code to the corresponding foreign language plugin. The plugin then starts a new
Smalltalk-level process which evaluates the code using the language’s interpreter
and finally returns the result. To make Smalltalk printIts work, the corresponding
language class in the Smalltalk image only needs to override the printOn: method
which is used to generate the print string representation in Smalltalk. This is all
that needs to be done to adapt the first tool.

Similar to the workspace, the inspector and object explorer tools can be adapted
to add support for inspectIts and exploreIts. They mostly operate directly on the
object on which they are opened on, so we just have to make sure that the foreign
language class implements the corresponding methods, such as a method to return
all instance variables and a method that retrieves a value of an instance variable of
an object. Lastly, we again add subclasses for each tool and override the method
that is used when evaluation code in the tools code input fields. Similar to the
workspace, the code to evaluate needs to be sent to the corresponding foreign
language plugin which then executes the code accordingly.

Listing 3.1: Method override pattern used to retain a tool’s original behavior

methodName
self isForeign ifFalse: [ ↑ super methodName ].
"Code for foreign language objects..."
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Figure 3.2: Example architecture of our approach

Adapting more tools is straightforward, because it works in a similar fashion:
First, create a subclass of the original tool, then override methods appropriately
as well as methods of the foreign language class that are used by the tool. For the
Smalltalk debugger, for example, only a reasonable amount of methods need to be
overridden. Even though the debugger is a lot more complex than the inspection
tools and reaches deeper into language internals, this demonstrates that it is indeed
straightforward to adapt other Smalltalk tools.

In chapter 4, we will demonstrate how we adapted Smalltalk tools independently
from the foreign language, so that subclassing tools and overriding some of their
methods as described above does not need to be done for every language that is
added to the environment. This does add slightly more complexity to the tools, but
decreases the work to provide tools for a new language significantly.

Architecture As briefly mentioned before, we propose an architecture as part of
our approach. An overview is shown in Figure 3.2 and later used for the imple-
mentation of the Squimera system. The system conceptually consists of two main
components: a virtual machine and a Squeak/Smalltalk environment. The vm has
support not only for Smalltalk, but also for other languages such as Python and
Ruby. For the communication between the environment and the runtime, the virtual
machine provides a plugin for each non-Smalltalk language. All of these plugins
are implemented consistently as they all inherit from an abstract foreign language
plugin. In Squeak/Smalltalk, we introduce different classes for each of those foreign
languages. The Python and Ruby classes, in this case, facilitate the communication
with the vm and can, for example, create a new PythonProcess or RubyProcess
respectively. These process objects represent the execution of a language and can

31



3 Approach

be used by the Smalltalk scheduler to resume them, but also to retrieve information
about the current state of the execution. The classes PythonObject and RubyObject,
on the other hand, are used to expose foreign objects inside the environment. Addi-
tionally, we introduce subclasses from Smalltalk tools and add some other classes
that are required for tool support.

3.2 Reuse of Existing Software Libraries and Frameworks

Main Program

Operating System

Foreign Sub-program

Runtime Environment #1 Runtime Environment #2

Tools

(a) Software reuse through ffis

Main Program

Operating System

Foreign Sub-program

Multi-language Runtime Environment 

Tools

(b) Software reuse through our approach

Figure 3.3: Comparing ffis to our approach with regard to software reuse

Similar to adopting existing tools, it is valuable to developers to be able to reuse
existing software artifacts. In fact, it would be very useful if developers are not
limited to choose from a list of frameworks and libraries written in the language
they develop in, but also from lists of modules written in other languages. In the
worst case, they have to recreate something that already exists. As mentioned in
section 1.2, some languages provide ffis which allow an application to call into
other programs, but these interfaces are often inconvenient to use. Figure 3.3a
demonstrates why. Usually, an ffi call is somehow propagated to the operating
system which then starts a sub-program in another process on top of another exe-
cution environment. The tools, however, can only interact with the main program’s
run-time, which is why they are limited when it comes to debugging ffi calls for
example.

Further Benefits of Our Tool Reuse Approach On the other hand and as part
of adopting the Smalltalk tools described in section 3.1, we already had to bridge
between the two languages. Therefore, it is already possible to call out to foreign
languages and to convert primitive data types back and forth. But this integration
is, of course, not limited to adapting tools. Instead of calling internal functions of
the foreign language, we can also call out to libraries that are implemented in this
language. Hence, we are immediately able to reuse software libraries of a foreign
language in Smalltalk. In section 5.3, we will give a few examples of how this can
be used. More importantly, the tools are able to operate on both, the main program
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as well as the sub-program, because everything shares the same virtual execution
environment, as visualized in Figure 3.3b.

However, additional work is needed to support the reuse of software frameworks.
Unlike in libraries, control flow is usually inverted in frameworks [38]. This implies
in our case that it also needs to be possible to call from foreign languages back into
Smalltalk to be able to use foreign frameworks.

Furthermore, this additional work has another positive effect. When integrating
more than one foreign language with Smalltalk, for example Python and Ruby, we
are also able to reuse Ruby libraries and frameworks in Python and vice-versa. The
Smalltalk language then acts as a communication layer between the two languages
while providing development tools for both at the same time.

3.3 Summary

Our approach is based on interpreter composition which allows us to build a multi-
language virtual machine for a Smalltalk programming environment. With this,
we can adapt various Smalltalk tools for developing other languages and provide
a consistent programming experience. As another result of this integration, our
approach also allows the reuse of software libraries and frameworks written in
different languages in a convenient way and with debugging support across all
integrated languages.
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In this chapter, we explain how we have implemented our Squimera proto-
type system based on the approach described in chapter 3 and highlight impor-
tant implementation details. For the different programming languages, we are
reusing existing implementations written in the language implementation frame-
work RPython [1].

Squimera’s multi-language vm is based on RSqueak/VM and needs less than
1,600 SLOC of additional RPython code. Of these, roughly 500 SLOC are needed for
each specific language integration, while more than 500 SLOC are shared between
all integrated languages. Furthermore, we have adapted different Squeak/Smalltalk
tools in Squimera which requires 19 classes in total, and around 1,250 SLOC of
Smalltalk code.

4.1 Building a Multi-language Virtual Machine

In section 3.1, we argue that we need to combine multiple languages in one virtual
execution environment in order to be able to reuse Smalltalk tools. To build such
a virtual machine, we use interpreter composition. Instead of implementing a
programming language on top of another, the vm contains multiple interpreter
loops. In the following, we describe how we performed the interpreter composition
in a modular way, so that other interpreters can be added, and explain how the
different interpreter loops are being executed.

4.1.1 Programming Language Execution

As mentioned in section 3.1, interpreter composition requires some unit that de-
cides when to run code in which interpreter loop. Smalltalk, which acts as the host-
ing language for other languages, implements co-operative multitasking through
processes [49, pp. 251–257]. We leverage this mechanism and integrate the execution
of a foreign language with a Smalltalk-level process, leaving the decision when to
run a foreign interpreter loop up to the Smalltalk scheduler. This will allow us to
interact with the Squeak/Smalltalk environment as usual while a program written
in a non-Smalltalk language is running. Furthermore, we will be able to see such a
language execution process in Squeak/Smalltalk’s process browser and interrupt
it from there in order to inspect it further.

Inside the vm, such processes are responsible to facilitate the execution of code in
the corresponding interpreter loop. They are represented as plugin-specific objects
which can also be exposed in the Smalltalk environment. This way, a Smalltalk-level
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process can keep a reference to the corresponding language process in the virtual
machine. This reference allows us to have more than one foreign language process
and can be used to retrieve further information about the execution of the language
process in Squeak/Smalltalk including the top frame and the last error.

Making Stackful Interpreter Loops Interruptible To be able to suspend and
continue a stackful interpreter loop at any point in time, we use RPython stacklets
as well as greenlets.

Listing 4.1 contains a minimal example of how a StackletThread provided by the
rpython.rlib.rstacklet package works. We have added print statements in the
example to highlight the execution flow. The output of this example can be found
in Listing 4.2. The StackletExample class has a start and a coroutine method.
The start method is invoked by the boilerplate functions main and target which
are used by RPython as an entry point. As part of the start method, a new
StackletThread instance is created and then a new stacklet is allocated. For this,
the new method of a StackletThread takes a callback function which in turn is
invoked as soon as the new stacklet starts. In this example, the stacklet_callback
simply calls the coroutine method on the Example instance and provides a handle.
When this handle is used in a switch call on an instance of StackletExample, the
program execution continues in the main thread and the initial new invocation
returns a fresh handle back to the coroutine. With these handles, it is then possible
to switch back and forth between the main thread and the coroutine. However, one
needs to make sure to always use a valid handle and to always only use it once,
otherwise the virtual machine may crash with a segmentation fault. Furthermore,
it is possible that a switch invocation returns an empty handle, which usually
indicates that a coroutine has terminated. Finally, also example.start() finishes
and then the program terminates.

We use StackletThreads in our virtual machine to implement a runner for our
language processes. This StackletLanguageRunner class exposes a simple inter-
face that can be used to control the execution of the corresponding language
process. Such a process needs to be provided at the time of instantiating a
StackletLanguageRunner. Then it is possible to start, yield, and resume the exe-
cution of the process with the runner. However, StackletThreads only work after
the vm is translated to machine code. Just like PyPy, RSqueak can be executed in
interpreted mode for development purposes. In order to not break the interpreted
mode, we have implemented another runner based on so-called greenlets.

With stacklets, we have a generic way to start, stop, and resume stackful inter-
preter loops in RPython for both, translated and interpreted modes. In a next step,
we need to ensure that composed interpreters eventually yield back to Smalltalk,
so that the Smalltalk scheduler can choose the next Smalltalk process to execute.

Ensuring That Interpreter Loops Yield Whenever code of a foreign language is
executed in our virtual machine, the corresponding interpreter is entered and its
interpreter loop is executed. Code that runs and returns quickly is unproblem-
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Listing 4.1: Minimal rstacklet example in RPython

from rpython.rlib.rstacklet import StackletThread

class StackletExample:
def start(self):

print 'main: start'
self.sthread = StackletThread()
handle = self.sthread.new(stacklet_callback)
print 'main: first return from coroutine'
handle = self.sthread.switch(handle)
print 'main: second return from coroutine'
handle = self.sthread.switch(handle)
assert self.sthread.is_empty_handle(handle)
print 'main: end'

def coroutine(self, handle):
print 'coroutine: start'
handle = self.sthread.switch(handle)
print 'coroutine: continue'
handle = self.sthread.switch(handle)
print 'coroutine: end'
return handle

example = StackletExample()

def stacklet_callback(handle, arg):
return example.coroutine(handle)

def main(argv):
example.start()
return 0

def target(driver, args):
driver.config.translation.continuation = True
return main, None
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Listing 4.2: Output of the rstacklet example in Listing 4.1

main: start
coroutine: start
main: first return from coroutine
coroutine: continue
main: second return from coroutine
coroutine: end
main: end

atic, because it does not block the execution of other Smalltalk-level processes.
Long-running algorithms or even applications that do not terminate, such as web
servers, for example, would block other processes if they do not yield back to
Smalltalk, because the Smalltalk scheduler is unable to elect the next process to be
executed.

Some interpreter loops already have the capability to periodically perform other
actions in between executing bytecodes. The Squeak/Smalltalk vm, for example,
has an interrupt service routine which frequently checks for mouse and keyboard
input [65, p. 72]. With sys.setcheckinterval(), it is possible to adjust the interval
that determines “how often the interpreter checks for periodic things such as thread
switches and signal handlers” [109, p. 23] in Python.

To implement these kind of mechanisms, there often is a simple counter in the
interpreter that counts how many bytecodes have been executed. Once a threshold
is reached, the periodic tasks are performed. However, having such a counter
introduces a performance overhead. In order to minimize this overhead, there are
mainly two different strategies, because there are two ways to implement endless
routines: with recursion, or with loops. The former results in frequent message sends,
the latter in a high number of backward jumps.

Nonetheless, it usually is sufficient to increment an interrupt counter and check
for interrupts after backward jumps only, to keep the overhead as low as possible.
Python and Ruby, for example, have a maximum stack depth or recursion limit
which makes recursion impractical for endless routines. Even most Smalltalk inter-
preters, which do not enforce such a stack depth limit, only check for interrupts
after backward jumps and disregard message sends. To detect such a backward
jump, only the program counter in the bytecode code loop needs to be observed. If
the value of the next pc is less than the value of the old counter, a backward jump
occurred.

For the Ruby support in Squimera, we need to patch the Topaz interpreter
accordingly. First, we introduce a vm-level InterruptCounter which we then use
in the interpreter loop. In case the loop is not just-in-time compiled, we incre-
ment the counter every time a new bytecode is handled by overriding Topaz’s
Interpreter.handle_bytecode method. However, if the loop is jit compiled, we
only check for interrupts in the Interpreter.jump method, and only if a backwards
jump is detected. This is an additional optimization to counteract the performance
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discrepancy between the interpreted and jit compiler modes, as the counter is
incremented more often when the bytecode loop is not optimized and thus runs
slower. Whenever the interrupt counter triggers, the vm switches back to Smalltalk.
As a heuristic default value, we use a threshold of 10, 000 ticks which is the same
value PyPy uses for its interrupt routine. In PyPy, the builtin interrupt mecha-
nism allows us to register a PeriodicAsyncAction to periodically switch back to
Smalltalk.

4.1.2 Preparing Languages for the Smalltalk Debugging Experience

In order to be able to bring the same debugging experience known from Smalltalk
to other programming languages, there are two main requirements for language
implementations. First, a language needs to be able to identify unhandled exceptions
on which a debugger is opened in Smalltalk. And second, it needs to be possible
to restart execution frames of a language to enable edit-and-continue debugging.
Both features are not supported by PyPy and Topaz, nor CPython or Ruby MRI.
In the following, we explain how we extended both RPython-based interpreters
accordingly.

Detecting Unhandled Exceptions A long-running program executed in the way
described before may encounter an exceptional situation during its execution. In
this case, the corresponding interpreter also needs to yield back to Smalltalk and
inform the image of the exception, so that a debugger can then be opened accord-
ingly.

In Python and Ruby, however, the interpreter starts to unroll the stack as soon
as an exception is thrown. Then, it might be handled by one of the parent stack
frames. But if the exception is not handled at all, the runtime usually fails with a
run-time exception instead and the entire process exits with a non-zero status code.

(a) An exception is raised,
but not handled, in the
calculate_response()
stack frame

(b) The handle_request()
frame does not handle
the exception raised by
its child frame

(c) The run_server()
frame handles the excep-
tion, returns a fallback
response, and continues

Figure 4.1: Exception handling uses the termination model in Python
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Figure 4.1 shows a minimalistic example of how stack unrolling is used to im-
plement the termination model of exception handling in Python. For each method
invocation, there usually is a corresponding stack frame. Hence, nested invocations
result in nested stack frames. When an exception is raised, the interpreter looks for
a corresponding exception handler represented by a special code block in the vir-
tual machine. For that, each frame holds a reference to a linked list of blocks which
can handle exceptions, but which are also used to signal other Python statements
such as break, continue, or finally. If no block was found for the exception, the
frame is removed and the execution continues in its parent frame. This is the case
in Figure 4.1a as well as in Figure 4.1b. The interpreter then continues to look for
an appropriate block until it finds one or has reached the top frame. In Figure 4.1c,
it has found an exception handler in run_server() and starts to execute the fall-
back behavior. However, at this point in time, the two child frames have already
been removed from the call stack. If the run_server() frame had not caught the
exception, the interpreter would have continued in the main() frame and, if unable
to find a handler for the exception, finally quit with an error.

In Smalltalk, on the other hand, a debugger is opened on the original stack frame
in which the exception was raised instead of unwinding the stack. Only this way
users are able to inspect, modify, and resume a running application. Therefore,
we need to avoid stack unrolling in Ruby and Python, because it would not be
helpful to present a debugger after all stack frames have already been unrolled.
This means, unhandled exceptions need to be identified as soon as they are thrown,
independently of the language being executed.

Listing 4.3: Stack frame walking in the PyPy interpreter for Squimera

def has_exception_handler(self, operr):
"'True' if the frame or a parent frame is able to handle 'operr'"
# ...
frame = self
while frame is not None:

# ...
block = frame.lastblock
while block is not None:

# block needs to be an ExceptBlock and able to handle operr
if ((block.handling_mask & SApplicationException.kind) != 0

and frame.block_handles_exception(block, operr.w_type)):
return True

block = block.previous
frame = frame.f_backref()

return False
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The main problem is that neither the Ruby nor the Python interpreters were
initially designed to detect unhandled exceptions, because it is not needed to im-
plement the termination model of exception handling. However, it is possible to
detect the majority of unhandled exceptions with the following technique: Instead
of unrolling the stack, we start to walk the stack frames and search for a corre-
sponding exception handler. This may sound like a straightforward solution. As
we will explain later, it is quite complicated to identify unhandled exceptions in
practice.

Both, the PyPy and the Topaz interpreters, have methods that are used as soon
as an error occurs. In PyPy, we need to patch our unhandled exception checks
into PyFrame.handle_operation_error, and into Interpreter.handle_ruby_error
in Topaz. Listing 4.3 shows how the stack frame walking works in the PyPy in-
terpreter. The algorithm begins with the current frame, and starts with its last
block. Then, it checks whether the block’s handling_mask indicates that it handles
exceptions. If it is indeed an exception handling block, block_handles_exception
is called and if it returns True, the exception will be handled later on. Otherwise,
the next block is inspected in the same way until the first block of the linked list is
reached. If this also is unsuccessful, the parent frame is inspected. This is repeated
until the top frame is reached. If no appropriate exception handler is found, the
function returns False. Only in this case, Squimera stores operr as the last error
in the corresponding language process and yields back to Smalltalk. The primitive
of a language plugin that is used coordinate the execution of corresponding lan-
guage processes, the “resume” primitive, checks whether an error occurred during
the execution and then fails to inform the Smalltalk environment. In this case, the
Smalltalk environment retrieves the last error stored in the language process by
using the “lastError” primitive and opens a debugger.

Checking If an Exception Block Handles a Given Exception Until now, the im-
plementation to detect unhandled exceptions was straightforward. The problem
of reliably detecting unhandled exceptions becomes clearer when we look at the
implementation of the block_handles_exception function for PyPy: At this point,
the frame, the exception handling block, and the exception are known. Unfortu-
nately, blocks do not store the exception that they handle. Instead, an ExceptBlock
in PyPy only stores a handlerposition, a valuestackdepth, and a reference to its
predecessor. When an exception occurs, it is passed to the first ExceptBlock. The
block then pops values from the value stack until the given valuestackdepth is
reached again. After that, it pushes new values including the exception onto the
value stack, stores the exception in frame.last_exception, and finally returns the
handlerposition which determines the next instruction in the interpreter loop. This
is how the stack unwinding is implemented in the PyPy interpreter. In fact, all
FrameBlocks, including a FinallyBlock and a LoopBlock, work like this, which is
why the mechanism is implemented in such a generic way. Consequently, we have
to analyze the call stack and the frames’ value stacks if we want to avoid major
design changes in the PyPy interpreter.
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Listing 4.4: A simple exception handling example in Python

try:
print 1/0

except ZeroDivisionError:
print 42

Listing 4.5: Disassembling Listing 4.4 with Python’s disassembler dis

2 0 SETUP_EXCEPT 13 (to 16)

3 3 LOAD_CONST 0 (1)
6 LOAD_CONST 1 (0)
9 BINARY_DIVIDE

10 PRINT_ITEM
11 PRINT_NEWLINE
12 POP_BLOCK
13 JUMP_FORWARD 22 (to 38)

4 >> 16 DUP_TOP
17 LOAD_NAME 0 (ZeroDivisionError)
20 COMPARE_OP 10 (exception match)
23 POP_JUMP_IF_FALSE 37
26 POP_TOP
27 POP_TOP
28 POP_TOP

5 29 LOAD_CONST 2 (42)
32 PRINT_ITEM
33 PRINT_NEWLINE
34 JUMP_FORWARD 1 (to 38)

>> 37 END_FINALLY
>> 38 LOAD_CONST 3 (None)

41 RETURN_VALUE
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Listing 4.4 shows a simple example for exception handling in Python. First, the
program attempts to print 1/0 which raises an ZeroDivisionError. This error is
then caught by the try-except block and finally, 42 is printed to stdout instead.
Listing 4.5, on the other hand, demonstrates how the program is executed in the
interpreter loop: In the first line, an exception block is created and added to the
frame. Its handlerposition points to line 16. Then, two constants are loaded onto
the value stack, the numbers 1 and 0. The BINARY_DIVIDE bytecode performs the
division. Normally, it pops the first two values from the value stack, divides the
values, and pushes the result back onto the value stack. Afterwards, the result
and a newline are printed to stdout. Since the exception block would no longer
be needed, it will be popped from the frame. After that, a jump to instruction 38

is performed, which jumps over the exception handling instructions. Finally, the
program terminates after pushing None onto the value stack and returning it which
is the default behavior of a top frame.

But, since the program tries to divide 1 by 0, an exception is raised in
BINARY_DIVIDE. This causes the interpreter to look for an ExceptBlock, which is
then executed and which redirects the execution flow to instruction 16. The DUP_TOP
bytecode duplicates the top value on the stack, which is the exception. Then, the
name of the exception of the ExceptBlock is loaded. In line 20, the type of the
raised exception is compared to the exception handled by the try-except block. In
case the exceptions do not match, a jump to instruction 37 would occur, and the
interpreter would fail, because of an unhandled exception. In the example, the
check is successful and the top three values are popped from the value stack again
to clean it up. Then, instruction 29 loads 42 onto the stack again which is finally
printed followed by a newline, followed by a jump to 38.

In case of the example in Listing 4.4, we perform bytecode analysis as soon as
BINARY_DIVIDE throws an error. First, the interpreter has to look for the closest
ExceptBlock. Then, we need to find out to which instruction in the bytecode the
block will jump. In all cases similar to the example, we expect to find the DUP_TOP
bytecode which is used to duplicate the exception on the value stack. This duplicate
and an exception name is then consumed by COMPARE_OP. Therefore, we need to
look for the instruction after the DUP_TOP which is expected to be the LOAD_NAME
bytecode. In the instruction call, we find the index of the name which we can then
use to look up the name of the exception that the block handles. Finally, we only
need to compare the raised exception with this exception name to check if the block
will handle it.

Nevertheless, there are many other ways to use try-except block in Python. The
example in Listing 4.6 demonstrates a few of them. Try-except blocks can be nested,
there can be multiple except statements in one try-except block, and there is a
way to specify to simply catch all exceptions. Additionally, the instance of an ex-
ception can be passed into an except case. Furthermore, one can not only specify
one, but multiple exceptions per except statement using a Python tuple. And, of
course, variables and functions can be used to dynamically specify which excep-
tions to catch. The exceptions_to_catch variable in the example is randomly set
to either ZeroDivisionError or (ZeroDivisionError, IndexError), which causes
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Listing 4.6: An example of other exception handling techniques in Python

exceptions_to_catch = ZeroDivisionError
if bool(random.getrandbits(1)):

exceptions_to_catch = (exceptions_to_catch, IndexError)

try:
try:

list()[1]
except exceptions_to_catch:

print 'inner fallback'
except IndexError as e:

print 'outer fallback'
except:

print 'catch-all fallback'

the program to randomly print “inner fallback” or “outer fallback”. Furthermore,
there are many other ways to use try-except blocks in Python, for example by using
metaprogramming. For Squimera, we have implemented detection algorithms for
the most common ways to catch exceptions. However, it is impossible to identify
unhandled exceptions reliably due to the ability to dynamically specify exceptions
with functions or metaprogramming.

Listing 4.7: Example of an exception being masked by a Python builtin

class MyClass(object):
def __getattr__(self, name):

if name == 'x':
raise AttributeError

instance = MyClass()
getattr(instance, 'x', 42)

Additionally, Python builtins also need to be considered, because they can mask
exceptions. Listing 4.7 shows an example for that. MyClass implements the method
__getattr__ which is internally used by Python to retrieve attributes of its in-
stances. If getattr(instance, 'x') is called, an AttributeError exception is raised
to indicate that the instance does not have an attribute called x. The Python builtin
getattr, however, also accepts an optional default parameter which is returned in
case of an AttributeError. Hence, getattr(instance, 'x', 42) returns 42 in the
example and suppresses the exception, just like next(iter([]), 42) which is an-
other example for the same problem. This means, to detect unhandled exceptions,
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the interpreter must not only check for corresponding ExceptBlocks, but also for
potential builtins that may handle a given exception type internally. And not only
a list of these kind of builtins is needed to check for each exception type, the algo-
rithm also needs to perform further bytecode analyses to figure out whether the
builtin was called with or without a default value. Squimera supports both, the
example with the getattr builtin and the example with the next builtin. Nonethe-
less, its unhandled exception detection still does not cover all cases. We will discuss
further limitations of this approach in section 5.5.

Adding Support to Restart Stack Frames To provide a Smalltalk-style debugging
experience, it is not only necessary to detect unhandled exception. In addition, it
also needs to be possible to modify a program at run-time. The Python debugger
module pdb uses Python’s global trace function to intercept the execution of a
program at run-time [109, pp. 75–76]. Even though, the debugger can be used to,
for instance, change values of variables, the execution frame can only be inspected
with Python’s inspect module and its attributes are mostly read-only. A frame’s
f_code attribute, for example, is read-only and holds the code object currently
being executed. But to make the Smalltalk debugger work the same way for Python
programs, it is required to be able to swap this code object with a new one and to
restart the frame afterwards.

As we demonstrate now, it is possible to extend the PyPy interpreter so that it
supports replacing the code in a frame and to restart it. First, we need to ensure
that a PyFrame object keeps all information that was used to create it. This way we
can later swap parts of this information with user-provided data and create a new
PyFrame object as a replacement.

(a) Stack frames of a program at the time
an KeyError is thrown and a debugger
is opened

(b) Stack frames after the user modified
the calculate_respone() method and
restarted the frame

Figure 4.2: Example of how PyPy stack frames are restarted in Squimera
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Figure 4.2a shows an example debugging scenario: A debugger is opened, be-
cause “bob” was not found in the users dictionary which raised a KeyError in
Python. When the user now modifies code in the debugger and saves it, the new
code as well as the selected frame are saved in the vm as restart information. At this
point, the corresponding language process is not executed by the Smalltalk sched-
uler, because the debugger is attached to it. When the user then decides to proceed
with the execution, the language process will be scheduled for execution soon after.
Before such a process is resumed, the resume routine checks if a user has set restart
information for a specific frame and then throws a RestartException at the current
point of execution in the bytecode loop. This exception is then propagated through
the call frame stack until the designated frame is found. This frame finally extracts
the restart information, such as the modified code, from the exception and creates
a new frame accordingly, which is then executed inside, but instead of the original
frame. Similar to Smalltalk, side effects are not rolled back. Hence, if a method, for
example, deleted a file, restarting the frame will not restore the file again.

The same approach can be applied the Topaz interpreter for Ruby. Nonetheless,
additional work is needed, because information on the current execution frame is
normally not exposed in Ruby. This means, the vm also needs to be able to expose
Topaz’s Frame and BuiltinFrame objects. For this, we implement a wrapper class
that inherits from Topaz’s W_BaseObject which the virtual machine then can use to
expose frames just like any other Ruby object in the Smalltalk environment.

4.1.3 Abstracting from Different Foreign Languages

As briefly described with Figure 3.2, there is a vm-level plugin for each foreign
language, which are part of the rsqueakvm.plugins package of RSqueak/VM. These
plugins expose a consistent api that is used to communicate with the Squeak/
Smalltalk environment. Figure 4.3 illustrates the vm architecture of Squimera. To
enable code sharing between different foreign language plugins, we introduce an
abstract ForeignLanguagePlugin class. This class implements all primitives needed
for the communication with the image. Moreover, it knows how to pre-load special
Smalltalk classes that are used by the vm to expose foreign objects in the image.
Lastly, it has a number of abstract methods that need to be implemented by each
subclass of this plugin.

Then, there is a ForeignLanguageProcess class which is internally used to repre-
sent language processes. Therefore, it knows how to switch between Smalltalk and
a foreign language, and can store the result or an error of the language execution.
Since the execution of a foreign language itself is language-specific, the class also
implements abstract methods that need to be overridden by each language that is
integrated into Squimera.

When the virtual machine is translated, a language process is executed by a
StackletLanguageRunner, in interpreted mode and for development purposes by
a GreenletLanguageRunner, both of which are also part of the foreign_language
package. In addition, the package also provides the two abstract classes
ForeignLanguageObject and ForeignLanguageClassShadow. Both classes implement
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Figure 4.3: Architecture of Squimera’s virtual machine

common behavior as well as abstract methods which are again overridden by
corresponding subclasses for each language. These subclasses are used to expose
foreign language objects in the Squeak/Smalltalk environment and, for example,
implement the method lookup. First, the lookup is performed in the corresponding
Smalltalk class, in PythonObject for Python for example. This allows us to later
implement Smalltalk methods that bridge between Smalltalk and the language, so
that foreign language objects can provide the same meta-object protocol as native
Smalltalk objects which is then used by different tools. After that, the method
lookup continues in the corresponding language implementation. We will explain
the method lookup in more detail in subsection 4.2.1. If a method was found,
however, the class shadow either returns the CompiledMethod in case of a Smalltalk
method or builds and returns a fake Smalltalk CompiledMethod which will activate
the “send” primitive of the appropriate language plugin.

For each language integration, we have added a dedicated sub-package in the
rsqueakvm.plugins package. The rsqueakvm.plugins.python package contains sub-
classes of all abstract classes from the foreign language package and only imple-
ments language specifics. With that, we mean not only the specialized subclasses,
but also other components such as the way an object space is set up for the inter-
preter, the different patches for the interpreter, as well as utility functions that can
convert primitive data types of the language it executes to native Smalltalk objects.
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Moreover, a PythonProcess not only holds the information for its execution
provided by the user. Each Python process also stores an execution context which
contains the stack frames for the program being executed. When a process is
scheduled, the execution context will be used by the interpreter for the execution.
This way it is possible to have multiple programs running at the same time, because
each process uses its own execution context.

As Figure 4.3 suggests, the Ruby plugin is implemented in exactly the same way
as the Python plugin and additional language integrations can be added similarly.

The Virtual Machine Primitives Table 4.1 lists the common primitives of a
ForeignLanguagePlugin. The “eval” primitive is the entry point for the execution of
a foreign language. Its arguments are passed to a language-specific method that is
responsible for creating a new language process to which the primitive then yields.
For Python, not only the Python source code is needed, but also a filename as well
as a string which describes the execution mode. This string can either be eval, exec,
or single. For Ruby, only the source code and a filename are required to create a
language process. If the process yields, the primitive returns a fake Smalltalk frame
which will resume the language process the next time it is scheduled. For this, the
“resume” primitive is used. In case the process completes, the primitive returns a
fake Smalltalk frame that returns the result of the process instead.

When a user decides to send a message to a foreign object, the “send” primitive
is called with the foreign object as the receiver and a method selector for the
message name. Similar to the “eval” primitive, the execution of a message send is
also coordinated as part of a dedicated language process which can yield and then
be resumed by the “resume” primitive. This way, long-running message sends are
handled in exactly the same way long-running programs are executed by the “eval”
primitive.

In case the “resume” primitive fails, the Smalltalk environment can use the
“lastError” primitive to retrieve the error from a language process. This error can ei-
ther be another foreign language object representing the error, or a native Smalltalk
object depending on the language-specific implementation. However, this informa-
tion can be used when a debugger window is opened on the language process.

Table 4.1: General set of primitives of a ForeignLanguagePlugin

Primitive name Arguments

eval language-specific
resume languageProcess
send receiver, selector, args
lastError languageProcess
topFrame languageProcess
restartSpecificFrame language-specific
asSmalltalk languageObject
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In addition to the error, the Squeak/Smalltalk debugger is able to retrieve the
frame in which the error occurred using the “topFrame” primitive. This primitive
also takes a language process as an argument and returns the top frame from the
process’ execution context wrapped as a Smalltalk object of the language. In Topaz,
a RubyObject with a reference to a Topaz frame object is returned, in Python it is a
PythonObject with a reference to a PyPy PyFrame.

The Smalltalk debugger can retrieve further information, such as the current
line of execution and the corresponding source code from these frame objects. To
restart a specific frame, the debugger uses the “restartSpecificFrame” primitive
which takes a frame as well as further language-specific values as arguments. This
primitive stores the restart information inside the vm which will cause the frame
to be restarted as described before in subsection 4.1.2.

Finally, the “asSmalltalk” primitive allows the conversion of primitive data types
of a foreign language to native Smalltalk objects. This primitive is used in the
asSmalltalk method that all ForeignLanguageObjects implement. When the mes-
sage is sent to, for example, a Ruby Fixnum, the corresponding Smalltalk Integer
is returned. Python tuples and Ruby Arrays are recursively converted to Smalltalk
Arrays with Smalltalk items. The main purpose of this primitive is to enable the
language integration, so that the tools can be reused. As we will explain later,
this facility also allows the reuse of software libraries and frameworks written in
different languages.

4.2 Adapting Smalltalk Tools for Other Languages

Now, that we have built an execution environment that is capable of executing
different programming languages, we need to extend the Smalltalk environment,
so that we can leverage these new features.

Figure 4.4 shows the architecture of the different components Squimera brings
into a Squeak/Smalltalk environment, so that its tools can be used for other in-
tegrated languages. The ForeignLanguage-Core package contains the key classes
which need to be subclassed for each additional language. The ForeignLanguage
class does not implement any behavior on instance-level. Instead, it only provides
static methods for the communication with the corresponding vm plugin and
language-specific helper functions to support the different tools.

All objects from foreign languages are exposed by ForeignLanguageObject sub-
class instances. Hence, the ForeignLanguageObject class implements behavior that
is common across different language integrations as well as abstract methods that
require a language-specific implementation.

In order to perform the execution of a foreign language, the abstract class
ForeignLanguageProcess is used. Objects of this class represent a single language
execution inside the virtual machine and can be suspended, resumed, or termi-
nated just like any other Smalltalk process. Moreover, appropriate vm primitives
can be used to retrieve the last error or the top foreign frame of the corresponding
execution context.
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Figure 4.4: Architecture of Squimera’s development environment
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Further, the ForeignLanguage-Support package contains different helper classes
used by adapted tools or the language integration. An FLException is thrown
as soon as the “resume” primitive fails and indicates an exception in a foreign
language, which in turn then opens a debugger. Since execution frames are imple-
mented as MethodContexts in Squeak/Smalltalk, we introduce a FLMethodContext
which will be used by the debugger to reference foreign frames. The FLTextStyler
is used by different tools that display code for syntax highlighting purposes. More-
over, the FLToolSet class implements the interface used by Squeak/Smalltalk to
request the different tools and makes all adapted tools the default.

All tool adaptations are part of the ForeignLanguage-Tools package and subclass
from the corresponding Squeak/Smalltalk tool.

Finally, there are the two packages Python-Core and Ruby-Core which, similar to
the vm plugins, are implemented in a consistent way. Both introduce subclasses for
the three classes of the ForeignLanguage-Core package which is everything needed
to be able to work with these languages in the Smalltalk environment.

4.2.1 Integration on Language-level

Before being able to adapt any tools, we need to be able to interact with an
integrated language from Smalltalk, because Smalltalk acts as the hosting lan-
guage in Squimera. The most basic way of doing this is via a special evalu-
ation method for a particular language. Therefore, we need to implement the
ForeignLanguage>>eval: method, which uses a specialized method to call out
to the “eval” primitive of the corresponding language plugin in the virtual ma-
chine. With this, we are able to execute, for example, Python eval: '[1, 2]' or
Ruby eval: '[1, 2]' which return either a PythonObject or a RubyObject.

After that, we need to provide the ability to send messages to these objects in
order to interact with them. For this reason, we have tweaked the method lookup
in the virtual machine as mentioned in subsection 4.1.3. We now explain how we
have mixed the different language semantics. On each message send to a foreign
object, the lookup starts in the corresponding Smalltalk class, PythonObject for
example. This allows us to implement and call Smalltalk methods which we later
need for adapting tools. If no Smalltalk method is found, the lookup continues in
the foreign language. Since Smalltalk uses selectors as method names, we need
to derive method identifiers for Python and Ruby from them. This can be done
by treating Smalltalk selectors as strings and copying them until the first colon.
The method name derived from the selector #copy:from:into: is, for example, just
“copy”, but it still can be used to perform a message send with three arguments.

However, there are language-specific details that cause different problems. In
Python, for instance, objects have attributes. A data attribute usually represents an
instance or class variable, but methods are also attributes. If we send the message
insert to a Python list, for example, it is clear that we are dealing with a method
on list. Nonetheless, it is not clear whether we want to call the method insert or
just retrieve the reference to that method.
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Moreover, Python uses a special method identifier __call__ for its callables,
which are all objects that can be called, including methods as well as user-defined
objects. We decided to use this identifier to describe the only message that invokes
a method call in Python. Therefore,

(Python eval: '{"x" : 800}') get

retrieves a reference to the bound method get, while

(Python eval: '{"x" : 800}') get __call__: 'y' and: 600

actually calls that method which attempts to return the value for y, but instead
returns the default value 600 since y is not in the dictionary.

Listing 4.8: A Python function to check if code is a Python expression

def is_expression(code):
try:

compile(code, '<string>', 'eval')
return True

except SyntaxError:
return False

Another issue we encounter is that there is a difference whether code is evaluated
or executed in Python. The former only works if the code represents a single Python
expression and returns the result. It does not work for assignments, imports, or
anything else. In these cases, the source code needs to be executed instead and
None is always returned as the result.

To avoid implementing an algorithm that performs a check correctly in Smalltalk,
we leverage the Python compiler and use the Python function shown in List-
ing 4.8 instead. For convenience reasons, we also implement a Smalltalk method
Python>>isExpression: which calls out to the Python implementation and returns
a Smalltalk Boolean. With this, we can implement Python>>eval:, so that it correctly
either evaluates or executes the provided source code.

The Ruby integration works similarly, but another problem becomes more promi-
nent: Since we are using Smalltalk selectors for method identifiers and because
it is possible to call both Smalltalk and foreign language methods, we have to
deal with name clashes. Sending the message inspect to a Smalltalk object opens
an inspector on the object [48, p. 144]. However, the same message retrieves the
string representation of objects in Ruby. Therefore, there needs to be a way to call
both. It is best practice to not use method selectors that start with an underscore
in Smalltalk, even though selectors starting with underscores are allowed by the
language. For this reason, we decided to implement a fallback lookup in case of
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such a method identifier. Hence, if we want to send inspect to a RubyObject in
Ruby, we can use (Ruby eval: '[1, 2]') _inspect to avoid calling the Smalltalk
method and to call the Ruby method instead.

Listing 4.9: printOn: implementation for Python objects

PythonObject>>printOn: aStream
aStream

nextPutAll: 'Python ';
nextPutAll: (Python builtins str __call__: self) asSmalltalk

Listing 4.10: printOn: implementation for Ruby objects

RubyObject>>printOn: aStream
aStream

nextPutAll: 'Ruby ';
nextPutAll: self _inspect asSmalltalk

At this point, we are now able to implement the Smalltalk method printOn:
for each, the PythonObject and the RubyObject classes, as shown in Listing 4.9
and Listing 4.10. These methods are used by different tools to gather the string
representation of an object in Smalltalk.

The implementation for Python objects first puts the string 'Python ' onto
aStream which helps users to understand of which language an object is. Then
a shortcut to the builtins module is used for convenience and caching reasons.
It then sends str to retrieve the Python str type from the builtins module,
which is then called with the object of interest as an argument. The equivalent
to this in pure Python is str(self). The result is always a Python string which
can be converted by the “asSmalltalk” primitive to a Smalltalk ByteString. This
string is lastly also printed onto the stream. As a result, we can now evaluate
Python eval: 'object()' in a workspace as part of a printIt which will then dis-
play Python <object object at 0x000000011bfd8588> for example.

The Ruby version works similar, but sends _inspect to the object which returns
its Ruby string representation and which is then again converted into a Smalltalk
string object.
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After the languages have been integrated, so that we can evaluate code and send
Smalltalk messages to their objects, we can override more Smalltalk methods from
the meta-object protocol which are used by the tools and start adapting them.

4.2.2 Adapting Squeak/Smalltalk’s Workspace and Inspector

The first tools that we adapt are the Smalltalk workspace and inspector. Like
many other tools that display text, the workspace uses a TextEditor view for its
code editing capabilities. This TextEditor dispatches evaluation requests on the
model, which is the Workspace class itself. Therefore, we can introduce a new
subclass FLWorkspace and all we have to do to redirect evaluation requests to the
corresponding eval: method for either Python or Ruby, is to implement a method
called evaluateExpression:.

 syntax highlighting

 create textual references to dropped morphs

 automatically create variable declaration

reset variables

inspect variables

save contents to file...

 break on exceptions

select Ruby...

select Python...

select Smalltalk...

window color...

full screen

make undraggable

make unclosable

make next-to-topmost

send to back

change title...

Figure 4.5: Languages can be switched in the workspace’s menu

Next, we add menu hooks which change an instance variable languageSymbol.
This variable can either be #Smalltalk, #Python, or #Ruby, which are Smalltalk sym-
bols we can use to look up the corresponding language class. With this, an instance
of FLWorkspace in Smalltalk mode can easily be turned into a Ruby workspace or
into a Python workspace and then back into a workspace for Smalltalk. In the
same way, we add the ability to enable or disable breakOnExceptions, which can
be passed as an additional argument when calling an “eval” primitive. Figure 4.5
shows the resulting context menu of a FLWorkspace instance.
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Similar to the workspace, we adapt the inspector tool. We start with a new sub-
class FLInspector. In order to ensure that foreign language objects are opened
in the adapted tool, we implement inspectorClass on the ForeignLanguageObject
class. This method is shared across all integrated languages and has to simply re-
turn the class of the inspector to open. Additionally, this also implies that Smalltalk
objects will still be opened in the original inspector, so a FLInspector will only be
opened on foreign objects.

In addition, we override fieldList in FLInspector as well as selection. The
former method is responsible to provide the elements for the list displayed in
the inspector, the latter is used to retrieve the content for the widget on the right
for the element selected in the list. The original Inspector>>fieldList dispatches
the allInstVarNames message on the object’s class in Smalltalk. In Python and
Ruby, it makes more sense to dispatch this message on instances, therefore, we can
implement FLInspector>>fieldList with

↑ #('self' 'all elements'), object allInstVarNames.

To request the value of an instance variable, we use instVarAt: which we also imple-
ment and dispatch on the foreign language objects. Finally, to make the workspace-
like widget on the bottom work, we again implement an evaluateExpression:
method, this time on FLInspector. Since code is evaluated in a specific context
and on a given receiver, additional information needs to be passed to the specific
language implementation. Therefore, we dispatch these evaluation requests on
the corresponding language class by calling evaluateExpression:in:to:, which we
have implemented for both, Ruby and Python objects.

4.2.3 Adapting Squeak/Smalltalk’s Debugger

Compared to the workspace and inspector tools, the Smalltalk debugger is a much
more complex tool, as it has to deeply integrate with the underlying run-time
environment. On the other hand, it is probably the best tool to demonstrate the
advantages of our approach, for exactly the same reason.

We again start with a subclass of Squeak/Smalltalk’s Debugger class. Since we
intend to retain the debugger’s original behavior, as mentioned in section 3.1, we
can use our new FLDebugger as a drop-in replacement. To ensure that the Smalltalk
environment uses the debugger adaptation by default, we implement the debugger-
related methods on the FLToolSet class, for example the one used when an user
interrupt occurs.

In addition, the debugger needs to be opened when an unhandled exception is
thrown in a foreign language process. Therefore, Squimera has to check for an
exception using the “lastError” primitive whenever the “resume” primitive of a
language plugin failed and then open the debugger accordingly. Since the debugger
operates on MethodContext instances, we add a subclass FLMethodContext which
can be used to represent frames of a foreign language in our debugger.
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Figure 4.6: FLMethodContext objects representing foreign frames are stacked on top
of Smalltalk method contexts

When the debugger is opened on a MethodContext, it first checks if the context
references the special vmResume method the vm uses to run and resume foreign
language processes. Only in this case, it manipulates the chain of contexts as illus-
trated in Figure 4.6. The “topFrame” primitive is used to retrieve the top foreign
frame from the language process of interest. As a loop walks down the call stack,
frame by frame, new FLMethodContext objects are generated for each frame and
linked accordingly. Then, the sender of the bottommost FLMethodContext repre-
senting the bottommost foreign frame is set to the resume context on which the
debugger was opened. This way, we are able to continuously stack foreign frames
on top of Smalltalk contexts. Finally, the debugger continues with its initialization
on the topmost FLMethodContext.

By overriding messageIconAt:, we can instruct the debugger to display ei-
ther a Python or a Ruby icon depending on the referenced foreign frame of an
FLMethodContext object.

Additionally, we can override the behavior for each button as they call a desig-
nated method each. The restart method, for instance, is called when clicking the
“restart” button. In our debugger’s case, it has to trigger the “restartSpecificFrame”
primitive of the language plugin with appropriate arguments.

To make the debugger display the correct code, we override selectedMessage and
let it return the corresponding source code in case a FLMethodContext is selected.
For this, sourceCode is overridden in FLMethodContext and retrieves the source
code by dispatching a language-specific message getSource: with the frame as
argument.

The method contents:notifying: is used by the debugger when the user decides
to modify and save code in the editor. Therefore, we override it and call out to the
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“restartSpecificFrame” primitive again, which patches and restarts the frame with
the new source code.

Finally, we override expandStack in order to be able to swap the receiver in-
spector with the FLInspector as well as context variable inspector with a new
FLContextVariableInspector that we implemented for foreign languages. Both in-
spector units are automatically embedded in the debugger.

4.2.4 Reusing a Python Library for Syntax Highlighting

The different tools that we have adapted all display source code somehow in a
TextEditor view. But since we are able to switch between languages to which
the tools adapt, we also want to provide syntax highlighting across all supported
languages.

The syntax highlighting for Smalltalk code is provided by the Shout package in
Squeak/Smalltalk. The SHTextStyler class defines the interface that is used by all
tools for syntax highlighting purposes, while the SHTextStylerST80 implements the
styling of Smalltalk-80 source code. However, this class uses the Smalltalk parser
SHParserST80, which means that we would need to implement our own parser and
styler for each, Python and Ruby.

Instead, we use this opportunity to demonstrate how Pygments, a syntax high-
lighting library written in Python with support for over 300 different programming
languages [21], can be reused in Squimera. Therefore, if we are able to integrate
Pygments as a syntax highlighter in Squeak/Smalltalk, we can immediately style
Python, Ruby, and many other languages without having to implement different
parsers.

Our FLTextStyler class inherits from SHTextStylerST80 rather than from
SHTextStyler, because most tools directly rely on the specialized version. Then, we
override all methods in all adapted tools that are responsible for instantiating their
text styler and swap SHTextStylerST80 with FLTextStyler.

Listing 4.11: How Squimera reuses Pygments for syntax highlighting

FLTextStyler>>highlight: aText lexer: aLexer
Python vmSpeaksLanguage ifFalse: [ ↑ aText ].
↑ (Python pygmentsHighlight
__call__: aText string
lexer: aLexer
formatter: Python htmlFormatter) asSmalltalk asTextFromHtml

Pygments api exposes the method highlight which takes code, a lexer, and a
formatter as arguments. It further provides lexers for all supported languages, as
well as different formatters. Listing 4.11 shows how we use all of this in Squimera.
The highlight:lexer: is used by the FLTextStyler to style Smalltalk Text objects.
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The correct lexer is retrieved from the corresponding language class and then
provided as the aLexer argument. First, it checks whether Python is supported,
otherwise it returns the unchanged text again which means that no styling is
applied. If Python is supported, the pygments.highlight method is called with
appropriate arguments. As the formatter, we use Pygments’ HTMLFormatter. We
turn the resulting Python string into a Smalltalk ByteString with asSmalltalk and
finally convert the HTML string to a Smalltalk Text object. This is all we have to
do to integrate Pygments in Squimera, so that it provides syntax highlighting
in all adapted tools and for all supported languages.

4.3 Summary

Our prototype system Squimera is an implementation of our approach and com-
bines Python, Ruby, and Smalltalk. Its virtual machine contains an interpreter for
each language. Support for Ruby and Python is implemented as part of vm-level
plugins which makes it easy to add more languages. Squimera enables the abil-
ity to call from Smalltalk to other languages, which are then executed as part of
a Smalltalk-level process and by using Squeak/Smalltalk’s cooperative schedul-
ing mechanism. Additionally, the Squimera environment provides different tool
adaptations including a workspace, inspector, and debugger that work similarly
across all supported languages.
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In chapter 4, we explained how Squimera is implemented. Next, we want to show
how the Squimera system can be used and demonstrate that the tool adaptations
work on Python and Ruby objects the same way they work on Smalltalk objects.
For this, we have prepared different use cases which allow us to compare the
interaction with the tools when working with different languages.

First, we show how the Squeak/Smalltalk environment can offer live exploration
tools that work consistently across all languages. Then, the interaction with the
debugger on programs and objects from all languages is illustrated and compared.
Finally, we give examples of how external software libraries and frameworks can
normally be used in Squeak/Smalltalk and how Squimera provides a more
convenient way.

5.1 Live Object Exploration

A Smalltalk-80 environment, as described in section 2.2, offers various tools for
live data and object exploration. The Smalltalk workspace works similar to a code
editor, and also allows interactive code evaluation. The Smalltalk inspector can be
used to examine the internals of an object.

Figure 5.1a shows a Squeak/Smalltalk workspace which is used to interactively
evaluate an application-specific code snippet. First, a new DataStack object is in-
stantiated and stored in a variable ds. Then, different elements are pushed onto
the stack. After that, the developer performs a printIt on ds to retrieve the object’s
string representation which shows the result of evaluating all previous expressions.

Next, an inspectIt is performed on ds which opens an inspector window, as
shown in Figure 5.1b. This displays the object’s string representation, but also
lists an instance variable linkedList which the developer may inspect further.
Nonetheless, this already revealed that objects of the DataStack class use a linked
list to manage the elements internally.

In Figure 5.1c, the pop method was sent to the inspected object. This can be done
by using the widget on the bottom of the inspector interface which works similar
to a workspace. Additionally, the self keyword is bound to the inspected object.
As a result, the last entry that was pushed onto the stack is returned and displayed
as part of the printIt. Moreover, the string representation has also been updated to
reflect the change of the object. Since an entry has been popped off the DataStack,
it only contains three remaining entries. This is a simple example to show how the
inspector can provide live, immediate feedback on Smalltalk objects.
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Workspace

| ds |

ds := DataStack new.

ds push: #car; push: #plane; yourself.

ds push: #ship; push: #bike; yourself.

ds a DataStack(StackLink with: #bike 

StackLink with: #ship StackLink with: #plane 

StackLink with: #car)

(a) Iteratively trying out an application-specific DataStack class

DataStack

self
all inst vars
linkedList

a DataStack(StackLink with: #bike 

StackLink with: #ship StackLink with: 

#plane StackLink with: #car)

evaluate expressions here

explore

(b) After opening the inspector tool

DataStack

self
all inst vars
linkedList

a DataStack(StackLink with: #ship 

StackLink with: #plane StackLink 

with: #car)

self pop #bike

explore

(c) After calling the pop method

Figure 5.1: Inspecting an application-specific object in Squeak/Smalltalk

Python Workspace

from pattern.db import Datasheet, INTEGER, STRING, uid

ds = Datasheet(rows=[

    [uid(), "broccoli",  "vegetable"],

    [uid(), "asparagus", "vegetable"],

    [uid(), "banana",    "fruit"],

], fields=[

    ("id", INTEGER), ("name", STRING),  ("type", STRING)

])

ds Python [[1, ’broccoli’, ’vegetable’], [2, ’asparagus’, ’vegetable’], [3, ’banana

(a) Iteratively trying out an example of the Pattern module

Datasheet: Python [[1, ’broccoli’, ’veg...

self
all elements
__add__
__class__
__contains__
__delattr__
__delitem__
__delslice__
__dict__
__doc__
__eq__

Python [[1, ’broccoli’, ’vegetable’], [2, 

’asparagus’, ’vegetable’], [3, 

’banana’, ’fruit’]]

evaluate expressions here

explore

(b) After opening the inspector tool

Datasheet: Python [[1, ’broccoli’, ’veg...
group
headers
html
index
insert
json
load
map
pop
record
remove
reverse

Python <bound method 

Datasheet.pop of [[1, ’broccoli’, 

’vegetable’], [2, ’asparagus’, 

’vegetable’]]>

self.pop() Python [3, ’banana’, ’fruit’]

explore

(c) After calling the pop() method

Figure 5.2: Inspecting an application-specific Python object in Squimera
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In comparison to that, Figure 5.2a shows Squimera’s workspace in Python
mode. This workspace instance is used to evaluate an example of a web mining
module called Pattern [31]. The first line performs Python imports that are
needed for the example. Then, a domain-specific Datasheet object is instantiated
with different rows and fields and also stored in a variable called ds. Finally, the de-
veloper again performs a Smalltalk-style printIt on ds which causes the workspace
to display the string representation of the Python object.

As we can see, the interaction with the Python workspace is identical to the
original Squeak/Smalltalk workspace: code can be written and modified, as well
as evaluated using not only printIts, but also doIts, inspectIts, and exploreIts.

When the developer decides to inspect the object stored in ds, Squimera’s
inspector is opened on the Python object as shown in Figure 5.2b. The window
title contains the type of the object as well as its text representation. self is again
bound to the object, which is why the widget on the right displays the full text
representation. Moreover, all attributes of the object are listed similarly to how
instance variables are listed in Smalltalk. This includes all special method names
used by Python internally, such as __class__ or __dict__. This way, developers can
immediately see which attributes are defined on the object. In Python, attributes
can either be data attributes which correspond to instance variables, or methods
which are functions bound to an instance. When the developer clicks on the pop
attribute of the object, a bound method is shown as illustrated in Figure 5.2c.

In Figure 5.2c, the developer has already performed a printIt which executed the
Python expression self.pop(). Then, the result of the printIt is displayed after the
cursor. The text representation in the widget on the right has also been changed
accordingly. This shows that the inspector tool also works and behaves on Python
objects in the same way it behaves on Smalltalk objects. And since Squimera

directly adapts the Squeak/Smalltalk tools, no additional work is needed to, for
example, implement the immediate feedback mechanism.

The user experience with regard to the tools remains the same when switching to
Ruby. Then, the developer can write and evaluate Ruby code in the workspace and
inspect Ruby objects in exactly the same way Smalltalk or Python objects can be
inspected. Figure 5.3 demonstrates this with the example of objects of the different
languages representing the same number. The syntax to use is determined by the
inspected object. Syntax highlighting adjusts automatically.

SmallInteger: 42

self
all inst vars

42

self asFloat 42.0 explore

(a) Interaction with a Small-
talk SmallInteger object

int: Python 42

self
all elements
__abs__
__add__
__and__
__class__

Python 42

float(self) Python 42.0 explore

(b) Interaction with a
Python int object

Ruby Fixnum: Ruby 42

self
all elements

Ruby 42

self.to_f Ruby 42.0 explore

(c) Interaction with a Ruby
Fixnum object

Figure 5.3: Syntax and syntax highlighting are determined by the inspected object
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5.2 Debugging User Experience

5.2 Debugging User Experience

As mentioned in section 2.4, there are many different ways to debug a program.
Interactive and live debuggers offer more functionality and flexibility compared
to other debugging options, such as commandline-based post-mortem debuggers.
In addition to that, the different debugging scenarios described in the following
are also great examples of how well language integrations in Squimera work,
because debuggers usually have to heavily interact with the underlying execution
environment.

5.2.1 Debugging Unhandled Exceptions

Key not found: metadata

Dictionary(Collection)>>errorKeyNotFound:
[] in Dictionary>>at:
Dictionary>>at:ifAbsent:
Dictionary>>at:

TallyWhereFull StackThroughOverIntoRestartProceed

at: key 

  "Answer the value associated with the key."

  ^ self at: key ifAbsent: [self errorKeyNotFound: key]

self
all inst vars
tally
array
#id

a Dictionary(#id->312 

#object->an Object )

thisContext
stack top
all temp vars
key

#metadata

Figure 5.4: Debugging a KeyNotFound exception in Smalltalk

Figure 5.4 shows the current version of Squeak/Smalltalk’s debugger, which still
works like the debugger described in section 2.2. This debugger is opened on
an unhandled KeyNotFound exception. The window title contains the exception
name as well as an exception message which state that the metadata key was not
found. By going through the list of frames, we can find out how this exception
was raised in the running program. Further, the two inspector-like widgets on the
bottom reveal that the method Dictionary>>at: was called on a Dictionary with
#metadata as the key argument. However, this dictionary only contains the keys
#id and #object which is why the exception was thrown. A developer would now
be able to, for instance, either use Dictionary>>at:ifAbsent: in the program and
implement fallback behavior. Or it is possible to interact with the receiver object
and add a new value for the missing #metadata key. Finally, the developer can
control the execution using the debugger’s button bar.

Squimera is able to detect unhandled exceptions in Ruby and Python applica-
tions and opens a debugger accordingly. Since the detection of such exceptions is
not part of common virtual machines for neither Python nor Ruby, we implemented
it as part of the language integration as described in subsection 4.1.2.
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ZeroDivisionError: integer division by zero

def average(iterable): (line 2 in <string>)
average([]) (line 1 in <string>)
PythonProcess(ForeignLanguageProcess)>>vmResume
[] in PythonProcess(ForeignLanguageProcess)>>vmEval
BlockClosure>>on:do:
PythonProcess(ForeignLanguageProcess)>>vmEval
Python class>>exec:breakOnExceptions:
Python class>>run:breakOnExceptions:
Python class>>evaluateExpression:breakOnExceptions:
FLWorkspace>>evaluateExpression:
SmalltalkEditor(TextEditor)>>evaluateSelectionAndDo:
SmalltalkEditor(TextEditor)>>printIt
SmalltalkEditor(TextEditor)>>printIt:

TallyWhereFull StackThroughOverIntoRestartProceed

def average(iterable):

  print sum(iterable) / len(iterable)

self
all elements
__class__
__delattr__
__doc__

Python None - thisContext -
- filename -
iterable

Python []

Figure 5.5: Debugging a ZeroDivisionError in Python

Figure 5.5 shows a debugger window presented to the user when an unhan-
dled ZeroDivisionError occurs in a Python program. The windows title displays
the type of the Python exception as well as the error message associated with it.
Moreover, there is a list of stack frames that have led to the exception. The top
two frames are Python frames which is indicated by the Python icons in the list.
Moreover, the Python expression or function currently being executed is mention
as well as the corresponding line and filename.

In this example, the exception was thrown during the execution of a Smalltalk
printIt which is why there is no file for the code. Instead, <string> is used which
is a Python convention for dynamically compiling code at run-time. Additionally,
this is the reason why there are Smalltalk frames on the call stack that, for example,
perform the printIt method on a SmalltalkEditor. The code editor widget of the
debugger shows the code being executed in the selected frame with syntax high-
lighting enabled. The current line of execution is also highlighted, just like in the
original Smalltalk debugger. Since the code has been executed in the global Python
context, the left half of the bottom lists the Python globals. The right half provides
more information on the Python context attached to the frame: “- thisContext -”
is a reference to the frame object and “- filename -” displays the current filename.
Then, the local variables are listed. Since there is only the variable iterable, the
developer is immediately able to identify the root cause of the problem. The naively
implemented average function does not check if the iterable is empty, and in this
case a ZeroDivisonError is thrown.

At this point, the developer may further inspect stack frames in order to, for
example, examine why an empty iterable was provided. It is also possible to
modify code and then restart a specific frame. Or the developer may decide to
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carry on with the execution by pressing the Proceed button. An unhandled exception
would then be returned as the result of the execution.

Python Workspace

my_dict = {’Peter’: 34, ’Linda’: 32, ’Thomas’: 42}

my_dict[’Clara’] = 28

my_dict[’Paul’] Python (’KeyError’, KeyError(’Paul’,))

Figure 5.6: Unhandled exceptions are returned as result if they are propagated

Since the detection of unhandled exceptions does not always work reliably for the
reasons we will discuss in section 5.5, it is possible to disable it per code execution.
For this, the workspace has an option called “break on exceptions” which can be
enabled and disabled via its menu as previously shown in Figure 4.5. When “break
on exceptions” is disabled, an unhandled exception will immediately be returned
as the result as shown in Figure 5.6. In this example, the key 'Paul' does not
exist in my_dict and a Python tuple with information on the exception is returned
instead of a value stored in the dictionary.

5.2.2 Interrupting Running Applications

Another way of debugging applications in Smalltalk is related to its live explo-
ration capabilities. At any point in time, a developer may decide to trigger a user
interrupt [48, p. 409]. This opens a debugger on the currently running process. This
technique is especially useful to understand the internal state of a long-running
program, such as a server application or an emulator. Since Python and Ruby
programs are being executed as part of a Smalltalk-level process, it is possible to
interrupt them in Squimera, just like any other Smalltalk process.

User Interrupt

DebugAbandonProceed

block in main_loop (line -1 in /dev/optcarrot/lib/optcarrot/ppu.rb)
step (line 44 in /dev/topaz/lib-ruby/../lib-topaz/fixnum.rb)
main_loop (line 1104 in /dev/optcarrot/lib/optcarrot/ppu.rb)
block in run (line 876 in /dev/optcarrot/lib/optcarrot/ppu.rb)
resume (line 882 in /dev/optcarrot/lib/optcarrot/ppu.rb)
run (line 882 in /dev/optcarrot/lib/optcarrot/ppu.rb)
vsync (line 261 in /dev/optcarrot/lib/optcarrot/ppu.rb)
step (line 43 in /dev/optcarrot/lib/optcarrot/nes.rb)
run (line 77 in /dev/optcarrot/lib/optcarrot/nes.rb)
<main> (line 6 in /dev/optcarrot/bin/optcarrot)
require (line 3 in -e)

Figure 5.7: Interrupting a running Ruby process
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For demonstration purposes, we run Optcarrot, a NES emulator written in
Ruby [37], with Squimera. This is possible, because the emulator is supported
by the Topaz interpreter and it uses the same engine for rendering and input
handling as RSqueak/VM, namely Simple DirectMedia Layer (sdl) [66]. After
a couple of seconds, the emulator opens a new window and starts to draw the
current NES ROM. At this stage, we press the interrupt key which triggers a user
interrupt. Since the Ruby process is taking up the most computing resources at this
moment, it is likely that the user interrupt happens during the execution of the
emulator. Then, a minimal debugger window as shown in Figure 5.7 is opened. Its
window title indicates that it has been triggered by a user interrupt. The developer
then can choose to Proceed, Abandon, or Debug the process on which the debugger
was opened. While the window is opened, the process is no longer scheduled for
execution. Therefore, the execution of the NES emulator is suspended.

User Interrupt

block in main_loop (line -1 in /dev/optcarrot/lib/optcarrot/ppu.rb)
step (line 44 in /dev/topaz/lib-ruby/../lib-topaz/fixnum.rb)
main_loop (line 1104 in /dev/optcarrot/lib/optcarrot/ppu.rb)
block in run (line 876 in /dev/optcarrot/lib/optcarrot/ppu.rb)
resume (line 882 in /dev/optcarrot/lib/optcarrot/ppu.rb)
run (line 882 in /dev/optcarrot/lib/optcarrot/ppu.rb)
vsync (line 261 in /dev/optcarrot/lib/optcarrot/ppu.rb)
step (line 43 in /dev/optcarrot/lib/optcarrot/nes.rb)
run (line 77 in /dev/optcarrot/lib/optcarrot/nes.rb)
<main> (line 6 in /dev/optcarrot/bin/optcarrot)
require (line 3 in -e)
<main> (line 3 in -e)
RubyProcess(ForeignLanguageProcess)>>vmResume
[] in RubyProcess(ForeignLanguageProcess)>>vmEval
BlockClosure>>on:do:
RubyProcess(ForeignLanguageProcess)>>vmEval
Ruby class>>eval:filePath:breakOnExceptions:
Ruby class>>eval:breakOnExceptions:
[] in UndefinedObject>>DoIt
[] in BlockClosure>>newProcess

TallyWhereFull StackThroughOverIntoRestartProceed




  def step(limit, step=1, &block)


    return enum_for(:step, limit, step) unless block





    idx = self


    if limit.is_a?(Float) || step.is_a?(Float)


      idx = idx.to_f


    end


    while idx <= limit do


      yield idx


      idx += step


    end


  

self
all elements

Ruby 0 - thisContext -
- filename -
block
limit
idx
step

Ruby 64

Figure 5.8: Debugging a Ruby process while it is running
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Figure 5.8 shows the full debugger window opened after the developer decided
to debug the process. Ruby stack frames are highlighted with a Ruby icon, similar
to how Python frames were highlighted in Figure 5.5. This time, there are many
Ruby stack frames, most of them, including the top frame, execute code from a
file called ppu.rb, in which the Picture Processing Unit of the NES is implemented.
Therefore, the emulator was refreshing its display at the time the interrupt was
triggered.

In the example, the second frame is selected which executes code from the Fixnum
class which is part of Ruby’s standard library. The Ruby code from line 1104 in the
ppu.rb file that caused a new frame in fixnum.rb is 0.step(248, 8) do. Therefore,
the value of self in the execution context is 0, while limit is set to 248 and step to
8. All this information is accessible with a few clicks in the debugger. Following the
stack frames even further, we find the Ruby <main> frame. This frame is followed
by the first Smalltalk frame which is responsible for resuming the language process.
The last but one frame contains the doIt that initially started the execution of
Optcarrot followed by the bottom frame which created a new Smalltalk-level
process for this.

Hence, the debugger can be used to inspect and modify the running emulator
including frames executing its own code, but also code from the standard library,
as well as Squimera’s code that facilitates the execution of the Ruby language
process and also Smalltalk code that initiated everything.

Process Browser

(80) 76152: the timer interrupt watcher
(60) 57004: the low space watcher
(60) 49698: the user interrupt watcher
(60) 53302: the event tickler
(50) 21014: the WeakArray finalization process
(40) 64427: the UI process
(40s) 10656: FLDebugger class(Debugger class)>>morphicOpenOn:context:label:contents:fullView:
(40) 78517: RubyProcess(ForeignLanguageProcess)>>vmResume
(10) 25323: the idle process

PythonProcess(ForeignLanguageProcess)>>openDebuggerOn:
FLException>>defaultAction
UndefinedObject>>handleSignal:
MethodContext(ContextPart)>>handleSignal:
FLException(Exception)>>signal
PythonProcess(ForeignLanguageProcess)>>checkForException
[] in PythonProcess(ForeignLanguageProcess)>>vmEval
BlockClosure>>cull:
[] in MethodContext(ContextPart)>>handleSignal:
BlockClosure>>ensure:
MethodContext(ContextPart)>>handleSignal:
Error(Exception)>>signal
Error(Exception)>>signal:
PythonProcess(Object)>>error:
PythonProcess(Object)>>primitiveFailed:
PythonProcess(Object)>>primitiveFailed

defaultAction

  self languageProcess openDebuggerOn: self foreignError

Figure 5.9: Observing language processes in Squeak/Smalltalk’s process browser

To further understand how language processes work in Squimera, we have a
look at Squeak/Smalltalk’s process browser as shown in Figure 5.9. The list on the
left contains all existing processes, including common Squeak-specific processes
such as “the user interrupt watcher” or “the UI process”.
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Additionally, two language processes are being executed at the time the screen-
shot was taken. The selected process is a Python process and the next one in the
list is a Ruby process. The latter is running as normal while the former is currently
being debugged. This is indicated with an “s” for suspended which is added as a
suffix to the priority, 40 in this case. Also, this is the reason why the top frame
executes a method in FLDebugger. The code of the selected stack frame is displayed
on the bottom of the process browser. The line of code currently being executed
as part of the frame is highlighted in red and suggests that a FLException was
thrown during the execution of Python code. Therefore, this screenshot shows how
Squimera’s debugger was opened on an exception in a Python language process.

The Ruby process as well as all other processes are not affected by this. Nonethe-
less, it is possible to also attach a debugger to them, or to suspend, resume, or
terminate them using the context menu on the process list.

5.3 Reusing Software Libraries

As discussed in section 1.2, developers build modular software which is crucial to
support extensibility and reusability. However, the reusability aspect is often limited
by language boundaries, because developers can only reuse software written in
their program’s language. In section 3.2, we explained how our approach allows
not only reuse of software development tools, but also of software libraries and
frameworks in a convenient way.

Wikipedia Search Tool

Squeak Search

The Squeak programming language is a dialect of Smalltalk. It is object-oriented, 

class-based, and reflective.


It was derived directly from Smalltalk-80 by a group at Apple Computer that included 

some of the original Smalltalk-80 developers. Its development was continued by the 

same group at Walt Disney Imagineering, where it was intended for use in internal 

Disney projects. Later on the group moved on to be supported by HP labs, SAP Labs 

and most recently Y Combinator.


Squeak is cross-platform. Programs produced on one platform run bit-identical on all 

Figure 5.10: A simple search tool for Wikipedia written in Smalltalk which uses a
Python library to communicate with the Wikipedia api

To understand why this is beneficial for developers, we have to have a look
at how software written in other languages is normally reused, for example in
Smalltalk. For this reason, we have built a simple tool, shown in Figure 5.10, that
can be used to retrieve summaries for a search term from Wikipedia. To implement
this tool, we could have written an algorithm in Smalltalk that communicates with
the Wikipedia api [72]. In order to be able to understand how the api can be
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used, we would need to read its documentation first. Then we find out that the api

returns data in the json format, so we would need to install and use a json parser
in Squeak/Smalltalk. Instead, we chose to use the Python library Wikipedia [50],
which already provides a function to directly retrieve a Wikipedia summary for a
given search term.

Listing 5.1: Example method calling out to a Python program via OSProcess

WikipediaToolFFI>>contents
| command result |
self searchTerm ifEmpty: [ ↑ '' ].
command := '/usr/bin/python <1s> "<2s>"' expandMacrosWithArguments: {

(FileDirectory default / 'wiki.py') fullName. self searchTerm}.
result := (PipeableOSProcess command: command) outputAndError.
↑ result second
ifEmpty: [ result first ]
ifNotEmpty: [ :stderr | (self error: stderr) messageText ]

Listing 5.1 shows a Smalltalk method that calls out to a Python script “wiki.py”
using a PipeableOSProcess. This way, “wiki.py” is executed on the default Python
interpreter by a process on operating system-level. This script simply takes the
last commandline argument as a search term, calls the summary function provided
by the Wikipedia library, and prints the result to stdout. The stdout and stderr
streams are then stored as an array in the temporary variable result in Smalltalk.
If the error slot is empty, the result from stdout is returned. Otherwise, the error
message is signaled.

In case of an error, however, one will not be able to debug the Python program
from Smalltalk. Instead, stderr can return an error string which may help to
understand the problem. Otherwise, the Python program needs to be debugged
with PDB or in a Python ide.

Listing 5.2: Alternative method directly calling summary in the Wikipedia library

WikipediaTool>>contents
↑ ((Python eval: 'wikipedia.summary')
__call__: self searchTerm) asSmalltalk
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Listing 5.2 shows a drop-in replacement made possible by Squimera for the
code in Listing 5.1. The summary function is first retrieved from the wikipedia
module. Then it is called with the search term as the argument and lastly the result
is converted to a Smalltalk string and returned.

First, the second version is much more concise. Not only the method has fewer
lines, but also the “wiki.py” script is not needed anymore. This means responsibility
is not split and it is not necessary to use the indirection via the operating system.
More importantly, however, a debugger will be opened in case of errors thrown in
the Wikipedia library. This debugger can be used to understand the interaction
between the two languages as well as potential problems in the library.

Similarly, it is possible to reuse other Python or Ruby libraries including their
standard libraries. This can not only be used to reuse libraries and tools for specific
purposes, but also to compensate shortcomings of the Squeak/Smalltalk standard
library. Ruby’s regular expression engine is, for instance, superior in many scenar-
ios to the regular expression matcher that ships with Squeak. As mentioned in
subsection 4.2.4, Squimera’s tools use the Python library Pygments for syntax
highlighting.

5.4 Limitations of Squimera

In this section, we discuss the limitations of the Squimera system in more detail.
Due to time constraints, we were unable to fully implement the ability to call
Smalltalk methods from foreign languages. As discussed in section 3.2, this would
allow us to reuse software frameworks, which is currently not entirely possible
with Squimera.

We demonstrate this with another example, which also allows us to discuss
further limitations of Squimera. This time, we intend to reuse Flask, a web server
framework written in Python [54]. Listing 5.3 and Listing 5.4 show a Python and a
Smalltalk code snippet that can be used to start a Flask server in Squimera. First,
the Python code needs to be evaluated in a Python workspace. This globally defines
a variable server_data as well as a Python function start_server. Afterwards, it is
possible to call this function from Smalltalk with the second snippet in a Smalltalk
workspace. As a result, the framework prints a local URL to stdout that can be
opened in a web browser. The web page displays a list of all class categories
available in the Squeak/Smalltalk environment. Each category is linked to a page
that in turn simply lists all Smalltalk classes of the selected category.

Even though we are able to start a server as part of a software framework, we are
restricted in the way we can do it. If we, for instance, add a new category or class,
the web server is not automatically updated, as it can only call Python functions
which retrieve their data from the server_data variable. The variable is globally
available, so we could, for example, update it frequently from Smalltalk to ensure
the web server serves the latest lists.
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Listing 5.3: A simple Flask server example

server_data = {}

def start_server(new_server_data):
global server_data
from flask import Flask, render_template_string
app = Flask(__name__)
server_data = dict(new_server_data)

@app.route('/')
def index():

return render_template_string("""
<ul>
{% for c in categories %}

<li><a href="/{{c}}">{{c}}</a></li>
{% endfor %}
</ul>

""", categories=server_data.keys())

@app.route('/<category>')
def list_classes(category):

return render_template_string("""
<ul>
{% for class in classes %}

<li>{{class}}</li>
{% endfor %}
</ul>

""", classes=server_data.get(category, []))

app.run()

Listing 5.4: A Smalltalk doIt that starts the Flask example as shown in Listing 5.3
providing a Smalltalk Array of Arrays as data argument

(Python eval: 'start_server') __call__: (
SystemOrganizer default categories collect: [:each |

{each asString.
(SystemOrganizer default listAtCategoryNamed: each)

collect: [:ea | ea asString]}])
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This, however, is usually not how frameworks are used. Instead, the callbacks
should be able to retrieve data directly from Smalltalk, which would ensure that
up-to-date data is always being served.

Nevertheless, there is another problem that this example reveals. Flask uses
Python’s SocketServer to bind the server to a local socket. This socket, however,
is blocking, which means that the Python interpreter blocks as long as there are
no incoming requests. Consequently, the interpreter cannot yield back to Smalltalk.
And since the Smalltalk scheduler cannot switch to the UI process anymore, we
are unable to interact with the Squeak/Smalltalk environment. After a number
of requests to the server, the Smalltalk environment is being updated. Having to
send requests to the server, however, should not be a requirement to be able to
work with the environment. Therefore, blocking sockets are currently a problem in
Squimera.

Additionally, Flask catches all exceptions thrown in routing functions to ensure
that the server does not crash. Therefore, the Squimera debugger will not be
opened, because of the framework. This, however, is a common pattern used in
frameworks. The ability to selectively open a debugger on special user-defined
exceptions would solve this problem in Squimera, but is currently not supported.

5.5 Further Limitations of Our Approach

In addition to the shortcomings with regard to Squimera’s current implementa-
tion, there are further limitations of our approach that we now discuss in more
detail.

Conceptual Mismatches of Languages and Tools First of all, we have only inte-
grated object-oriented programming languages as part of Squimera. One reason
for this is that these languages are relatively similar to Smalltalk. This makes it,
for instance, easier to map Smalltalk semantics to the different languages and to
conceptually reuse the Smalltalk tools. Nonetheless, we do not believe that it is
impractical to integrate languages following other programming paradigms. But
this might require additional work.

However, we noticed that there are also some conceptual problems with regard
to the Smalltalk tools with our integration of Python and Ruby. These may also
occur when integrating other languages. Squeak/Smalltalk’s system browser tool,
for example, manages all source code in objects, because everything in Smalltalk is
an object. But this means that the objects are part of the environment and saved in
Smalltalk image files. Just like many other languages, source code for Python and
Ruby is managed in files on the file system. This in turn implies that an adapted
version of the system browser would need to operate on files rather than on objects.

In addition to that, the system browser enforces a certain structure consisting of
class categories, classes, method protocols, and methods. However, it may not be
reasonable to enforce the same structure on Ruby or Python applications. Instead,
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a tool similar to a conventional code editor that uses the file system might be a
better fit for these languages.

We, however, experimented with adapting the system browser for Python and
are able to add new classes and methods accordingly. After all, we encountered
different synchronization problems, because we decided to also manage Python
in Smalltalk objects to keep the number of changes to the browser tool as low
as possible. Methods, for instance, can also be added to Python classes using
metaprogramming. But this does not update the objects holding the method source
code in the Smalltalk world. Even though these methods exist, they are not listed in
the adapted browser. Again, this requires to be able to call Smalltalk from Python.

According to Cunningham [30], one lesson learned from VisualAge for Java is
that only people with Smalltalk experience enjoy the tools. One important reason
for that is that the tools are written in Smalltalk, so Smalltalk experience is required
to change them. The ability to call Smalltalk from Python might yet again help
with this problem. When this is possible, we could implement a Python library
that wraps around Squeak/Smalltalk’s ToolBuilder api. This would allow us and
other developers to build and modify tools for the Smalltalk environment entirely
in Python.

Furthermore, the ability to call Smalltalk from foreign languages also has a
downside. Currently, Ruby and Python methods can be called with Smalltalk
objects as arguments. The vm then converts them to corresponding objects of the
target language which currently happens automatically, but only for primitive data
types. Therefore, once the other way is also possible, it is necessary to also provide
converting methods for each integrated language, for example asRuby or asPython.
Then, however, the automatic conversion needs to be turned off which would give
developers more control about the objects being passed to each language. On the
other hand, this would also result in less concise code and additional work, as
developers always need to think about the type conversion from one to another
language as well.

Detection of Unhandled Exceptions As part of section 3.1, we explained that
Squimera needs to be able to detect unhandled exceptions as soon as they are
thrown to avoid stack unwinding. Some languages, including Python and Ruby,
however, use the termination model of exception handling. It is comparably easy
to implement and yet powerful during the execution of a language. Nonetheless, it
makes it quite hard to provide useful debugging facilities.

To avoid unwinding the call stack, Squimera currently performs bytecode
analysis. First, it works on a different abstraction layer than the actual exception
handling. That is because the language specification does not consider unhandled
exceptions the same way they are considered in Smalltalk for example. It is not a
requirement for implementing the termination model of exception handling.

The bytecode analysis, on the other hand, is also error prone and it cannot
reliably detect unhandled exceptions in all cases. The reason for this is that there
are too many different ways to define try-except statements or to mask exceptions
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with builtins in Python. Python is too dynamic in that sense. The same holds true
for Ruby.

Instead of performing bytecode analysis, Squimera could analyze the source
code. This again would be on a different abstraction level. Moreover, this requires
to be able to have access to all code in the system, including the code that may
have been dynamically added through the use of metaprogramming. Nonetheless,
performing an analysis on, for example, the ast of the code in question raises
similar problems compared with bytecode analysis. For instance, if functions are
used to dynamically define exceptions to catch in a try-except statement, these
functions need to be evaluated somehow. In the worst case, the functions have side
effects that manipulate the exception handling even further.

Another approach to detect unhandled exception would be to fork the program
somehow whenever an exception is raised and check whether the exception is
propagated to the main stack frame. This way, it would be possible to reliably
detect unhandled exceptions. We, however, rejected this approach, because it is
impractical to manage all these forks. But more importantly, this would make the
problem of side effects even worse. Developers just do not expect parts of their
program running in multiple processes or coroutines at the same time.

Squimera’s Performance There are different aspects in Squimera that can affect
performance. The main impact performance-wise is introduced by using Smalltalk-
level processes to execute interpreters of foreign languages. This directly impacts
the number of bytecodes processed by each interpreter loop significantly.

In case of our Python integration, however, a ballpark measurement of the
Richards benchmark [90] shows that Python programs perform similar to CPython
in Squimera, even though we use the PyPy interpreter. Therefore, one can say that
Smalltalk-level processes decrease the performance almost as much as performance
can be increased by PyPy’s jit compiler. On the other hand, a full-fledged ide

is now running at the same time and in the same operating system process. The
performance overhead can be controlled with the sys.setcheckinterval() func-
tion in Python. The default check interval value is 10, 000. Increasing the value,
increases the performance of Python programs, but lowers the responsiveness of
the Squimera environment. Decreasing it causes Python processes to yield back
to Smalltalk earlier.

As demonstrated in subsection 5.2.2, we are able to run the NES emulator Opt-
carrot on top of Squimera. The emulator is usually able to reach a little more
than 28 frames per second on Topaz. On Squimera it only reaches around one
frame per second when the check interval is set to 10, 000. In our Ruby integration,
the value of the check interval can currently be changed with an environment
variable. Disabling the process switching completely, lets Optcarrot run at 28

frames per second again.
Therefore, the overhead introduced by our unhandled exception detection is

rather insignificant. This overhead depends mainly on the use of exception handling
in a program. Nonetheless, the frame that handles an exception is usually not far
away from the frame that has thrown the exception. Additionally, the total number
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of frames is usually rather low. In case of an unhandled exception, all frames have
to be traversed. This overhead, however, can be considered irrelevant, because
performance is not as important during debugging.

5.6 Summary

We think that the tool adaptations of Squimera feel and behave consistently
across all integrated languages which improves the programming experience for
developers. As part of that, Squimera supports live object exploration as well as
various debugging scenarios and provides means to reuse and combine software
written in different languages. Some limitations remain, for example with regard
to the detection of unhandled exceptions or programs that use blocking sockets.
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In this chapter, we discuss solutions and technologies related to our work. Further,
we compare them with our approach and with the Squimera system.

6.1 Tools and Integrated Development Environments

First, we describe different and popular tools and ides and compare them to the
Squimera programming environment.

6.1.1 Development Tools for Python and Ruby

To understand what kind of problems Squimera solves with regard to Python
and Ruby development, we have to have a closer look at the current development
tools for each language.

Writing Code in Ruby or Python First of all, Ruby and Python are, just like
many other programming languages, file-based. Therefore, many developers use
extendable code editors like Emacs [100], Sublime Text [97], or Atom [46] to write
their programs.

Even though these editors can be extended with useful programming features,
they usually do not integrate with the runtime and hence cannot support features
such as debugging in the same way ides can.

Furthermore, both languages provide interactive Read–eval–print Loops (repls)
that can be used similarly to Squimera’s workspace. However, developers can
only evaluate code and see the result which is comparable to Smalltalk printIts.
This makes it rather inconvenient to inspect certain objects, as it usually takes more
effort to drill down on the right aspects of an objects in a repl than by using tools
like the Smalltalk inspector or object explorer. More importantly, the Smalltalk
tools can provide live feedback while it is only possible to manually poll for new
data in a repl. In addition, an interactive shell is not as visual as an interactive
programming environment.

Python Debugger PDB Python’s standard library contains a debugger called
PDB [85]. This module can be invoked to debug other Python scripts which en-
ables post-mortem debugging as soon as a program fails unexpectedly. Moreover,
developers can add PDB-specific code to their programs to set breakpoints. The
debugging sessions are provided through an interactive shell that can be used to
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inspect the state of the program as well as to modify, for example, objects and
variables.

PDB is completely implemented in Python and does not integrate with special
components of the interpreter. Unlike in Smalltalk, Python features like exception
handling are part of the run-time. As a result of that, PDB is limited in functionality
compared with Squimera, as it cannot provide edit-and-continue debugging for
example. While Squimera allows restart of specific frames with updated code,
PDB can only restart the entire program.

Debugging Tools for Ruby Ruby comes with a debugging library called
DEBUGGER__ [93] which works similar to PDB in Python. An interactive shell can be
used to inspect run-time exceptions. Similarly, the DEBUGGER__ library is limited in
terms of debugging capabilities, while Squimera also supports edit-and-continue
debugging for Ruby.

Additionally, some Ruby developers also use Pry, an alternative Ruby shell [69].
This shell enhances the programming experience with very specialized features
for Ruby including commands that are Smalltalk-inspired. It also can be used as a
debugger to some extent. Its capabilities are nonetheless also limited with regard
to, for example, fix-and-continue debugging.

The different tools for Ruby and Python are specifically designed for each lan-
guage. Therefore, the programming experience differs between the two, although
Python and Ruby are relatively similar programming languages. The mismatch
between the behavior of the tools hence implies additional work for developers
when learning to develop in each language.

In contrast, the programming experience in Squimera is consistent, because
the same set of tools can be used for all supported languages. The debugger, for
instance, always feels and behaves the same, no matter which language is debugged.
The same holds true for all other tool adaptations.

6.1.2 Integrated Development Environments for Python and Ruby

There are various ides that provide a great number of development tools for
Python and Ruby.

PyCharm and RubyMine PyCharm [60] and RubyMine [61] are customizable
and cross-platform ides for Python and Ruby developed by JetBrains. Both come
with intelligent code editors, refactoring and inspection tools, builtin support for
version control systems, deployment, and remote development, as well as tools for
debugging, profiling, and testing. Moreover, PyCharm offers support for popular
Python web frameworks like Django and RubyMine for Ruby on Rails, a popular
web framework written in Ruby. Both ides can also be used to develop HTML,
JavaScript, and other languages for the web. Furthermore, it is not only possible to
use different Python or Ruby interpreters locally in these ides, but also in a remote
setup.
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Wing Python IDE The Wing Python IDE [116] by Wingware is similar to Py-
Charm. It also has an intelligent code editor and similar features with regard to
debugging, object inspection, testing, remote development, and refactoring. Fur-
thermore, its professional version also comes with support for different web frame-
works for Python.

Eclipse, PyDev, and Aptana Studio Eclipse [32] is an ide framework with sup-
port for many programming languages. It was initially built for Java development
and still is a popular ide among Java developers. It is supported by a large com-
munity that has built many plugins for Eclipse. Not only can these plugins extend
Eclipse with more tools for Java, but there are also plugins that allow adaptation
of Eclipse’s tools in some ways for other languages.

The Dynamic Languages Toolkit (dltk) [105], for example, uses Eclipse’s sup-
port for plugins and aims to help to adapt its tools for dynamic languages. It also
comes with exemplary development environments for Ruby and Python.

PyDev [20], on the other hand, is a plugin developed by Appcelerator which
integrates only Python into Eclipse. It provides very similar features to the other
Python ides including code completion, refactoring and testing tools, Django
integration, and various debugging features.

Aptana Studio [2] is based on Eclipse and is mainly an ide for web development.
As part of that, it not only supports web languages like JavaScript, HTML, or
CSS, but also many other languages that are used to implement, for example, web
servers. Therefore, it provides tools for Python development through the PyDev
plugin, but is also popular among Ruby developers, because it integrates Ruby on
Rails similar to RubyMine.

Visual Studio Visual Studio [75] is an ide from Microsoft which also supports
multiple programming languages. According to the Top IDE index as of May
2017 [24], Visual Studio recently surpassed Eclipse as the most popular general
purpose ide. It has builtin support for almost all languages that are used for
Microsoft’s products including C, C++, C#, TypeScript, and VB.NET. Over the
years, it has been extended with support for many other languages such as Python,
Ruby, or JavaScript.

Compared with our prototype system Squimera, all of these ides provide a lot
more and mature features for Ruby and Python development, as they have been
in active development by larger communities and companies for years, in some
cases even decades. As mentioned in chapter 3, however, all of these ides are based
on the architecture illustrated in Figure 3.1a. Even though most of them support
different Ruby and Python interpreters, their debugging capabilities are in some
ways limited compared with Squimera.

On the other hand, the Squimera programming environment runs in the same
process that also executes the languages, following the Smalltalk architecture as
shown in Figure 3.1b. This gives more control over the execution of different
languages, as it supports to restart frames and patch code at run-time for example.
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This in turn enables edit-and-continue debugging in Squimera, while all other
ides are limited as to how they can modify a program while it is running.

Additionally, most of these ides use a different approach to Squimera when it
comes to detecting unhandled exceptions for debugging purposes. PyCharm’s de-
bugger, for instance, supports conditional breakpoints on user-defined exceptions
as well as different activation policies. Its unhandled exception detection is based
on source code analysis which is performed as soon as exceptions are raised. Fur-
ther, it is possible to ignore certain library files in PyCharm, because its detection
also does not always work reliably. A similar approach is applied in the Wing ide,
Visual Studio, and others. Their debuggers have many configuration options that
help to drill down on certain exceptions. This helps to minimize cases in which a
debugger is expected, but not opened, and vice-versa.

In contrast, Squimera performs bytecode analysis which leads to very similar
problems with regard to the detection of unhandled exceptions. Furthermore, it
would make sense to add similar configuration options to the debugger, because
the detection cannot work reliably as explained in section 5.5.

As part of Visual Studio’s support for Python development, it is possible to
expose C or C++ interfaces via Python’s C api, so that C or C++ code can be used
to, for example, speed up Python applications. Additionally, Visual Studio supports
mixed-mode debugging. With this, developers can debug Python and native C or
C++ at the same time, with combined call stacks.

Squimera also allows developers to debug Smalltalk and Python code, as well
as Ruby code. Currently, Ruby and Python frames always show up on top of a
call stack in Squimera’s debugger. As soon as Python and Ruby can call back to
Smalltalk, it is possible to observe mixed call stacks with more than two languages
and in any order. Only the bottom frames will remain Smalltalk frames, because
Smalltalk acts as the host for all integrated programming languages.

Moreover, there are different ide extensions, such as the live-py-plugin [63]
for PyDev and Eclipse, that enable live coding capabilities to some extent for vari-
ous dynamic languages. However, these systems usually reload programs entirely
and therefore cannot provide a higher level of liveness than Tanimoto’s level 3 [104].
On the other hand, live programming environments like Squeak/Smalltalk, which
Squimera is based on, allow modification of programs at run-time and are able
to provide visual feedback in a few hundreds of milliseconds [86].

Further, some ides like the Wing Python ide, RubyMine, or PyCharm are special-
ized for specific languages. Some of them even integrate with popular frameworks
for each language. This however means that developers need to read corresponding
documentations and do tutorials as well as additional trainings in order to be able
to use all features of each ide. The downside is that this knowledge often only
helps to develop in one specific environment, and only few aspects are useful when
developing in other programming languages and in other ides.

General purpose ides or ides with support for multiple languages such as
Eclipse or Visual Studio often have other disadvantages. In Eclipse, for instance,
many tools work best with Java, the language Eclipse was designed for originally.
One example for that is its debugger. It communicates with the Java Virtual Machine
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Tools Interface (jvmti) to control Java processes. Although the runtime supports
hot-swapping code for method bodies in Java, this feature is not exposed in the
jvmti.

For one, this means that developers are able to modify their Java programs at
run-time as long as they modify existing methods. In almost all other scenarios, a
program needs to be restarted which may be confusing for beginners.

On the other hand, it is unclear why hot-swapping is not part of the jvmti

which would potentially encourage other integrations to also allow this feature.
Nonetheless, dltk or PyDev, as previously explained, cannot provide this feature,
because hot-swapping is not supported by common Python or Ruby run-times.
Hence, the development experience changes with the language in Eclipse.

In Squimera, on the other side, all tools behave consistently across all languages.
This means that developers can reuse their knowledge of the environment for all
languages they develop in, as they only have to get used to one ide.

6.1.3 Other Related Tools for Software Development

In addition to the previously discussed development tools for Ruby and Python,
there are other tools and ides related to our approach and Squimera.

IBM VisualAge IBM VisualAge was a family of mainly Smalltalk-based ides
with support for different programming languages. In VisualAge for Java, a Small-
talk vm was used with support for both, Smalltalk and Java [25].

This demonstrated that it is possible to use a Smalltalk environment for tools as
well as a multi-language vm for the execution of another language in a commercial
context. Instead of being a family of ides, Squimera is a single ide with support
for multiple languages and with consistent tooling.

Helvetia Renggli et al. have worked on embedding dsls into Smalltalk, so that
the tools provided by the environment can also be used for these languages [87]. In
order to do so, their Helvetia system transforms code written in a dsl to Smalltalk
code on which the tools can operate.

In Squimera, on the other hand, each programming language is executed by
a corresponding interpreter. More importantly, to be able to work with integrated
languages in Squimera, we have adapted Squeak/Smalltalk tools instead.

Smalltalk/X STX:LIBJAVA [56] and SmallRuby [113] are experimental Java and
Ruby implementations on top of Smalltalk/X. The former project uses a vm with
additional support for Java bytecode instructions, while the latter compiles Ruby
source code to Smalltalk/X bytecode which is then executed by the vm. In addition,
both projects allow interoperability with Smalltalk.

Similar to Squimera, SmallRuby and STX:LIBJAVA also provide Smalltalk-
based development tools for Ruby and Java. Objects of these two languages expose
the same meta-object protocol as normal Smalltalk objects which ensures that the
original tools can operate on them. This way, the Smalltalk/X debugger, for exam-
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ple, also supports mixed stacks. Squimera also aligns the meta-object protocol for
foreign objects in a similar way. Additionally, it removes unneeded and sometimes
hindering functionality specific to Squeak/Smalltalk by adapting the tools, and
provides abstract interfaces which can be used to add more languages. This further
reduces the work that needs to be done to integrate additional languages.

Multi-language Debugger Architecture Vranỳ and Píše proposed an architec-
ture that combines different debuggers into one debugger with multi-language
support [114]. For this, they suggest a generic debugging interface as an abstraction
layer which is then used by a multi-language debugger.

As part of our approach, we presented an interface on the level of the execution
environment instead. This not only allows developers to use only one debugger
in a similar way, but also ensures that the different interpreters support the same
capabilities. This in turn is a requirement to be able to provide a consistent debug-
ging experience with support for edit-and-continue debugging. In contrast, their
architecture only allows the intersection of all debugging features provided for all
languages.

Eco Diekmann and Tratt presented an approach for syntax-directed-style edi-
tors [34]. Their prototype editor Eco allows developers to write composed programs
and supports Python, HTML, and SQL. Internally, the editor uses language boxes
to allow nesting of code written in the different languages. Eco then parses the
different code snippets with a custom parser and translates a composed program
into a Python script. HTML elements are translated to Python print statements,
while SQL code is translated to corresponding SQL api calls in Python.

Although Squimera also allows developers to mix languages in a program, it
works quite different compared with Eco. Instead of translating source code written
in different languages to one common language, each source code is executed by
a corresponding interpreter. However, an Eco-like editing experience could also
be possible with Squimera. Instead of using different parsers for each language
box, the code needs to be evaluated by the “eval” primitive of the corresponding
language plugin. This, however, would require that each child language box returns
objects of the language of its parent box, but this is something the tooling or the
vm can help with.

6.2 Cross-language Integration Techniques

The idea to use more than one programming language in software programs
has existed for decades. In the late 1960s, Cheatham identified three approaches
that give developers more diversity in terms of language features [26]. The first
approach is to come up with a variety of programming languages for different use
cases. The second suggests to use a “shell” language providing a universal set of
features that can then be used across all languages. Lastly, he mentions the idea of
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an extensible language facility. This facility includes a core language and means to
extend it for different use cases.

Today, we have a large number of different programming languages. Hence,
Cheatham’s approach 1 has been applied even though it comes with many draw-
backs. Further, one could argue that approach number two has led, for example, to
the notion of foreign function interfaces and the use of inter-process communica-
tion, ultimately using the operating system or a network connection as the abstrac-
tion layer between languages. As a result of the third approach, many extensible
languages have evolved which support syntactic and semantic modifications [121].

Our approach, on the other hand, acknowledges the fact that there are many
different languages and attempts to make them interoperable and more useful. For
this, we are using Smalltalk as a more sophisticated “shell” language with support
for high-level language features such as message passing and inheritance.

6.2.1 Conventional Language Integration Mechanisms

Foreign Function Interfaces With foreign function interfaces, it is possible to call
out from a program written in one programming language to programs written
in other languages. They are used by developers, not only to be able reuse more
software. ffis can also be used to speed up performance-critical computations
that can be implemented more efficiently in non-dynamic languages. Nonetheless,
most ffis provided by popular languages are often based on libffi [51] and only
support to call lower-level languages like C, as they use the underlying operating
system as the abstraction layer.

Python, for instance, comes with a ctypes library since version 2.5 which is based
on libffi and can be used to call functions in shared libraries [84]. Similar to this,
Ruby provides the Fiddle module [94]. Java supports foreign function calls through
the Java Native Interface [67], while a Squeak/Smalltalk vm usually provides the
functionality via a special SqueakFFIPrims plugin which is also based on libffi.
Further, wrapper libraries like SWIG [9] have been developed to make it more
convenient to work with ffi calls in general.

Inter-process Communication Inter-process communication can also be used to
call programs written in another language. Compared with the ffi approach, appli-
cations using inter-process communication can coexist and communicate with each
other, and are therefore less coupled. A prominent example for this are applications
that use a database. For that, they usually communicate over a network connection
with a database server. The communication is often limited to text and usually
does not support the exchange of, for example, language objects. Other exam-
ples are microservices that use remote procedure calls to communicate with other
services [83].

However, inter-process communication not only introduces performance over-
heads. Also, developers can often only debug each component separately, because
it is rather hard and sometimes impractical to debug multiple processes at once,
especially in distributed systems.
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As demonstrated in section 5.3, Squimera is able to provide a mechanism for
software reuse which we believe is superior in terms of usability to approaches
based on ffis and rpcs. Instead of having to run a subroutine in a separate oper-
ating system process, it can be executed in the process of the main program. This
allows better control over the execution and ensures that Squimera’s debugger
remains operational, also for exceptions thrown in subroutines written in different
languages.

6.2.2 Language Interoperability

In the last decades, a lot of work and research has been done to provide means that
allow direct interaction between multiple languages without using an indirection
such as the operating system or a network connection.

In 1998, for example, Cleary et al. presented an idea which enables language
interoperability for high-performance scientific applications through an Interface
Definition Language [27].

Similar to that, Hamilton described how the Common Language Runtime (clr),
which provides the infrastructure for Microsoft’s .NET Framework, enables the
integration of programming languages on run-time level [55]. For this, the clr is
platform and language neutral and can execute the Common Intermediate Lan-
guage (cil) to which all compatible languages have to be compiled to. As a re-
sult, clr supports different programming languages including C#, Java, C++, and
Python.

Further and based on the Microsoft .NET Framework, Eaddy and Feiner have
presented an edit-and-continue implementation that allows runtime updates to
programs running on clr [36]. However, Visual Studio currently only supports the
edit-and-continue feature for C++, C#, and Visual Basic [74], even though it should
also work for IronPython according to the paper.

Nonetheless, the clr approach requires language implementations that can
compile a language into an intermediate language. Squimera, on the other hand,
makes use of different language implementations written in the same language
implementation framework, and runs a different interpreter for each supported
language.

Languages Implemented on Top of Other High-level Languages In addition,
there are various language implementations built on top of other languages. For
this, they usually perform some kind of source code transformations which often
introduce additional performance overhead.

However, some execution environments perform optimizations, for example jit

compilation, which are able to compensate this overhead, and in some cases even
outperform the default execution environment.

JRuby, for instance, is a Ruby implementation on top of Java [80] which is able to
outperform Ruby MRI, because it can leverage the jit compiler of the jvm. Similar
to that, MagLev is a Ruby implementation that runs on top of a Smalltalk vm for
GemStone/S [99].
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In JRuby, Java bytecodes are emitted while MagLev generates bytecodes for the
Smalltalk vm. On the other hand, Squimera does not translate programs written
in different languages into one bytecode set, but uses different interpreters for
each language instead. Also, it uses a tracing jit compiler to increase the overall
performance of all languages.

Interpreter Composition in RPython More recent research targets language im-
plementation frameworks, such as RPython and Truffle, that include advanced jit

compiler techniques.
With Unipycation [6], Barrett et al. presented a composition of interpreters for

Python and Prolog in RPython, based on PyPy and Pyrolog [16]. Although their
bi-language vm is built similarly to Squimera’s vm, it does not have any further
scheduling mechanisms for switching between interpreter loops. Also, their work
mainly focuses on performance advantages that a meta-tracing jit compiler can
provide rather than on the programming experience or on tooling.

Moreover, Barrett et al. compared Unipycation with other approaches to inter-
preter composition [5]. For this, they composed each, CPython and PyPy, with a
Prolog implementation written in C by using CFFI. Additionally, they also com-
posed a Python and a Prolog implementation on top of Java. As a result, they
concluded that the approach used to build Unipycation not only led to a well-
performing vm, but was also comparatively easy to implement.

For similar reasons, we used interpreters written in RPython to build Squimera.
Instead of having to write language implementations from scratch, or compose
interpreters in C, we were able to reuse existing language implementations with
relatively low effort, because they are written in the same framework and in a
high-level language.

Truffle’s Ployglot Engine Furthermore, the Truffle framework in combination
with the GraalVM also provides high-performance language interoperability ca-
pabilities [52, 117]. The different language implementations, including TruffleJS,
TruffleC, and TruffleRuby, emit ast nodes that Truffle can execute and optimize.

Additionally, the framework supports to mix these ast nodes from different
languages at run-time as part of its Polyglot engine which enables language in-
teroperability. This way, TruffleC was able to provide support for C extensions
in TruffleRuby [53] for example, but is now replaced with Sulong which is able
to execute more LLVM-based languages, such as C, C++, and Fortan, on the
GraalVM [91].

Although some work has been done to provide debugging support for languages
implemented in Truffle [95, 108], the framework focuses on performance rather
than on tooling. In contrast, our approach can be seen as a tool-first approach, as
we have put more effort into providing a good programming experience than into
optimizing the performance of composed languages.

With a Smalltalk implementation in Truffle, we believe it could be possible to
leverage its Polyglot engine for multi-language support and tooling similar to
Squimera. However, it is unclear to what extent the framework is able to create a
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consistent programming experience, as an important part of our approach is the
ability to retrofit advanced runtime capabilities such as frame restarting and hot
code patching.

6.3 Summary

Unlike common ides, the Squimera programming environment including all
tools run in the same process in which the different languages are executed. This in
turn enables, for example, edit-and-continue debugging for languages that usually
do not support it. On the other hand, common techniques to integrate and reuse
software written in different languages are often hard to debug, as they usually
break the tooling. In contrast, different languages can be used in a more concise
way in Squimera and without breaking, for instance, the debugging experience.
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In this report, we have described two common problems developers encounter
when working on software. First, they often need to use specific tools for the
language they develop in. This requires them to acquire special knowledge which,
in some cases, is language-specific and cannot be applied when developing in other
languages. We argue that this is one reason developers hesitate to choose a language
they are not familiar with, even if that language would be more suitable for their
use cases. This problem scales in a business context, where several developers work
in teams on a complex software product. Switching to a different language not only
requires to migrate code to that language. More importantly, developers need to be
trained to be able to work efficiently with the development tools for that language.
This, however, can be a substantial financial investment for companies.

On the other hand, software development tools are often built from scratch for
each programming language. These tools, however, usually provide very similar
functionality, because there are many software development principles that are
generally applicable. Code editors often support the same set of features such
as code completion, syntax highlighting, and code formatting. Debugging tools
usually support the inspection of program state at run-time and can be used to
control and manipulate the execution.

The second problem we discussed is the fact that not only tools, but also software
libraries and frameworks are often recreated across programming languages. One
reason for this is that software is usually built in a modular way which allows for
better extensibility as well as reusability. Another reason is that concepts, ideas, or
even entire architectures that have proven to work well in one language may also
work well in others.

In this work, we presented an approach which attempts to solve both of these
problems through reuse. Reusing tools for software development not only reduces
the work for language or tool implementers. More importantly, it also makes it
easier for developers, as they can work with familiar tools to develop software in
different languages in a uniform way. As a result of that, software libraries can also
be reused in a more convenient way compared to traditional approaches based on
foreign function interfaces for example.

For our approach, we decided to reuse the tools of a Smalltalk environment. In
order to be able to unify the programming experience across all languages, we sug-
gest to integrate the different languages not only on ide-level, but also on language
implementation-level. This makes it possible to retrofit powerful runtime capabili-
ties such as frame restarting or hot-swapping, which in turn enable features like
edit-and-continue debugging. Language implementation frameworks like RPython
make this kind of integration easier.
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To demonstrate the advantages of our approach, we have implemented
Squimera, a Smalltalk-based ide for Python and Ruby. The Squimera vm

consists of multiple interpreters and the execution of Ruby and Python programs
is coordinated by the Smalltalk scheduler in Smalltalk-level processes. This ensures
that the development environment remains responsive, because unlike in conven-
tional ides, the user interface as well as Ruby and Python programs are executed in
the same operating system process in Squimera. By analyzing different use cases,
we demonstrated that Squimera is able to provide a consistent programming
experience across Smalltalk, Python, and Ruby.

There are multiple avenues for future work. As mentioned in section 5.5, it would
be useful if foreign languages could call to Smalltalk. This would not only allow
the proper reuse of software frameworks in Smalltalk, but also reuse of Python
libraries and frameworks in Ruby and vice-versa.

In terms of debugging support, Squimera’s debugger could be extended to
provide similar features that other and more mature ides provide. This includes,
for instance, more options that allow developers to drill down on certain exceptions.
In addition, the detection of unhandled exceptions could be improved further, so
that it covers more exception handling scenarios.

Currently, we have mainly focused on run-time tools in Squimera. But we
want to adapt more Smalltalk tools, such as the system browser or the test runner
which can be used to write program code. With the system browser, it could be
possible to build hybrid programs that use different programming languages. As
an example, we could build an application that uses a Python web framework,
Ruby’s Regex engine, and Smalltalk’s collection protocol. Furthermore, the system
browser could provide refactoring tools for all integrated languages. Moreover, it
would be interesting to see if we could build a tool similar to Jupyter Notebook with
Vivide [103] that can provide better live programming features. The test runner
could, for instance, be used to support the migration of programs from one to
another or even multiple languages.

Further, we want to integrate more languages into Squimera. Ruby and Python
are relatively similar to Smalltalk, so we want to find out if we can integrate
languages based on other programming paradigms in a similar way. There are
many RPython-based implementations of various languages that can be used, for
example for Prolog [6], Racket [8], Lisp [4], SQL [15], and many others.

Lastly, we want to investigate if our approach can also be applied to other
language ecosystems. The GraalVM, for instance, also allows interoperability of
different languages implemented in the Truffle framework. Hence, it would be
interesting to see if it is possible to adapt tools from Eclipse or the NetBeans
ide [17] in such a way that they behave consistently for languages implemented in
Truffle.

Despite the ideas for future work, Squimera demonstrates that it is possible to
reuse live programming tools of a Smalltalk environment for different high-level
dynamic languages and to create a consistent programming experience. Squimera

is a prototype system, but we have many ideas how to make it better to further
improve the programming experience for developers.
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