
smalltalkCI
A Continuous Integration Framework for Smalltalk Projects

Fabio Niephaus
Hasso Plattner Institute

University of Potsdam, Germany
fniephaus@acm.org

Dale Henrichs
GemTalk Systems

dale.henrichs@gemtalksystems.com

Marcel Taeumel
Hasso Plattner Institute

University of Potsdam, Germany
marcel.taeumel@hpi.de

Tobias Pape
Hasso Plattner Institute

University of Potsdam, Germany
tobias.pape@hpi.de

Tim Felgentreff
Hasso Plattner Institute

University of Potsdam, Germany
tim.felgentreff@hpi.de

Robert Hirschfeld
Hasso Plattner Institute

University of Potsdam, Germany
robert.hirschfeld@hpi.de

Abstract
Continuous integration (CI) is a programming practice that
reduces the risk of project failure by integrating code changes
multiple times a day. This has always been important to the
Smalltalk community, so custom integration infrastructures
are operated that allow CI testing for Smalltalk projects
shared in Monticello repositories or traditional changesets.

In the last few years, the open hosting platform GitHub
has become more and more popular for Smalltalk projects.
Unfortunately, there was no convenient way to enable CI
testing for those projects.

We present smalltalkCI, a continuous integration frame-
work for Smalltalk. It aims to provide a uniform way to load
and test Smalltalk projects written in different Smalltalk di-
alects. smalltalkCI runs on Linux, macOS, and on Windows
and can be used locally as well as on a remote server. In ad-
dition, it is compatible with Travis CI and AppVeyor, which
allows developers to easily set up free CI testing for their
GitHub projects without having to run a custom integration
infrastructure.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—Testing tools, Diagnostics

Keywords Smalltalk, Continuous Integration, Travis CI,
AppVeyor, Coverage Testing

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

IWST’16, August 23 - 24, 2016, Prague, Czech Republic
Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4524-8/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/2991041.2991044

1. Introduction
Working collaboratively with a shared code base is a cogni-
tive challenge. Adapting best practices such as test-driven
development increases code quality [9] and therefore its read-
ability and maintainability. In order to make a project usable
for others, it is often necessary to use dependency manage-
ment tools. However, this still does not guarantee that a given
program works for another developer or even for an end-user.
Continuous integration (CI) [5] is an extreme programming
practice that allows developers to change and refactor code
while reducing the risk of project failure [2, 8].

The Smalltalk community has always been interested
in sharing code. For example, one of the first features of
Smalltalk-80 is a file out mechanism [12]. Later, Monticello
repositories have become the de facto standard format to
share Smalltalk code in different Smalltalk dialects for years.
With the success of common version control systems (VCS)
such as Git and open-source hosting platforms like GitHub
and Bitbucket, Smalltalk code is more and more shared on
these platforms in a Git-compatible format called FileTree1.

With SUnit, Smalltalkers have built the first unit-testing
framework [1] to enable test-driven development which has
been essential for Smalltalk code quality ever since [16].
This stresses how important testing is for the Smalltalk com-
munity. A common way to enable CI testing for Smalltalk
projects hosted on platforms such as SqueakSource2 or
SmalltalkHub3 is to run a custom integration infrastructure,
for example a Jenkins4 instance.

In this paper, we present smalltalkCI, a continuous integra-
tion framework for Smalltalk projects. It is the successor to

1 https://github.com/dalehenrich/filetree
2 http://squeaksource.com/
3 http://smalltalkhub.com/
4 https://jenkins.io/

https://github.com/dalehenrich/filetree
http://squeaksource.com/
http://smalltalkhub.com/
https://jenkins.io/

the builderCI5 framework and aims to be reliable, lightweight,
and easy to use. Since it is deeply integrated with Travis CI6

and compatible to AppVeyor7, both are continuous integra-
tion services for GitHub projects, it enables developers to
easily set up free, continuous testing for Smalltalk projects
on GitHub. In addition, it runs on Linux, macOS, and Win-
dows, is compatible with different Smalltalk dialects such
as Squeak, Pharo, and GemStone, and operates in a uniform
way. This allows CI testing of cross-dialect projects such as
Seaside [7], Fuel [6], Metacello, Parasol, and many more.

We believe that the Smalltalk community would benefit
from shifting towards open platforms in a similar way other
communities around programming languages are benefiting.
This includes better visibility of the work that the community
is doing as well as less effort that needs to be put into mostly
administrative tasks such as running a CI server. We built
smalltalkCI to make it easier to use these services and to
encourage developers to share their Smalltalk projects on
common, and more popular hosting platforms.

This paper explains how we designed and implemented a
framework that

• supports CI testing for Smalltalk projects in a uniform
way and with low effort;

• supports different Smalltalk dialects and operating sys-
tems;

• supports developers to debug their code locally and re-
motely; and

• is a mature substitute for a custom CI infrastructure that
comes for free when hosting projects on GitHub.

In the following section, we introduce related tools, design
decisions, and concepts. Then in sections 3 and 4, we explain
how smalltalkCI is implemented, how it can be used, and
how it is integrated into Travis CI. In section 5, we discuss
ideas on how smalltalkCI can be used in the future. Finally,
we conclude in section 6.

2. Background
Traditional Smalltalk environments provide the ability to
share code in the FileOut code format which is a text-based
format that simply holds compiler expressions. Multiple
changes or packages can be exported using this format in so
called changesets. However, the code format does not support
dependency management in any way, but more importantly, it
is inconvenient to manage code like this with modern VCSs.
Not only can this code format be difficult to parse for human
readers because fileouts can be quite long and unstructured.
This already makes it hard to merge code if necessary. Addi-
tionally, the code format contains carriage return and other
control characters which cause many merge conflicts in the

5 https://github.com/dalehenrich/builderCI
6 https://travis-ci.org/
7 https://www.appveyor.com/

first place. The FileTree format attempts to solve these prob-
lems by splitting multiple packages into separate directories
and by exporting methods into separate files. This makes it
much more convenient to manage Smalltalk code with VCSs
such as Git or Subversion. It is also compatible with the Meta-
cello package management system, which provides the ability
to declare dependencies within a project. Therefore, these two
technologies have made it possible to host Smalltalk projects
on common platforms such as GitHub.

The need for CI support for these kinds of projects has
resulted in the development of builderCI. This framework
allows to build and test Smalltalk projects hosted on GitHub
with Travis CI. However, it requires non-trivial boilerplate
code to be added to a project and it uses a few tricks to be
able to run on Travis CI. It also is difficult to debug build
problems because it is not convenient and safe to run the
framework locally and sometimes problems are caused by
builderCI itself. Nonetheless, it is great that this project added
CI support for Smalltalk projects that are not being hosted
on Smalltalk-only platforms which ultimately motivated us
to build smalltalkCI.

Travis CI offers free CI services with support for Linux
and macOS for public GitHub repositories. For this, so called
builds are performed whenever new code has been pushed
to a repository. A build consists of one or more jobs and for
each job, a worker machine is scheduled to build and test a
project. How a project is built and tested needs to be specified
in a .travis.yml file which has to live in the repository’s root
directory. In this file, it is possible to customize any step of the
build process. It also holds the build matrix which specifies
which jobs Travis CI should run for each build. AppVeyor
is a comparable service which supports Windows builds and
which can be set up in a similar fashion.

Current variants of the Smalltalk-80 programming en-
vironment [13] include Squeak [14], Pharo [4], and Gem-
Stone [15]. All of them come in different versions including
bleeding edge or trunk versions. One motivation for setting
up CI testing for a Smalltalk project is that a project can be au-
tomatically tested in different versions of the same Smalltalk
dialect or in images of other Smalltalk dialects. This supports
developers to maintain a project using their favorite Smalltalk
image while making sure that the project works in all sup-
ported versions and dialects.

2.1 Design Decisions
For continuous integration, “it is important to have tools that
support a fast integration/build/test cycle” [2]. We wanted
that the time for an integration test is no longer than five
minutes in average. Therefore, we aimed for a lightweight
system with only few dependencies. A build should fail as
early as possible in order to provide fast feedback in case of
build problems and to avoid stuck build processes. Further,
whenever adding a feature, we evaluate how it is impacting
the time to run and we then consider if it is worth the trade-off
or if there is a more time efficient alternative.

https://github.com/dalehenrich/builderCI
https://travis-ci.org/
https://www.appveyor.com/

Moreover, we did not want smalltalkCI to have dependen-
cies that need to be loaded externally in order to make it as
reliable and robust as possible. Otherwise builds could fail
if an external dependency became inaccessible. Since many
projects already have quite a few external dependencies, we
did not want smalltalkCI to add to the problem. In addition,
we also wanted to have its entire code base including the Bash
scripts and the Smalltalk code as well as its dependencies en-
tirely in one repository. For this reason, hosting smalltalkCI’s
Smalltalk code in for example a Monticello repository was
out of the question for us.

We initially started to export smalltalkCI’s code in a single
Smalltalk file that can be simply filed into an image. But
we quickly realized that this approach is very inconvenient
because it caused many Git merge conflicts which made
maintaining the code base unnecessarily difficult. Instead,
we then agreed to export the code in the FileTree format.
This implies that in order to load smalltalkCI, Metacello and
FileTree need to be installed in an image. Both are required
to load most Smalltalk projects, especially the ones hosted
on GitHub, anyway.

Pharo and GemStone images come with Metacello and
FileTree pre-installed and hence can load smalltalkCI and
projects without further ado. In Squeak, smalltalkCI can eas-
ily install Metacello8 and it takes about a minute to load
both, Metacello and FileTree, before being able to perform
an actual integration test. This adds additional overhead
which is especially noticeable when building smaller projects,
whose tests only need several seconds to run. For this rea-
son, smalltalkCI uses prepared Squeak images which have
Metacello and FileTree pre-configured. This also makes them
more robust because less external code needs to be loaded.
Such pre-configured images, however, have to be maintained
and checked for compatibility problems and are therefore
only created for stable releases of Squeak.

The bootstrapping process is written in Bash and we tried
to keep this code small and simple. The bootstrapping code
currently accounts for approximately 38 % of smalltalkCI’s
code base9. We thought that everything that can be done in
the Smalltalk image should happen in the image.

In addition, we tried to keep the total file size of smalltalkCI
as small as possible. Every additional file that we add to the
repository needs to be downloaded by a CI infrastructure,
no matter whether it is Travis CI or a Jenkins instance. Cur-
rently, the entire code of smalltalkCI can be compressed into
a 0.5 MB zip file. Adding for example an entire Smalltalk
helper image with 30 MB in size would have increased the
traffic to download the framework 1,000 times from 500 MB
to 30.5 GB. For this reason, we decided against using a
Smalltalk image that performs the integration test. Instead,
we opted for a light Bash script layer while making sure that
we only add files that are required for a build.

8 https://github.com/dalehenrich/metacello-work
9 According to https://github.com/hpi-swa/smalltalkCI.

2.2 The Configuration Concept
For an integration test, it is necessary to somehow specify
how a project can be loaded and tested. Initially, we thought
it would be a good idea to just add smalltalkCI-specific con-
figuration information to the .travis.yml which Travis CI
expects. This would have made smalltalkCI dependent on
Travis CI which we wanted to avoid. We would have also
needed to come up with similar solutions for other platforms
like AppVeyor. Instead, we opted for a dedicated configura-
tion file following a common pattern used in similar tools for
other programming languages such as a Gemfile in Ruby, a
requirements.txt in Python, or a package.json in NodeJS.

By default, the configuration file is expected to be called
.smalltalk.ston or smalltalk.ston. In case one wants to
use a different name, a single line needs to be added to
the Travis CI configuration or if run manually, the custom
file needs to be provided explicitly as a parameter. This
makes common use cases very simple while allowing more
advanced use cases with minimal additional effort.

For the configuration file format, we chose to use the
Smalltalk Object Notation (STON)10. This way it is possible
to specify Smalltalk objects in a JSON-like file which can
then be added to the repository.

Currently, the configuration file only serves the purpose
of telling smalltalkCI how to run integration tests for a given
projects. But one could also use it as a cross-platform load
specification, respectively making every repository that uses
smalltalkCI instantly loadable in a consistent way for users.

3. Implementation
smalltalkCI is able to perform a full integration test for a
given Smalltalk project. For this, it needs to download the
Smalltalk target image and a corresponding virtual machine.
Then it needs to initiate the integration process inside the
target image which loads the project of interest and executes
its test suite. Finally, smalltalkCI reports the test results it
collected.

The initial version of smalltalkCI consisted of a small
Bash script and a short Smalltalk script and was able to per-
form a CI test in a single Smalltalk dialect. We then used
different abstraction layers in order to make the framework
compatible to other dialects and to make it easily extend-
able while keeping its list of dependencies as short as pos-
sible. In addition, we incorporated proven concepts from
builderCI and thought about ways to eliminate its short-
comings. smalltalkCI is tested by itself on Travis CI and
AppVeyor with tests that cover its most important compo-
nents and various cases. This helps to ensure that updates,
which usually roll out automatically, do not break builds for
everyone.

10 https://github.com/svenvc/ston/blob/master/ston-paper.md

https://github.com/dalehenrich/metacello-work
https://github.com/hpi-swa/smalltalkCI
https://github.com/svenvc/ston/blob/master/ston-paper.md

3.1 Bootstrapping
The bootstrapping of an integration test is done in a set of
Bash scripts. They prepare the build and the caching direc-
tories, locate the build configuration, and invoke a dialect-
specific build process. For each supported Smalltalk dialect,
there is a dedicated script which knows where to download
a Smalltalk image and an appropriate virtual machine. These
files are first downloaded to the caching directory and then
extracted to the build directory. This way, downloaded files
do not need to be downloaded twice on the same system
when running another integration test for the same platform.
This is especially useful for debugging problems on a lo-
cal machine. Once all files are in place, the corresponding
smalltalkCI packages are loaded into the image. Finally, the
bootstrapping process completes by first loading the project
with

SmalltalkCI load: ’/path/to/smalltalk.ston’

and then by initiating the integration test with

SmalltalkCI test: ’/path/to/smalltalk.ston’.

3.2 Loading and Testing a Project
smalltalkCI’s only external dependency is the STON package
which is already available in Pharo and GemStone. In Squeak,
the package is loaded directly from smalltalkCI’s repository
alongside with smalltalkCI. This dependency is needed to be
able to load a configuration object from the configuration file
provided by the user. The main object smalltalkCI expects is
called a SmalltalkCISpec. Listing 1 shows the contents of a
minimal configuration file which specifies such a specifica-
tion.

Listing 1. Minimal SmalltalkCISpec example.
SmalltalkCISpec {

#loading : [

SCIMetacelloLoadSpec {

#baseline : ’MyProject’,

#directory : ’packages’,

#platforms : [#squeak, #pharo, #gemstone]

}

]

}

A SmalltalkCISpec has an instance variable loading

which is expected to be a list of load specifications. A
load specification inherits from SCIAbstractLoadSpec and
describes how a project is loaded. For this, a load specifica-
tion has an instance variable platforms which specifies to
which Smalltalk dialects it is compatible. This way, one can
use different load specifications for different dialects while
making the common use case as simple as possible.

At the moment, smalltalkCI provides the classes
SCIMetacelloLoadSpec, SCIMonticelloLoadSpec, and
SCIGoferLoadSpec which allow to load projects via Meta-

cello11, Monticello, and Gofer12 respectively. The above ex-
ample instructs Metacello to load the Metacello baseline
BaselineOfMyProject, which can be found in subdirectory
called packages/ relative to the project’s root directory, in
Squeak, Pharo, and GemStone.

Listing 2. SmalltalkCI»load (simplified).
load

[self prepareForLoading.

"Install all specs for the current platform"

self compatibleLoadSpecs

do: [:each | each loadProjectOn: self]

] ensure: [self finishUpAfterLoading]

Listing 2 shows the main entry point for loading a project
after a configuration has been processed by the STON parser.
Everything that needs to happen in order to set up an image
for loading a project is done in SmalltalkCI»prepareForLoading

which is specialized for each dialect. For example in Squeak,
we need to load a custom tool set (SCISqueakToolSet) which
quits the image as soon as an error is raised in headless
mode. We also temporarily replace the default Transcript
with an instance of SCISqueakTranscript which redirects the
transcript to stdout.

The method SmalltalkCI»finishUpAfterLoading is its
counterpart and basically reverts all changes in order to bring
the image in its initial state.

Once the test image is prepared, smalltalkCI loads all
compatible load specifications and then saves and closes the
image.

Listing 3. SmalltalkCI»test (simplified).
test

| success |

self prepareForTesting.

self isCoverageTestingEnabled

ifTrue: [success := self runTestsWithCoverage]

ifFalse: [success := self runTests].

SmalltalkCI isHeadless ifFalse: [self halt].

success

ifTrue: [

SmalltalkCI closeWithExitCode: 0]

ifFalse: [

SmalltalkCI saveImage.

SmalltalkCI closeImageWithExitCode: 1]

The entry point which initiates the integration test is
shown in listing 3. Similar to SmalltalkCI»prepareForLoading,
the image is prepared for testing first. Then all tests are run ac-
cording to the configuration and, if requested, with coverage
reporting enabled. We will talk about code coverage in detail
in section 4.6. The implementation of SmalltalkCI»runTests
is platform-specific. In order to be able to print test results

11 https://github.com/dalehenrich/metacello-work
12 http://www.lukas-renggli.ch/blog/gofer

https://github.com/dalehenrich/metacello-work
http://www.lukas-renggli.ch/blog/gofer

in a uniform way, smalltalkCI exports the test results in the
JUnit XML format. In Pharo, it uses Hudson’s HDTestReport

to build and run a test suite. This report already exports the
results in the expected format. For Squeak and GemStone,
we ported HDTestReport in order to make it compatible with
each platform. In case the headfull mode is enabled, the im-
age will halt before the image is programmatically closed.
This allows to inspect the image right after the integration
testing phase. Finally and if all tests passed, the image will be
closed without saving, effectively reverting the image back
to the point when it was saved right after loading the project.
This ensures that the image is free of any side-effects that
poorly written tests may have caused during their execution.
In case of test failures or errors, the image is saved to persist
any defects and then closed with a non-zero exit code.

Once SmalltalkCI»test finished, the integration process
is complete and the workflow finishes on Bash level. The
corresponding build directory is searched for test results in
the XML format which are then printed in a uniform way to
stdout.

Figure 1. Example smalltalkCI build results in Travis CI log.

When running on Travis CI, some syntactic sugar is added
to the output format which allows to fold lines in the Travis
log (see figure 1). Clicking on one of the carets on the left will
display the error message and the corresponding stack trace.
Then the script also checks if coverage results are available
in the build directory and uploads them accordingly.

Finally, smalltalkCI exists with exit code 0 if the integra-
tion test was successful, otherwise it exists with a different
exit code which indicates a failed build.

3.3 Running smalltalkCI
Although smalltalkCI was initially developed to run on
Travis CI, it can easily be run locally, on AppVeyor, or on any
other CI infrastructure. Travis CI’s container-based infrastruc-
ture does not allow the use of sudo for security reasons which
was one motivation not to use it in smalltalkCI. Besides,
smalltalkCI only operates within its own directory. Therefore
it is safe to run the framework on a local machine.

It is only necessary to download or clone smalltalkCI
and to install all dependencies on the operating system level
for the virtual machines that will be used. Then a build
can be initiated by executing the run.sh script which looks
for a smalltalkCI configuration file in the current working

directory. This way it is possible to run integration tests
by executing the script within a local Git repository. A
custom configuration file can be provided as command line
argument and then smalltalkCI will try to locate the project
automatically. Besides, it supports different command line
options that can be listed by calling run.sh --help.

By default a build process runs in headless mode and fails
as soon as an error occurs. For debugging build problems
locally, it is especially useful to enable headfull mode via
--headfull. In this mode, one can see what is happening in-
side the image and usually a debugger window will open
when a problem occurs. Additionally, the image will be kept
open, so that one can rerun the tests using the TestRunner

or further inspect the image after the integration test hap-
pened. In order to make debugging problems even easier,
smalltalkCI prints instructions to reproduce a build locally at
the end of a Travis CI or AppVeyor log if a build has failed.

4. Integration into Travis CI
Travis CI is a popular continuous integration service for
projects hosted on GitHub. It is free for open source projects
and supports a variety of programming languages and build
environments. We have integrated smalltalkCI into the ser-
vice in order to make it easy to test Smalltalk projects on
Linux and macOS.

4.1 Smalltalk as Community-Supported Language
Travis CI provides the ability to add so called community-
supported languages13. For adding Smalltalk, we had to
implement a Ruby class which is part of Travis CI’s code base.
This class inherits from a generic Script class and overrides
methods for the different build stages.

The first stage is called configure and allows the use
of sudo. Therefore, all build environments that Travis CI
supports can be prepared during this stage, especially the
container-based environment which does not allow users to
call sudo for security reasons. For Squeak and Pharo builds,
all dependencies for the virtual machine that will be used for
the build are installed during this stage. GemStone builds re-
quire additional work, for example configuring shared mem-
ory, preparing the host file, and starting GemStone’s netldi

service. The second stage is named export and simply ex-
ports environment variables from the .travis.yml which
smalltalkCI will then detect and use for the build process.
During the setup stage, a Travis CI worker downloads and ex-
tracts the latest version of smalltalkCI and then initializes its
environment variables. Lastly, smalltalkCI is started by exe-
cuting its run.sh script without arguments in the script stage
by default. This stage can be overridden in the .travis.yml in
order to, for example, run smalltalkCI in a debug or verbose
mode.

13 https://docs.travis-ci.com/user/languages/
community-supported-languages/

https://docs.travis-ci.com/user/languages/community-supported-languages/
https://docs.travis-ci.com/user/languages/community-supported-languages/

4.2 Testing Common Smalltalk Projects with Travis CI
To enable CI testing with Travis CI, one needs to enable the
service for the GitHub project of interest and then add a
.travis.yml, which is a Travis CI-specific configuration file
in the YAML format, to the repository.

Listing 4. Minimal .travis.yml example.
language: smalltalk

sudo: false

os:

- linux

- osx

smalltalk:

- Squeak-5.0

- Pharo-5.0

- GemStone-3.3.0

Listing 4 shows an example configuration file for a
Smalltalk project. The language key is set to smalltalk and
instructs Travis CI to build the project with smalltalkCI. sudo:
false makes sure that Linux builds are routed through the
container-based infrastructure. This infrastructure does not
support the use of sudo, but it is able to boot a worker within
one to six seconds14 which makes it the fastest build environ-
ment that Travis CI provides. The os key is used to enable
testing on multiple operating systems. At the time of writing,
Linux and macOS are supported by Travis CI. For Windows
builds, it is possible to use AppVeyor in a similar way de-
scribed in smalltalkCI’s README.md. Lastly, a list of target
Smalltalk images is provided via the smalltalk key. The list
can consist of any two or more Smalltalk images that are
supported by smalltalkCI (a list of all currently supported
images can be found in smalltalkCI’s README.md). In case the
project should only be built in one image, a simple key-value
pair can also be provided. Whenever commits are pushed to
GitHub in this example, Travis would schedule six builds in
total, trying to build and test the project in a Squeak, a Pharo,
and a GemStone image on each, Linux and macOS.

For more complex CI setups, Travis CI provides the con-
cept of a build matrix which can be used to add and remove
specific jobs after the matrix is expanded. Additionally, it is
possible to use a specific or multiple smalltalkCI configura-
tions by using the smalltalk_config key to specify config-
uration file names which will also expand the build matrix
accordingly.

4.3 Testing a GemStone Setup
Since GemStone is an object-oriented database based on
Smalltalk [15], it is possible to run continuous integration
tests in a similar way to other Smalltalk dialects. Compared
to Squeak and Pharo, it does require more work in order
to prepare the operating system for running the GemStone
server. Fortunately, there is a comprehensive open source de-

14 https://docs.travis-ci.com/user/ci-environment

velopment kit for GemStone called GsDevKit15 which ships
with an installation script. We have ported this installation
script to Ruby and run the same steps during the configure

stage described in section 4.1 for GemStone builds in order
to set up the worker. Furthermore, smalltalkCI uses the GsDe-
vKit during GemStone builds for creating a stone and clients
as well as for initiating and synchronizing the integration test.
Setting up CI testing for a GemStone server is as easy as
setting it up for Squeak or Pharo.

Listing 5. Example .travis.yml for a GemStone setup.
language: smalltalk

sudo: false

smalltalk: GemStone-3.3.0

matrix:

include:

- env: GSCI_CLIENTS="Pharo-5.0"

Listing 5 shows a very basic .travis.yml which sets up
two jobs on Travis CI. One job simply runs the integration test
for GemStone-3.3.0, the other one does the same but addition-
ally runs a client-side integration test in a Pharo-5.0 client
image. For additional clients, one can set the environment
variable GSCI_CLIENTS to a list of different clients separated
by spaces.

Besides, it is also possible to provide additional configu-
ration information through a SCIGemStoneServerConfigSpec

which is used to configure the stone. This spec has to be part
of the project’s SmalltalkCISpec and can be used to specify
for example the default session name, paths to stone, and
session configuration files, or the timezone used in the stone.

smalltalkCI is able to perform integration tests accordingly
and delegates subtasks to the GsDevKit when necessary.

4.4 Caching
Travis CI is able to cache dependencies and directories in
order to speed up builds. The directory caching mechanism
simply checks a given directory for changes after a build and
then zips and uploads it to Amazon S3. In the beginning of
the next build, Travis CI will download and extract all cached
directories, so that they are available in the same location.

When integrating and testing a Smalltalk project, it is
necessary to download an image and a virtual machine which
is unavoidable. Loading a project often takes longer than
running its tests. But it would not be beneficial to cache
project code and unfortunately, there currently is no way to
cache external dependencies in a reasonable fashion or to
upgrade loaded Smalltalk projects efficiently.

Also, builds on Travis CI would not benefit from caching
the image and the virtual machine with the built-in caching
mechanism because both have to be downloaded anyway,
regardless of whether from the original source or from the
Amazon S3 cache.

15 https://github.com/GsDevKit/GsDevKit_home

https://docs.travis-ci.com/user/ci-environment
https://github.com/GsDevKit/GsDevKit_home

But caching can be used to speed up GemStone builds.
Preparing a stone is quite time consuming and the same
stone file can be reused without a problem once it has been
generated for a specific version. This allowed us to bring
build times of five to twelve minutes for smalltalkCI itself
down to only two to three minutes.

4.5 Travis CI for Non-GitHub Projects
smalltalkCI works well with Travis CI and with Smalltalk
projects that are being exported using FileTree and are hosted
on GitHub. However, it is possible to leverage Travis CI’s free
service for projects that are not necessarily hosted on GitHub.
This is possible because smalltalkCI can load any project that
Monticello can load. Unfortunately, it is still necessary to set
up a GitHub repository to be able to enable Travis CI. But
this repository only needs to hold a configuration file for each,
Travis CI and smalltalkCI. Once everything is set up, a new
CI build can be triggered by sending a simple HTTP request
to Travis CI’s API16.

The Fuel team has found one way to automate this. The
Pharo Jenkins server at ci.inria.fr polls for changes in the Fuel
repository on SmalltalkHub using the URLTrigger plugin
and then triggers a new build on Travis CI. Referring to
a maintainer of Fuel, some reasons why Fuel is not being
tested directly by the Jenkins server are that smalltalkCI is
easier to set up, that it makes it simple to test Fuel in other
dialects, and that it is much more reliable than the custom CI
infrastructure.

SmalltalkHub already supports commit hooks which are
HTTP requests that are sent to a designated URL after each
push. However, those commit hooks currently only allow to
perform HTTP GET requests. Once they are able to perform
HTTP POST requests with custom headers, there would be no
need to use a polling Jenkins job anymore because commit
hooks can be used to directly trigger new builds on Travis CI
instead.

4.6 Coverage Testing
When run on Travis CI, smalltalkCI also integrates with Cov-
eralls17, which is a tool for test coverage history and statis-
tics. In order to enable test coverage reporting, one needs to
enable Coveralls for the corresponding GitHub project and
then needs to specify packages and classes via the project’s
smalltalkCI configuration for which the coverage should be
determined. If coverage testing is enabled, smalltalkCI uses
SUnit’s TestCoverage which is also used for coverage testing
in the original TestRunner.

Before running the test suite, all methods for all selected
classes are being replaced by instances of TestCoverage.
Each TestCoverage object can be called as method because
it implements run:with:in:. Inside this method it calls the
original method on the initial receiver after marking itself

16 https://docs.travis-ci.com/user/triggering-builds
17 https://coveralls.io

as visited. Once the test suite finished running all tests, all
TestCoverage objects are checked if they have been visited
and then uninstalled. This allows to determine if a method
has been called or not. smalltalkCI then exports the coverage
results in a JSON-like format which is then decorated with
build information on Bash level and sent to the Coveralls
service.

Finally, Coveralls analyzes the file, displays the coverage
results, and links methods to their corresponding .st file in
the GitHub repository if possible.

5. Future Work
smalltalkCI is already being used to build and test more
than 90 projects on GitHub18 and provides many features.
Nonetheless, we are constantly extending its capabilities to
make it even easier to use and to support more use cases.

In the near future, smalltalkCI will use a custom test
runner which will give users more control over how tests
are being executed. Also, we are planning to move the code
that prints test results into the image to further decrease
complexity of the Bash script layer.

We have recently added compatibility to AppVeyor which
allows to run integration tests on Windows in a similar way
tests run on Travis CI. But AppVeyor support is not yet
complete and can be improved, for example coverage testing
is currently not supported. Similarly, it would be interesting
to set up smalltalkCI on other CI services like GitLab CI19 or
CircleCI20.

Sharing Smalltalk code in Git repositories is still not as
easy as it could be. First, the FileTree format saves meta data
within the repository which for example contains the version
history. This means that the version history is basically dupli-
cated. It would be better to only use the Git commit history
instead, especially because Git is unable to merge these meta
data files automatically. This for example makes it impossible
to merge pull requests without having to manually resolve
conflicts. There are already ideas to remove the redundant
meta data files which we want to support in the future. More-
over, the tools that are currently available to export Smalltalk
code are still inconvenient to use. Exporting a new version for
example requires to export the project with the Monticello
Browser in the FileTree format and then it is still necessary to
create a Git commit with the changed files. These tools also
do not ship with Squeak yet, which is something we want to
work on in the future as well. As the Smalltalk community is
working on these format and tooling issues, we will update
smalltalkCI accordingly.

Furthermore, we are planning to add support for other vir-
tual machines. Currently, smalltalkCI selects the default vir-
tual machine for an image automatically. In some use cases,
it would be great to be able to use a different VM, e.g. an in-

18 According to https://git.io/v6lsh.
19 https://about.gitlab.com/gitlab-ci/
20 https://circleci.com/

https://ci.inria.fr/
https://docs.travis-ci.com/user/triggering-builds
https://coveralls.io
https://git.io/v6lsh
https://about.gitlab.com/gitlab-ci/
https://circleci.com/

terpreter VM or experimental VMs such as SqueakJS [11] or
RSqueak/VM [10]. Additionally, we will need to add support
for 64-bit images and virtual machines soon.

With the current approach, code coverage can currently
only be determine per method, but it would be more accurate
to determine the coverage per line. Hapao [3] is a test cov-
erage tool which supports per-line coverage testing. We still
need to evaluate if and how we can use Hapao in smalltalkCI.

Further, we are looking into tooling support for smalltalkCI
configurations. It would be nice to have a user interface that
can be used to create and manage configurations as well as a
tool that can run multiple integration tests in different dialects
from within an image. This would allow developers to check
if their code runs in other versions of the same Smalltalk
dialect or even in images of different dialects which would
be especially useful for developing cross-dialect-compatible
projects. The AutoTDD21 project for instance already sup-
ports to run a test suite whenever related code changes. It
also is able to parse tests results in the JUnit XML format
which already makes it possible to view remote smalltalkCI
test results inside an image.

As CI services are improving and extending their deploy-
ment capabilities, we are also planning to provide the ability
to export the images to a hosting platform after the projects
has been built successfully. smalltalkCI could for example
prepare an all-in-one bundle which can then be uploaded as
part of a GitHub release22. It might also be possible to use
smalltalkCI in a similar way to build and release for example
new Squeak-trunk images.

6. Conclusion
In this paper, we presented smalltalkCI, a continuous integra-
tion framework for Smalltalk projects. We explained how we
strive to make it reliable, efficient, and easy to use, how it is
implemented so that it supports different Smalltalk dialects,
and how it can be used in various use cases.

With smalltalkCI, we were able to add Smalltalk sup-
port for the continuous integration services Travis CI and
AppVeyor which now provide free CI testing for Smalltalk
projects that are hosted on GitHub. Although the first version
of smalltalkCI was released in the end of 2015, it is already
used to build and test more than 90 projects on GitHub in-
cluding projects like Seaside, Fuel, and Parasol. Also, more
than ten different developers have contributed in more than
1,000 commits so far.

We hope that smalltalkCI continues to encourage Smalltalk-
ers to share their projects on open platforms like GitHub
which makes them more visible and allows better collabo-
ration compared to Smalltalk-only platforms. Additionally,
we hope that smalltalkCI supports Smalltalk developers in
working on more cross-dialect projects from which the entire
community benefits.

21 https://github.com/HPI-SWA-Teaching/AutoTDD
22 https://help.github.com/articles/about-releases/

Acknowledgments
We would like to thank all contributors to smalltalkCI from
different Smalltalk communities for their help. A special
thanks to Jonas Chromik, Steffen Kötte, Christopher Weyand,
and Lennard Wolf from the bachelor project HPI-BP2015H
as well as to Hiro Asari, Konstantin Haase, Sven Fuchs,
Josh Kalderimis, Mathias Meyer, and the Travis CI team for
helping us adding Smalltalk support with this framework to
Travis CI. Finally, we gratefully acknowledge the financial
support of HPI’s Research School23 and the Hasso Plattner
Design Thinking Research Program24.

References
[1] K. Beck. Simple smalltalk testing: With patterns. The

Smalltalk Report, 4(2):16–18, 1994.

[2] K. Beck. Extreme Programming Explained: Embrace Change.
An Alan R. Apt Book Series. Addison-Wesley, 2000.

[3] A. Bergel and V. Peña. Increasing test coverage with hapao.
Science of Computer Programming, 79:86–100, 2014.

[4] A. P. Black, O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo
by Example. Square Bracket Associates, 2010.

[5] G. Booch. Object Oriented Design: With Applications. The
Benjamin/Cummings Series in Ada and Software Engineering.
Benjamin/Cummings Pub., 1991.

[6] M. Dias, M. M. Peck, S. Ducasse, and G. Arévalo. Fuel: A
fast general purpose object graph serializer. Software: Practice
and Experience, 44(4):433–453, 2014.

[7] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible
environment for building dynamic web applications. Software,
IEEE, 24(5):56–63, 2007.

[8] P. M. Duvall, S. Matyas, and A. Glover. Continuous integra-
tion: improving software quality and reducing risk. Pearson
Education, 2007.

[9] H. Erdogmus, M. Morisio, and M. Torchiano. On the effective-
ness of the test-first approach to programming. IEEE Transac-
tions on Software Engineering, 31(3):226–237, March 2005.

[10] T. Felgentreff, T. Pape, L. Wassermann, R. Hirschfeld, and C. F.
Bolz. Towards reducing the need for algorithmic primitives in
dynamic language vms through a tracing jit. In Proceedings
of the Workshop on Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages, Programs and Systems,
ICOOOLPS’15, New York, NY, USA, 2015. ACM.

[11] B. Freudenberg, D. H. Ingalls, T. Felgentreff, T. Pape, and
R. Hirschfeld. Squeakjs: a modern and practical smalltalk that
runs in any browser. In ACM SIGPLAN Notices, volume 50,
pages 57–66. ACM, 2014.

[12] A. Goldberg. Smalltalk-80: the interactive programming envi-
ronment. 1984.

[13] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing Co.,
Inc., 1983.

23 https://hpi.de/en/research/research-school.html
24 https://hpi.de/en/dtrp/

https://github.com/HPI-SWA-Teaching/AutoTDD
https://help.github.com/articles/about-releases/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

[14] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of squeak, a practical smalltalk
written in itself. SIGPLAN Not., 32(10):318–326, Oct. 1997.

[15] D. J. Penney and J. Stein. Class modification in the gemstone
object-oriented dbms. SIGPLAN Not., 22(12):111–117, Dec.
1987.

[16] A. Sharp. Smalltalk by Example: The Developer’s Guide.
McGraw-Hill, Inc., New York, NY, USA, 1st edition, 1996.

	Introduction
	Background
	Design Decisions
	The Configuration Concept

	Implementation
	Bootstrapping
	Loading and Testing a Project
	Running smalltalkCI

	Integration into Travis CI
	Smalltalk as Community-Supported Language
	Testing Common Smalltalk Projects with Travis CI
	Testing a GemStone Setup
	Caching
	Travis CI for Non-GitHub Projects
	Coverage Testing

	Future Work
	Conclusion

